JP3648518B2 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP3648518B2
JP3648518B2 JP04525595A JP4525595A JP3648518B2 JP 3648518 B2 JP3648518 B2 JP 3648518B2 JP 04525595 A JP04525595 A JP 04525595A JP 4525595 A JP4525595 A JP 4525595A JP 3648518 B2 JP3648518 B2 JP 3648518B2
Authority
JP
Japan
Prior art keywords
type
diffusion layer
floating diffusion
well
conductive type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04525595A
Other languages
Japanese (ja)
Other versions
JPH08241982A (en
Inventor
英夫 千ヶ崎
俊文 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04525595A priority Critical patent/JP3648518B2/en
Publication of JPH08241982A publication Critical patent/JPH08241982A/en
Application granted granted Critical
Publication of JP3648518B2 publication Critical patent/JP3648518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は固体撮像装置の小型化に際し高感度な信号出力を得るための固体撮像装置に関する。
【0002】
【従来の技術】
従来、固体撮像素子は、図5に示すインターライン転送方式のCCD型固体撮像素子が広く用いられている。図5中、103はホトダイオード、104は読み出しゲート、105は垂直電荷転送素子、102は水平電荷転送素子、101は出力回路である。ホトダイオード103で光電変換された信号電荷は所定の期間蓄積された後、読み出しゲート104をオンして、全画素同時に垂直電荷転送素子105に読み出される。ついで垂直電荷転送素子105と、水平電荷転送素子102の中を転送され、出力回路101により電圧に変換されて読み出される。
【0003】
一般にこのようなCCD型固体撮像装置の出力回路は、水平電荷転送素子から送られてくる信号電荷を浮遊拡散層に入力してその電圧変化を検出する、いわゆる、浮遊拡散層型出力回路が広く用いられている。このような浮遊拡散層型出力回路の一従来例を図6,図7に示す。図6は平面図、図7は図6中の線C−C′の断面図である。図7中の1は低濃度n型シリコン基板、2は低濃度p型ウエル、3は垂直電荷転送素子に混入するスメアを低減するためのp型第二ウエル、4は電荷転送素子の埋め込みチャネルとなるn型層、5は高濃度n型浮遊拡散層、6はチャネルストッパ、7は絶縁膜、8は局所酸化膜、9はフィールドプレート電極、10は出力障壁電極、11は転送電極、12は出力トランジスタのゲート電極も兼ねるポリシリコン配線、13はAl配線、14は高濃度n型浮遊拡散層5とAl配線13を接続するコンタクト、15はポリシリコン配線12とAl配線13を接続するコンタクトである。また、図6中の16は信号電荷の排出のための高濃度n型拡散層からなるリセットドレイン拡散層、17はリセット電極である。
【0004】
この浮遊拡散層型出力回路は以下の動作により信号電荷を検出する。まず、リセット電極17にリセットパルスを印加し浮遊拡散層5の電圧をリセットドレイン拡散層16に印加されている所定の直流電圧(リセット電圧)と等しい値に設定する。続いて転送電極11にクロックパルスを印加すると水平電荷転送素子 102内を順次転送された信号電荷は、所定の直流電圧が印加された出力障壁電極10を越えて浮遊拡散層5内に流れ込む。この結果、浮遊拡散層5の電圧は信号電荷の流入によって先の基準電圧よりも△Vだけ低下する。この信号電荷による電圧変化はAl配線13を介して接続された出力トランジスタのゲート電極も兼ねるポリシリコン配線12の電圧変化として検出される。なお、通例、ホトダイオードで発生する過剰電荷を基板に逃がすために、n型シリコン基板1にはp型ウエル2に対して逆バイアスが印加される。
【0005】
さて、このような浮遊拡散層型出力回路における検出感度ηはη=δVS / δQS=1/CDで表せる。ここで、δVSは出力電圧の変化量、δQSは信号電荷の変化量、CD は検出容量である。従って、検出感度ηを大きくするには検出容量CD を小さくしなければならない。図6及び図7に示す浮遊拡散層型出力回路の検出容量CD は構成要素に分別すると、図8の等価回路で表せる。図8中の CJ は浮遊拡散層5とp型第二ウエル3間の接合容量、COGは浮遊拡散層5と出力障壁電極10間の静電容量、CRSは浮遊拡散層5とリセット電極17間の静電容量、CL はAl配線13とフィールドプレート電極9間、或いはp型第二ウエル3間の静電容量、およびポリシリコン配線12とフィールドプレート電極9との静電容量、CDGは出力回路部101におけるポリシリコン配線12とp型第二ウエル3との静電容量でる。これらの成分のうちCOGとCRSの低減法については、特公昭61−25224 号公報に高濃度n型浮遊拡散層5を出力障壁電極10,リセット電極17より隔てて配置する方法が述べられている。一方、CJ の低減法については、特開昭59−65470号,特開昭62−33463号公報に浮遊拡散層5直下のp型ウエル2を完全に空乏化する方法が述べられている。
【0006】
【発明が解決しようとする課題】
しかし、以下の理由により従来の浮遊拡散層型出力回路の検出容量CDの低減はいまだに不十分である。
【0007】
来技術では、浮遊拡散層5周辺で生じる接合容量についての考慮がなされていない。すなわち、図7に示すように浮遊拡散層5とその周りに設けられたn型層4の周辺には、p型第二ウエル3がn型層4を覆うように広く設けられているため、空乏層が伸びにくく寄生容量となっている。従って、本発明の目的は浮遊拡散層5周辺の接合容量を低減することにある。
【0008】
【課題を解決するための手段】
本発明では目的を達成するために、p型第二ウエル3とn型層4を自己整合で形成した。
【0010】
【作用】
的を達成するための手段によりp型第二ウエル3をn型層4の周辺で完全に空乏化することができるので接合周辺部分の寄生容量を減少することができる。
【0012】
【実施例】
<実施例1>
以下、本発明の第一の実施例を図1から図4により説明する。図1は本発明の第一の実施例の電荷検出部周辺の平面図、図2は図1中のA−A′の断面図、図3は図1中のB−B′の断面図である。図1中、23は垂直電荷転送素子に混入するスメアを低減するためのp型第二ウエル、24はp型第二ウエル23内に設けられた電荷転送素子の埋め込みチャネルとなるn型層、25はポリシリコン配線12とAl配線13を接続するコンタクトである。図3中の26は動作時には空乏化するチャネルストッパ層である。
【0013】
本浮遊拡散層型出力回路は従来例と同様の動作によって信号電荷を検出する。
【0014】
本実施例の構造は以下の製造方法により作成される。すなわち、低濃度n型シリコン基板1上に低濃度p型ウエル2をイオン打ち込みと熱拡散により形成する。次に、局所酸化膜形成領域以外を窒化膜Aで覆い、ボロンイオン打ち込みによりチャネルストッパ26を形成し、表面酸化により局所酸化膜8を形成する。先の窒化膜Aを除去した後、新たな窒化膜Bをp型第二ウエル23形成領域以外の部分に形成しイオン打ち込みによりp型第二ウエル23を形成する。このとき、局所酸化膜8が在る領域にはイオン打ち込みはなされない。ついで、先の窒化膜Bを残したまま、出力トランジスタ等のp型第二ウェル23が形成されるがn型層24は形成されない領域を新たなホトレジストで覆いn型層24をイオン打ち込みにより形成する。この時浮遊拡散形成領域では、p型第二ウエル23とn型層24は、窒化膜Bもしくは局所酸化膜をマスクとして自己整合的に形成される。
【0015】
次に、全領域をゲート酸化して絶縁膜7を形成した後第一層目のポリシコンを堆積し、パターニングを行って出力障壁電極10,ポリシリコン配線12を形成する。ついで、第二層のポリシコンを堆積とパターニングにより転送電極11を形成する。この後、浮遊拡散層5を設ける領域外をホトレジストで覆いイオン打ち込みにより浮遊拡散層5を形成する。さらに、りんガラス膜を堆積した後、浮遊拡散層5とAl配線13を接続するコンタクト14と、ポリシリコン配線12とAl配線13を接続するコンタクト25を設ける領域外をホトレジストで覆いエッチングにより形成する。次に、Alを堆積してAl配線13を形成する。
【0016】
本実施例によれば以下の効果がある。第一に、図2に示すようにp型第二ウエル23とn型層24は自己整合で形成される。これにより、p型第二ウエル23はn型浮遊拡散層5に印加されるリセット電圧により拡散層24の周辺で完全に空乏化し、接合周辺部分の寄生容量をなくすことができる。
【0017】
第二に、図3に示すようにポリシリコン配線12とAl配線13を接続するコンタクト25をn型層24上に形成した。これにより、フィールドプレート電極9上のポリシリコン配線12の面積を低減しAl配線13とフィールドプレート電極9間、或いはp型第二ウエル23間の静電容量をなくすことができるので CL を減少できる。一方、本発明の構造によれば浮遊拡散層5と同電位のn型層24の面積は増加するが、n型層24直下のp型第二ウエル23とp型ウエル2を完全に空乏化することにより容量の増加はわずかにできる。従って、検出容量CD を低減できる。
【0018】
なお、n型層24直下のp型第二ウエル23,p型ウエル2は特開平3−289173号公報に述べられているような方法でp型第二ウエル23を0.8μm 程度の深さまで浅くすれば、n型基板1に印加される電圧とn型浮遊拡散層5に印加されるリセット電圧により容易に空乏化が可能である。
【0019】
第三に、従来構造のフィールドプレート電極9を取り去って、かつ、局所酸化膜8直下のチャネルストッパ26とp型ウエル2を空乏化した。図4を用いこの点について更に詳しく説明する。図4は図3中に示す局所酸化膜8直下のp型ウエル2内部最低電位の局所酸化膜8の幅依存性のシミュレーション結果の一例である。図に示すように、例えば、局所酸化膜8の幅を1.8μm 以下とすれば、浮遊拡散層5とポリシリコン配線12に印加されるリセット電圧とn型基板1に印加される逆バイアス電圧により、局所酸化膜8直下のp型ウエル2内部電位は0Vより大きくなり空乏化することが分かる。従って、ポリシリコン配線12とp型ウエル2間の静電容量をなくすことができる。なお、ポリシリコン配線12をゲートとして持つトランジスタのチャネルと拡散層24間の耐圧劣化が生じないようにするためには、素子分離部の最低電位が上記トランジスタのチャネル電圧より低くなるように設定すればよい。
【0020】
<実施例2>
本発明の第二の実施例を図9ないし図11を参照して説明する。図9は本発明の第二の実施例の電荷検出部周辺の平面図、図10は図9中のE−E′の断面図、図11は図9中のF−F′の断面図である。図9,図10の中で91はフィールドプレート電極、92は水平電荷転送素子のp型ウエル2の空乏化を容易にするn型ウエルである。
【0021】
本実施例は第一の実施例に水平電荷転送素子の空乏化を容易とし転送効率を上げるためのn型ウエル92を設けたものである。しかし、この結果、n型層24とn型シリコン基板1間のパンチスルー耐圧がn型層の周辺で劣化するという弊害が生じる。そこで、フィールドプレート電極91をn型層24の周辺に設けてアイソレーション性能の向上を図った。なお、n型層24から所定の距離を隔ててフィールドプレート電極91を配置すればn型層24から伸びる空乏層を十分に伸ばすことができるためn型層24周辺の寄生容量は生じない。従って、本実施例によれば検出容量CD の低減効果は第一の実施例とほぼ同程度にでき、水平電荷転送素子の転送効率向上との両立ができる。
【0022】
<実施例3>
本発明の第三の実施例を図12により説明する。本図は第一の実施例の図1のB−B′に対応する部分の断面図である。126は素子分離のためのp型拡散層、その他の符号は第一の実施例と同様である。本実施例では第一の実施例の局所酸化膜8を取り去り、かつ、p型第二ウエル23より濃度の濃いp型拡散層126 だけで素子分離を行うものである。従って、本実施例の動作は第一の実施例と同じである。本実施例によれば局所酸化膜の形成工程をなくすことができる。
【0023】
さて、以上の実施例ではCCD型撮像素子の浮遊拡散層型出力回路の検出感度向上のために、寄生容量を低減する三つの方法について述べた。一方、寄生容量は、全ての集積回路で動作速度や検出感度を制限する原因である。既述した三つの方法は、全ての集積回路の寄生容量低減効果があることは言うまでもない。
【0034】
【発明の効果】
本発明によれば、浮遊拡散層型出力回路におけるp型第二ウエル23とn型層24を自己整合で形成することによって、p型第二ウエル23をn型層24の周辺で完全に空乏化することができ、接合周辺部分の寄生容量をなくすことができる。この結果、検出容量CD を大幅に減少させ検出感度の向上が可能となる。
【図面の簡単な説明】
【図1】本発明の第一の実施例を示す固体撮像装置における電荷検出部周辺の平面図。
【図2】図1中のA−A′の断面図。
【図3】図1中のB−B′の断面図。
【図4】局所酸化膜直下のp型ウエル内部電位の局所酸化膜の幅W依存性の電位解析の一例の説明図。
【図5】インターライン転送方式のCCD型固体撮像装置のブロック図。
【図6】従来の固体撮像装置における電荷検出部周辺の平面図。
【図7】図6中のC−C′の断面図。
【図8】電荷検出部の対地静電容量を示す等価回路図。
【図9】本発明の第二の実施例を示す固体撮像装置における電荷検出部周辺の平面図。
【図10】図9のE−E′の断面図。
【図11】図9のF−F′の断面図。
【図12】本発明の第三の実施例を示す固体撮像装置における電荷検出部周辺の断面図。
【符号の説明】
5…高濃度n型浮遊拡散層、8…局所酸化膜、10…出力障壁電極、12…ポリシリコン配線、13…Al配線、14…コンタクト、16…高濃度n型リセットドレイン拡散層、17…リセット電極、23…p型第二ウエル、24…n型層、25…コンタクト。
[0001]
[Industrial application fields]
The present invention relates to a solid-state imaging device for obtaining a highly sensitive signal output when the solid-state imaging device is miniaturized.
[0002]
[Prior art]
Conventionally, as a solid-state image sensor, an interline transfer type CCD solid-state image sensor shown in FIG. 5 has been widely used. In FIG. 5, 103 is a photodiode, 104 is a readout gate, 105 is a vertical charge transfer element, 102 is a horizontal charge transfer element, and 101 is an output circuit. After the signal charge photoelectrically converted by the photodiode 103 is accumulated for a predetermined period, the readout gate 104 is turned on and is read out to the vertical charge transfer element 105 at the same time for all pixels. Next, it is transferred through the vertical charge transfer element 105 and the horizontal charge transfer element 102, converted into a voltage by the output circuit 101, and read out.
[0003]
In general, the output circuit of such a CCD type solid-state imaging device has a wide range of so-called floating diffusion layer type output circuits in which a signal charge sent from a horizontal charge transfer element is inputted to the floating diffusion layer and its voltage change is detected. It is used. One conventional example of such a floating diffusion layer type output circuit is shown in FIGS. 6 is a plan view, and FIG. 7 is a sectional view taken along line CC ′ in FIG. In FIG. 7, 1 is a low-concentration n-type silicon substrate, 2 is a low-concentration p-type well, 3 is a p-type second well for reducing smear mixed in the vertical charge transfer element, and 4 is a buried channel of the charge transfer element. N-type layer, 5 is a high-concentration n-type floating diffusion layer, 6 is a channel stopper, 7 is an insulating film, 8 is a local oxide film, 9 is a field plate electrode, 10 is an output barrier electrode, 11 is a transfer electrode, 12 Is a polysilicon wiring also serving as the gate electrode of the output transistor, 13 is an Al wiring, 14 is a contact connecting the high-concentration n-type floating diffusion layer 5 and the Al wiring 13, and 15 is a contact connecting the polysilicon wiring 12 and the Al wiring 13. It is. In FIG. 6, 16 is a reset drain diffusion layer made of a high concentration n-type diffusion layer for discharging signal charges, and 17 is a reset electrode.
[0004]
This floating diffusion layer type output circuit detects signal charges by the following operation. First, a reset pulse is applied to the reset electrode 17 to set the voltage of the floating diffusion layer 5 equal to a predetermined DC voltage (reset voltage) applied to the reset drain diffusion layer 16. Subsequently, when a clock pulse is applied to the transfer electrode 11, the signal charge sequentially transferred in the horizontal charge transfer element 102 flows into the floating diffusion layer 5 over the output barrier electrode 10 to which a predetermined DC voltage is applied. As a result, the voltage of the floating diffusion layer 5 is lowered by ΔV from the previous reference voltage due to the inflow of signal charges. This voltage change due to the signal charge is detected as a voltage change in the polysilicon wiring 12 which also serves as the gate electrode of the output transistor connected via the Al wiring 13. In general, a reverse bias is applied to the n-type silicon substrate 1 with respect to the p-type well 2 in order to release excess charges generated in the photodiode to the substrate.
[0005]
The detection sensitivity η in such a floating diffusion layer type output circuit can be expressed by η = δV S / δQ S = 1 / C D. Here, the amount of change .DELTA.V S is the output voltage, .delta.Q S change amount of the signal charge, C D is the detection capacity. Therefore, in order to increase the detection sensitivity η it must reduce the detected capacitance C D. Detected capacitance C D of the floating diffusion layer-type output circuit shown in FIG. 6 and 7 when fractionated components, expressed by the equivalent circuit of FIG. 8, C J is a junction capacitance between the floating diffusion layer 5 and the p-type second well 3, C OG is a capacitance between the floating diffusion layer 5 and the output barrier electrode 10, and C RS is a reset between the floating diffusion layer 5 and the output barrier electrode 10. the capacitance between the electrodes 17, C L is the capacitance between the Al wiring 13 and the field plate electrode 9, or the capacitance between the p-type second well 3, and a polysilicon wiring 12 and the field plate electrode 9, C DG is a capacitance between the polysilicon wiring 12 and the p-type second well 3 in the output circuit unit 101. The reduction method C OG and C RS of these components, a high concentration n-type floating diffusion layer 5 outputs the guard electrode 10, a method of spaced than the reset electrode 17 described in JP-B-61-25224 ing. On the other hand, as a method for reducing C J , JP-A-59-65470 and JP-A-62-33463 describe a method of completely depleting the p-type well 2 immediately below the floating diffusion layer 5.
[0006]
[Problems to be solved by the invention]
However, reduction of the detected capacitance C D of the conventional floating diffusion type output circuit by the following reasons are still insufficient.
[0007]
In accordance come technology, it has not been considered for the junction capacitance generated floating diffusion layer 5 around. That is, since the p-type second well 3 is widely provided so as to cover the n-type layer 4 around the floating diffusion layer 5 and the n-type layer 4 provided around the floating diffusion layer 5 as shown in FIG. the depletion layer that has become a growth difficult for the parasitic capacitance. What slave, purpose of the present invention is Ru near to reduce the junction capacitance of 5 near the floating diffusion layer.
[0008]
[Means for Solving the Problems]
To achieve purpose in the present invention, and the p-type second well 3 and the n-type layer 4 is formed by self-alignment.
[0010]
[Action]
It is possible to completely deplete the p-type second well 3 at the periphery of the n-type layer 4 by means for achieving the purpose can be to reduce the parasitic capacitance of the bonding peripheral portions.
[0012]
【Example】
<Example 1>
A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a plan view of the periphery of a charge detection unit according to the first embodiment of the present invention, FIG. 2 is a sectional view taken along line AA 'in FIG. 1, and FIG. 3 is a sectional view taken along line BB' in FIG. is there. In FIG. 1, 23 is a p-type second well for reducing smear mixed in the vertical charge transfer element, 24 is an n-type layer serving as a buried channel of the charge transfer element provided in the p-type second well 23, Reference numeral 25 denotes a contact for connecting the polysilicon wiring 12 and the Al wiring 13. 3 in FIG. 3 is a channel stopper layer that is depleted during operation.
[0013]
This floating diffusion layer type output circuit detects signal charges by the same operation as in the conventional example.
[0014]
The structure of the present embodiment is created by the following manufacturing method. That is, the low concentration p-type well 2 is formed on the low concentration n-type silicon substrate 1 by ion implantation and thermal diffusion. Next, the region other than the local oxide film formation region is covered with the nitride film A, the channel stopper 26 is formed by implanting boron ions, and the local oxide film 8 is formed by surface oxidation. After removing the previous nitride film A, a new nitride film B is formed in a portion other than the region where the p-type second well 23 is formed, and the p-type second well 23 is formed by ion implantation. At this time, no ion implantation is performed in the region where the local oxide film 8 is present. Next, a region where the p-type second well 23 such as an output transistor is formed but the n-type layer 24 is not formed is covered with a new photoresist while leaving the previous nitride film B, and the n-type layer 24 is formed by ion implantation. To do. At this time, in the floating diffusion formation region, the p-type second well 23 and the n-type layer 24 are formed in a self-aligned manner using the nitride film B or the local oxide film as a mask.
[0015]
Next, the entire region is gate-oxidized to form the insulating film 7, and then the first layer of polysilicon is deposited and patterned to form the output barrier electrode 10 and the polysilicon wiring 12. Next, a transfer electrode 11 is formed by depositing and patterning a second layer of polysilicon. Thereafter, the outside of the region where the floating diffusion layer 5 is provided is covered with a photoresist, and the floating diffusion layer 5 is formed by ion implantation. Further, after depositing the phosphor glass film, the region outside the region where the contact 14 for connecting the floating diffusion layer 5 and the Al wiring 13 and the contact 25 for connecting the polysilicon wiring 12 and the Al wiring 13 are provided is covered with a photoresist and etched. . Next, Al is deposited to form an Al wiring 13.
[0016]
According to this embodiment, there are the following effects. First, as shown in FIG. 2, the p-type second well 23 and the n-type layer 24 are formed in a self-aligned manner. As a result, the p-type second well 23 is completely depleted around the diffusion layer 24 by the reset voltage applied to the n-type floating diffusion layer 5, and the parasitic capacitance in the peripheral portion of the junction can be eliminated.
[0017]
Second, a contact 25 for connecting the polysilicon wiring 12 and the Al wiring 13 was formed on the n-type layer 24 as shown in FIG. Reduced by this, between the field plate area of the polysilicon wiring 12 on the electrode 9 is reduced Al wiring 13 and the field plate electrode 9, or C L it is possible to eliminate the capacitance between the p-type second well 23 it can. On the other hand, according to the structure of the present invention, the area of the n-type layer 24 having the same potential as that of the floating diffusion layer 5 is increased, but the p-type second well 23 and the p-type well 2 immediately below the n-type layer 24 are completely depleted. By doing so, the capacity can be increased slightly. Therefore, it is possible to reduce the detected capacitance C D.
[0018]
The p-type second well 23 and the p-type well 2 immediately below the n-type layer 24 are formed to a depth of about 0.8 μm by the method described in JP-A-3-289173. If shallow, depletion can be easily performed by the voltage applied to the n-type substrate 1 and the reset voltage applied to the n-type floating diffusion layer 5.
[0019]
Third, the field plate electrode 9 having a conventional structure was removed, and the channel stopper 26 and the p-type well 2 immediately below the local oxide film 8 were depleted. This point will be described in more detail with reference to FIG. FIG. 4 is an example of a simulation result of the width dependence of the local oxide film 8 at the lowest potential inside the p-type well 2 immediately below the local oxide film 8 shown in FIG. As shown in the figure, for example, if the width of the local oxide film 8 is 1.8 μm or less, the reset voltage applied to the floating diffusion layer 5 and the polysilicon wiring 12 and the reverse bias voltage applied to the n-type substrate 1 are shown. Thus, it can be seen that the internal potential of the p-type well 2 immediately below the local oxide film 8 becomes larger than 0 V and is depleted. Accordingly, the capacitance between the polysilicon wiring 12 and the p-type well 2 can be eliminated. In order to prevent the breakdown voltage degradation between the channel of the transistor having the polysilicon wiring 12 as a gate and the diffusion layer 24, the minimum potential of the element isolation portion is set to be lower than the channel voltage of the transistor. That's fine.
[0020]
<Example 2>
A second embodiment of the present invention will be described with reference to FIGS. 9 is a plan view of the periphery of the charge detection portion of the second embodiment of the present invention, FIG. 10 is a cross-sectional view taken along line EE ′ in FIG. 9, and FIG. 11 is a cross-sectional view taken along line FF ′ in FIG. is there. 9 and 10, reference numeral 91 is a field plate electrode, and 92 is an n-type well that facilitates depletion of the p-type well 2 of the horizontal charge transfer element.
[0021]
In this embodiment, an n-type well 92 is provided in order to facilitate the depletion of the horizontal charge transfer element and increase the transfer efficiency in the first embodiment. However, as a result, there arises an adverse effect that the punch-through breakdown voltage between the n-type layer 24 and the n-type silicon substrate 1 deteriorates around the n-type layer. Therefore, the field plate electrode 91 is provided around the n-type layer 24 to improve the isolation performance. If the field plate electrode 91 is arranged at a predetermined distance from the n-type layer 24, the depletion layer extending from the n-type layer 24 can be sufficiently extended, so that no parasitic capacitance around the n-type layer 24 is generated. Therefore, the effect of reducing the detected capacitance C D according to the present embodiment can nearly equalized in the first embodiment, it is compatible with the transfer efficiency of the horizontal charge transfer device.
[0022]
<Example 3>
A third embodiment of the present invention will be described with reference to FIG. This figure is a sectional view of a portion corresponding to BB 'in FIG. 1 of the first embodiment. Reference numeral 126 denotes a p-type diffusion layer for element isolation, and the other symbols are the same as those in the first embodiment. In this embodiment, the local oxide film 8 of the first embodiment is removed, and element isolation is performed only by the p-type diffusion layer 126 having a concentration higher than that of the p-type second well 23. Therefore, the operation of this embodiment is the same as that of the first embodiment. According to this embodiment, the step of forming the local oxide film can be eliminated.
[0023]
In the above embodiment, three methods for reducing the parasitic capacitance have been described in order to improve the detection sensitivity of the floating diffusion layer type output circuit of the CCD type image pickup device. On the other hand, parasitic capacitance is a cause of limiting the operation speed and detection sensitivity in all integrated circuits. Needless to say, the three methods described above have the effect of reducing the parasitic capacitance of all integrated circuits.
[0034]
【The invention's effect】
According to the present invention, the p-type second well 23 and the n-type layer 24 in the floating diffusion layer type output circuit are formed in a self-aligned manner so that the p-type second well 23 is completely depleted around the n-type layer 24. can be of, Ru can be eliminated parasitic capacitance of the bonding peripheral portions. Result of this, it is possible to improve the detection sensitivity greatly reduces the detected capacitance C D.
[Brief description of the drawings]
FIG. 1 is a plan view of a periphery of a charge detection unit in a solid-state imaging device showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG.
FIG. 3 is a cross-sectional view taken along line BB ′ in FIG.
FIG. 4 is an explanatory diagram showing an example of a potential analysis of a local oxide film width W dependency of a p-type well internal potential directly under the local oxide film.
FIG. 5 is a block diagram of an interline transfer type CCD solid-state imaging device.
FIG. 6 is a plan view of the periphery of a charge detection unit in a conventional solid-state imaging device.
7 is a cross-sectional view taken along the line CC ′ in FIG. 6;
FIG. 8 is an equivalent circuit diagram illustrating a ground capacitance of the charge detection unit.
FIG. 9 is a plan view of the periphery of a charge detection unit in a solid-state imaging device showing a second embodiment of the present invention.
10 is a cross-sectional view taken along the line EE ′ of FIG. 9;
11 is a sectional view taken along line FF ′ of FIG.
FIG. 12 is a cross-sectional view around a charge detection unit in a solid-state imaging device showing a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 5 ... High concentration n-type floating diffusion layer, 8 ... Local oxide film, 10 ... Output barrier electrode, 12 ... Polysilicon wiring, 13 ... Al wiring, 14 ... Contact, 16 ... High concentration n-type reset drain diffusion layer, 17 ... Reset electrode, 23 ... p-type second well, 24 ... n-type layer, 25 ... contact.

Claims (1)

第一導電型の半導体基板上に設けられた第二導電型の半導体領域内に、信号電荷を転送するための電荷転送部、前記電荷転送部からの信号電荷を一定期間保持するための第一導電型の浮遊拡散層と前記第一導電型の浮遊拡散層より平面的に広い第一導電型の拡散層および前記第一導電型の拡散層を取り囲む前記第二導電型の半導体領域より高濃度の第二導電型の拡散層、信号電荷による前記第一導電型の浮遊拡散層の電位変化を検知増幅するための検出回路を具備した固体撮像装置において、前記第二導電型の半導体領域より高濃度の第二導電型の拡散層が前記第一導電型の拡散層と同一マスクによりイオン打ち込みされる事により自己整合で形成され、前記第二導電型の半導体領域より高濃度の第二導電型の拡散層が前記第一導電型の拡散層の周辺部で完全に空乏化することを特徴とする固体撮像装置。A charge transfer unit for transferring a signal charge in a semiconductor region of a second conductivity type provided on a semiconductor substrate of the first conductivity type, and a first for holding a signal charge from the charge transfer unit for a certain period Higher concentration than the conductive type floating diffusion layer, the first conductive type diffusion layer wider than the first conductive type floating diffusion layer and the second conductive type semiconductor region surrounding the first conductive type diffusion layer A solid-state imaging device including a detection circuit for detecting and amplifying a potential change of the first conductive type floating diffusion layer due to a signal charge, wherein the second conductive type diffusion layer is higher than the second conductive type semiconductor region. The second conductivity type diffusion layer having a concentration is formed by self-alignment by ion implantation using the same mask as the first conductivity type diffusion layer, and the second conductivity type having a higher concentration than the semiconductor region of the second conductivity type. diffusion of the diffusion layer of the first conductivity type A solid-state imaging apparatus characterized by completely depleted in the periphery.
JP04525595A 1995-03-06 1995-03-06 Solid-state imaging device Expired - Fee Related JP3648518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04525595A JP3648518B2 (en) 1995-03-06 1995-03-06 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04525595A JP3648518B2 (en) 1995-03-06 1995-03-06 Solid-state imaging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003298105A Division JP4215596B2 (en) 2003-08-22 2003-08-22 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH08241982A JPH08241982A (en) 1996-09-17
JP3648518B2 true JP3648518B2 (en) 2005-05-18

Family

ID=12714179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04525595A Expired - Fee Related JP3648518B2 (en) 1995-03-06 1995-03-06 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3648518B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255680B1 (en) 1998-03-30 2001-07-03 Nec Corporation Solid-state image sensor
US7009648B2 (en) * 2000-02-22 2006-03-07 Asulab S.A. Method for operating a CMOS image sensor
KR100430584B1 (en) * 2002-03-14 2004-05-10 동부전자 주식회사 Structure of image sensor

Also Published As

Publication number Publication date
JPH08241982A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
US11393863B2 (en) Pixel device on deep trench isolation (DTI) structure for image sensor
US7402450B2 (en) Solid-state image pickup device
JP3766734B2 (en) Solid-state image sensor
US11901388B2 (en) Device over photodetector pixel sensor
US11600644B2 (en) Photo diode with dual backside deep trench isolation depth
TWI723763B (en) Image sensor and method for forming the same
JP2004014861A (en) Semiconductor device and method for manufacturing the semiconductor device
JP3648518B2 (en) Solid-state imaging device
US6369413B1 (en) Split-gate virtual-phase CCD image sensor with a diffused lateral overflow anti-blooming drain structure and process of making
JP2964571B2 (en) Solid-state imaging device
JP4215596B2 (en) Solid-state imaging device
JP2001237408A (en) Solid-state image pickup device and its manufacturing method
JP4561327B2 (en) Solid-state imaging device and manufacturing method thereof
JP2006147758A (en) Solid state imaging device and its manufacturing method
JPH03181171A (en) Solid state image sensor and manufacture thereof
JP3570385B2 (en) Solid-state imaging device
JP2004356157A (en) Solid-state imaging device and method of manufacturing same
JP2004247647A (en) Photo-diode and image sensor
JPH05145056A (en) Solid state image sensor
JP2885296B2 (en) Charge transfer element
JP2768452B2 (en) Method for manufacturing solid-state imaging device
TW483181B (en) Contact formation method of photodiode of active pixel sensor
JPH02288266A (en) Solid state image sensor
JP2004063878A (en) Charge-detecting apparatus and solid-state image pickup device
JP2005251945A (en) Solid-state image pickup device, manufacturing method thereof, and camera using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees