JP3621273B2 - Solid-state imaging device and manufacturing method thereof - Google Patents

Solid-state imaging device and manufacturing method thereof Download PDF

Info

Publication number
JP3621273B2
JP3621273B2 JP25558298A JP25558298A JP3621273B2 JP 3621273 B2 JP3621273 B2 JP 3621273B2 JP 25558298 A JP25558298 A JP 25558298A JP 25558298 A JP25558298 A JP 25558298A JP 3621273 B2 JP3621273 B2 JP 3621273B2
Authority
JP
Japan
Prior art keywords
light receiving
semiconductor substrate
region
receiving unit
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25558298A
Other languages
Japanese (ja)
Other versions
JP2000091550A (en
Inventor
俊寛 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP25558298A priority Critical patent/JP3621273B2/en
Publication of JP2000091550A publication Critical patent/JP2000091550A/en
Application granted granted Critical
Publication of JP3621273B2 publication Critical patent/JP3621273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、信号の読み出しにMOS(metal oxide semiconductor)トランジスタを用いたMOS型固体撮像装置およびその製造方法に関するものである。
【0002】
【従来の技術】
固体撮像装置は、信号の読み出し方式によって大きく二種類に分類される。信号電荷を順次転送するCCD(charge coupled device;電荷結合素子)型と、各画素に形成されたMOSトランジスタを含む読み出し回路を用いて1画素づつ信号を読み出すMOS型である。近年、MOS型固体撮像装置、特に、CMOS(complementary MOS)プロセスによって画素部と周辺回路とを集積化したいわゆるCMOS型固体撮像装置は、低電圧・低消費電力であり、周辺回路とワン・チップ化できるという長所を有するため、PC用小型カメラなどの携帯機器の画像入力素子として注目されている。
【0003】
図4に従来のMOS型固体撮像装置の構造を示す。この固体撮像装置の各画素は、受光部と、受光部で発生した電気信号を増幅して出力するためのアンプ回路とを備えている。受光部42は、p型半導体基板41内に形成されたn型拡散領域であって、基板との接合によりフォトダイオードを形成している。入射光によって生じた電子・正孔対は、受光部42と半導体基板41との間のpn接合部に形成される空乏層で分離され、電子は受光部42に蓄積される。この電荷蓄積により生じる受光部42の電位変化が、アンプ回路で増幅されて出力される。
【0004】
【発明が解決しようとする課題】
固体撮像装置の高画素化および小型化が進むに伴って、その感度の向上が課題となっている。固体撮像装置の感度向上を図るには、受光部の面積を増大させて光電変換される入射光量を増大させればよい。しかし、受光部面積を増大させると、受光部と基板との間の接合面積が増大するため、フォトダイオードの電荷蓄積容量が増大する。電荷蓄積容量が増大すると電荷を電圧に変換する際の変換率が低下し、結果として固体撮像装置の十分な感度向上を実現することができないという問題があった。
【0005】
本発明は、高感度の固体撮像装置およびその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記目的を達成するための方法としては、第1導電型の半導体基板内に形成された第2導電型の受光部と、前記受光部と電気的に接続したアンプ回路とを含む画素が複数配置された固体撮像装置において、前記受光部と前記半導体基板との接合部に形成される空乏層の幅が、前記半導体基板表面に接する領域よりも、前記受光部底面の少なくとも一部を含む前記半導体基板内の領域で大きくする方法がある。
【0007】
このような構成によれば、半導体基板内部の領域において受光部−基板間の接合部における空乏層を広げてフォトダイオードの電荷蓄積容量の低減することができる。よって、この固体撮像装置によれば、小さい容量で電荷・電圧変換できるため高い変換率が得られ、感度を向上させることができる。また、半導体基板の深さ方向に空乏層を広げるため、長波長側の分光感度を向上させることができる。また、半導体基板表面の領域では受光部−基板間の接合部における空乏層幅が狭いので、暗電流の増大を抑制することができる。
【0008】
前記構成においては、前記空乏層の幅が、前記受光部底面の少なくとも一部を含む前記半導体基板内の領域で、前記半導体表面に接する領域の1.5〜10倍であることが好ましい。この好ましい例によれば、固体撮像装置の高感度化と、暗電流の抑制とを確実に両立することができる
【0009】
記目的を達成するため、本発明の固体撮像装置は、第1導電型の半導体基板内に形成された第2導電型の受光部および電荷排出部と、前記受光部と前記電荷排出部との間の前記半導体基板上に絶縁膜を介して形成されたゲート電極と、前記受光部と電気的に接続したアンプ回路とを含む画素が複数配置された固体撮像装置であって、前記半導体基板内に、前記ゲート電極の下方に位置する領域を含み、且つ、前記受光部底面の少なくとも一部に接する領域を避けるように、前記半導体基板よりも不純物濃度の高い第1導電型の拡散領域が形成されていることを特徴とする。
【0010】
このような構成によれば、フォトダイオードの電荷蓄積容量を低減し、高感度の固体撮像装置とすることができる。また、受光部と半導体基板との接合部に形成される空乏層を半導体基板の深さ方向に広げ、長波長側の分光感度を向上させることができる。また、この固体撮像装置は、p型ウェル(第1導電型の拡散領域)形成のためのマスクを受光部下の一部の領域を避けたパターンとすれば、慣用のCMOSプロセスによって製造することが可能である。
【0011】
記固体撮像装置においては、前記拡散領域が、前記受光部に接する前記半導体基板表面の領域を含むように形成されていることが好ましい。受光部と半導体基板との接合部に形成される空乏層が半導体基板表面において増大することを回避して、暗電流の増大を抑制することができるからである。
【0012】
また、前記固体撮像装置においては、前記拡散領域が、前記受光部の底面に接する領域であって、前記受光部の形成幅の10〜100%の幅を有する領域を避けるように形成されていることが好ましい。拡散領域を、受光部に接する半導体基板表面の領域を含むように形成することが容易となるからである。
【0013】
前記目的を達成するため、本発明の固体撮像装置の製造方法は、第1導電型の半導体基板内に形成された第2導電型の受光部および電荷排出部と、前記受光部と前記電荷排出部との間の前記半導体基板上に絶縁膜を介して形成されたゲート電極と、前記受光部と電気的に接続したアンプ回路とを含む画素が複数配置された固体撮像装置の製造方法であって、前記半導体基板内に、前記ゲート電極の下方に位置する領域を含み、且つ、前記受光部底面の少なくとも一部に接する領域を避けるように、前記半導体基板よりも不純物濃度の高い第1導電型の拡散領域を形成した後に、前記ゲート電極を形成する工程と、前記受光部および前記電荷排出部を形成する工程とを含むことを特徴とする。
【0014】
このような構成にしたことにより、受光部と半導体基板との間で形成されるpn接合の接合容量、すなわちフォトダイオードの電荷蓄積容量を低減して、高感度の固体撮像装置を製造することができる。また、受光部と半導体基板との接合部に形成される空乏層を半導体基板の深さ方向に広げて、長波長側の分光感度に優れた固体撮像装置とすることができる。また、この製造方法は、p型ウェル(第1導電型の拡散領域)形成用のマスクを受光部下の一部の領域を避けたパターンとすれば、慣用のCMOSプロセスと同様の操作により実施できる。
【0015】
記製造方法においては、前記拡散領域を、前記受光部に接する前記半導体基板表面の領域を含むように形成することが好ましい。暗電流の増大を抑制することができるからである。
【0016】
また、前記製造方法においては、前記拡散領域を、前記受光部底面に接する領域であって、前記受光部形成幅の10〜100%の幅を有する領域を避けるように形成することが好ましい。拡散領域を、受光部に接する半導体基板表面の領域を含むように形成することが容易となるからである。
【0017】
【発明の実施の形態】
(第1の参考例
図1は、参考例に係る固体撮像装置の画素部の構造の一例を示す断面図である。本固体撮像装置は受光部の電圧を増幅して出力する方式を採用しており、各画素は、受光部と、アンプ用、リセット用および選択用の3個のトランジスタとを含んでいる。リセット用トランジスタは受光部をソースとするトランジスタであり、そのドレインである電荷排出部が電源電圧と電気的に接続されている。アンプ用トランジスタは、ゲートが受光部と、ドレインが電源電圧と、ソースが選択用トランジスタのドレインと各々電気的に接続されている。また、選択用トランジスタは、ソースが出力線に接続されている。
【0018】
各トランジスタの役割を簡単に説明すると、アンプ用トランジスタは、別の領域に設けられた負荷用トランジスタ(図示せず。)とソースフォロワアンプ回路を形成し、受光部の電圧を増幅して出力線に読み出す機能を果たす。選択用トランジスタは、アンプ用トランジスタの出力を取り出すスイッチであって信号を読み出す画素を選択する機能を果たす。また、リセット用トランジスタは、受光部が保持している信号電荷を、一定時間毎に電荷排出部に排出する機能を果たす。
【0019】
以下、図1に断面図として示した受光部周辺の領域の構造について詳細に説明する。この領域の半導体基板11内には受光部12および電荷排出部14が形成されており、受光部12と電荷排出部14との間の半導体基板11上に絶縁膜15を介してリセット用トランジスタのゲート電極16が形成されている。また、図示を省略しているが、半導体基板11の上方には、更に、層間絶縁膜、受光部上に開口を有する金属遮光膜、表面保護膜などが形成されている。
【0020】
半導体基板11は、リセット用トランジスタなどのnMOSに要求される閾値電圧を得られる範囲の不純物濃度を有するp型半導体基板であれば特に限定するものではない。しかし、p型半導体基板11の不純物濃度が低いと、受光部12との接合部に形成される空乏層17の幅が、半導体基板表面に接する領域で大きくなるため、暗電流の増大を招くおそれがある。したがって、p型半導体基板11の不純物濃度は、1.5×1015cm-3以上(比抵抗10Ω・cm以下)、更には3×1015〜5×1015cm-3程度(比抵抗3〜5Ω・cm程度)であることが好ましい。
【0021】
また、p型半導体基板11としては、表層部にp型ウェルを形成した半導体基板を使用することもできる。p型ウェルの不純物濃度は、nMOSに要求される閾値電圧を得られる範囲であれば特に限定するものではないが、暗電流低減の観点から1×1017cm-3以上、更には1.5×1017〜3×1017cm-3であることが好ましい。また、このとき使用する半導体基板は、p型ウェルを形成し得るものであれば、その導電型および不純物濃度については特に限定するものではない。
【0022】
受光部12は、p型半導体基板11内に形成されたn型不純物拡散領域であり、半導体基板11とのpn接合によってフォトダイオードを形成している。受光部12の不純物濃度は、光電変換が可能であってアンプ回路と電気的に接続し得る範囲であれば特に限定されるものではないが、好ましくは1020cm-3以上である。また、受光部12の拡散深さは0.2〜0.4μm程度が適当である。
【0023】
本参考例の固体撮像装置には、p型半導体基板11内の受光部12底面の少なくとも一部に接する領域に、p-型拡散領域13が形成されている。このp-型拡散領域13を設けることにより、受光部−基板間のpn接合部における空乏層幅を増大させてフォトダイオードの電荷蓄積容量の低減を図り、固体撮像装置の高感度化を実現することができる。また、p-型拡散領域13の不純物濃度および受光部12とp-型拡散領域13との間の接合面積により、フォトダイオードの電荷蓄積容量を調整して標準感度を調整することができる。
【0024】
-型拡散領域13の不純物濃度は、p型半導体基板11(またはp型ウェル)より低い不純物濃度であれば特に限定されるものではなく、好ましくは1×1015cm-3以下、更に好ましくは4×1014〜6×1014cm-3程度である。このp-型拡散領域13の不純物濃度を低くする程、フォトダイオードの電荷蓄積容量を低減することができる。
【0025】
このような不純物濃度とすることにより、受光部12とp-型拡散領域13との接合部における単位面積当たりの接合容量は、受光部12とp型半導体基板11との接合部よりも小さくなる。換言すれば、受光部12とp-型拡散領域13との接合部に形成される空乏層幅は、受光部12とp型半導体基板11との接合部よりも大きくなる。受光部12とp-型拡散領域13との接合部における空乏層幅(図1のa)は0.6〜2.0μm程度、更には1.2〜1.8μm程度であることが好ましい。一方、受光部12とp型半導体基板11との接合部における空乏層幅(図1のb)は0.2〜1.0μm程度とするのが適当である。
【0026】
受光部12とp-型拡散領域13との接合面積が大きい程、フォトダイオードの電荷蓄積容量を低減することができる。しかし、半導体基板表面においては、暗電流の増大を招くおそれがあるため、受光部12とp-型拡散領域13との接合が形成されないことが好ましい。よって、p-型拡散領域13は、受光部12と接する半導体基板表面の領域を避け、その全体が受光部下に埋設されていることが好ましい。したがって、p-型拡散領域13は、その形成幅cが、受光部12の形成幅dと同等かそれよりも小さいことが好ましく、具体的には、受光部の形成幅の10〜100%、更には40〜80%であることが好ましい。また、形成面積でいえば、受光部12の形成面積の10〜100%、更には20〜65%であることが好ましい。
【0027】
また、p-型拡散領域13の拡散深さは、0.8〜2.0μm程度が適当である。
【0028】
次に、本参考例に係る固体撮像装置の製造方法の一例について説明する。
【0029】
まず、熱酸化によってp型シリコン基板11上に絶縁膜を形成する。絶縁膜上に、減圧CVD法によってポリシリコン膜を堆積する。エッチングによってポリシリコン膜の一部を除去することによりゲート電極16を形成する。
【0030】
次に、半導体基板11の一部およびゲート電極16を被覆するようにレジストを形成し、半導体基板11内の適当な領域に、半導体基板の導電型が逆転しない範囲でn型不純物をイオン注入してp-拡散領域13を形成する。このイオン注入は、例えば、n型不純物としてリンを用いて、加速電圧を50〜800keV、ドーズ量を1×1011〜1×1013cm-2として実施される。
【0031】
レジストを除去した後、ゲート電極16をマスクとしてn型不純物をイオン注入し、受光部12および電荷排出部14を形成し、リセット用トランジスタを形成する。このとき、受光部12は、その底面の少なくとも一部がp-型拡散領域に接するように形成される。また、好ましくは、受光部12は、p-拡散領域13と同等かまたはそれより大きい寸法となるように調整され、p-拡散領域13は受光部12によって半導体基板11内に埋め込まれる。このイオン注入は、例えば、n型不純物としてヒ素を用いて、加速電圧を40keV、ドーズ量を5×1015cm-2として実施される。
【0032】
更に、層間絶縁膜、金属配線などが形成され、受光部および電荷排出部が、半導体基板の別の領域に形成されたアンプ用トランジスタなどと、図1に示すように電気的に接続される。特に限定するものではないが、層間絶縁膜としては減圧CVD法によって形成されたシリコン酸化膜が、金属配線としてはアルミニウム膜が使用される。更に、受光部の上方に相当する部分に開口を有する金属遮光膜、表面保護膜などが適宜形成される。金属遮光膜にはアルミニウム膜が、表面保護膜にはプラズマCVD法によって形成されたシリコン窒化膜が使用できる。
【0033】
なお、上記製造方法において使用される熱酸化やCVD法などの成膜方法、エッチング方法などは、基本的に常法に従って実施すればよい。
【0034】
(第2の参考例
図2は、参考例に係る固体撮像装置の別の一例を示す断面図である。この固体撮像装置の各画素の構造は、図2に断面図として示した受光部周辺の領域の構造を除いては第1の参考例と同様である。以下、受光部周辺の領域について詳細に説明する。この領域は、半導体基板21内に受光部22および電荷排出部24が形成されており、受光部22と電荷排出部24との間の半導体基板21上に絶縁膜25を介してリセット用トランジスタのゲート電極26が形成されている。また、図示を省略しているが、半導体基板21の上方には、更に、層間絶縁膜、受光部上に開口を有する金属遮光膜、表面保護膜などが形成されている。
【0035】
半導体基板21としては、第1の参考例と同様に、p型半導体基板またはp型ウェルを形成した半導体基板を使用することができる。また、受光部22は、第1の参考例と同様に、好ましくは、不純物濃度1×1020cm-3以上、拡散深さ0.2〜0.4μm程度のn型拡散領域である。
【0036】
本参考例においては、p型半導体基板21内の受光部22底面の少なくとも一部に接する領域に、n-型拡散領域23が形成されている。このn-型拡散領域23は、受光部22とともに、半導体基板21とのpn接合によってフォトダイオードを構成している。n-型拡散領域23を設けることにより、受光部と基板との間のpn接合の空乏層幅を増大させてフォトダイオードの電荷蓄積容量の低減し、固体撮像装置の高感度化を実現している。また、n-型拡散領域23の不純物濃度およびn-型拡散領域23と半導体基板21との間の接合面積によって、フォトダイオードの電荷蓄積容量を適宜調整し、標準感度を調整できる。
【0037】
-型拡散領域23の不純物濃度は、受光部22の不純物濃度よりも低ければ特に限定されるものではないが、好ましくは1×1016cm-3以下、更に好ましくは5×1015〜8×1015cm-3である。なお、このn-型拡散領域23の不純物濃度が低い程、フォトダイオードの電荷蓄積容量を低減することができる。
【0038】
このような不純物濃度とすることにより、n-型拡散領域23と半導体基板21との接合部における単位面積当たりの接合容量は、受光部22と半導体基板21との接合部よりも小さくなる。換言すれば、n-型拡散領域23と半導体基板21との接合部に形成される空乏層幅は、受光部22と半導体基板21との接合部よりも大きくなる。n-型拡散領域23と半導体基板21との接合部における空乏層幅(図2のa)は0.8〜2.5μm程度、更には1.2〜2.0μm程度であることが好ましい。一方、受光部22と半導体基板21との接合部における空乏層幅(図2のb)は、0.2〜1.0μm程度とするのが適当である。
【0039】
-型拡散領域23と半導体基板21との接合面積が大きい程、フォトダイオードの電荷蓄積容量を低減することができる。しかし、半導体基板表面においては、暗電流の増大を招くおそれがあるため、受光部22とn-型拡散領域23との接合が形成されないことが好ましい。よって、n-型拡散領域23は、受光部22と接する半導体基板表面の領域を避け、その全体が受光部22下に埋設されていることが好ましい。したがって、n-型拡散領域23は、その形成幅eが、受光部22の形成幅dと同等かそれよりも小さいことが好ましく、具体的には、受光部22の形成幅の10〜100%、更には40〜80%であることが好ましい。また、形成面積でいえば、受光部22の形成面積の10〜100%、更には20〜65%であることが好ましい。
【0040】
また、n-型拡散領域23の拡散深さは、0.8〜2.0μm程度が適当である。
【0041】
本参考例に係る固体撮像装置は、p-型拡散領域を形成する工程に代えて、n-型拡散領域を形成する工程を実施することを除いては、第1の参考例において説明した製造方法と同様にして製造することができる。
【0042】
絶縁膜25およびゲート電極26を形成した半導体基板21上にレジストを形成した後、n型不純物をイオン注入して、半導体基板21内の適当な領域にn-型拡散領域23を形成する。このイオン注入は、例えば、n型不純物としてリンを用いて、加速電圧を50〜800keV、ドーズ量を1×1012〜1×1015cm-2として実施される。
【0043】
レジストを除去した後、ゲート電極26をマスクとしてn型不純物をイオン注入し、受光部22および電荷排出部24を形成する。このとき、受光部22は、その底面の少なくとも一部がn-型拡散領域23に接するように形成される。また、好ましくは、受光部22はn-型拡散領域23と同等かまたはそれより大きい寸法となるように調整され、n-型拡散領域23は受光部22によって半導体基板21内に埋め込まれる。このイオン注入は、例えば、n型不純物としてヒ素を用いて、加速電圧を40keV、ドーズ量を5×1015cm-2として実施される。
【0044】
更に、層間絶縁膜、金属配線、受光部の上方に相当する部分に開口を有する金属遮光膜、表面保護膜などが適宜形成され、固体撮像装置が得られる。
【0045】
なお、上記製造方法において使用される熱酸化やCVD法などの成膜方法、エッチング方法などは、基本的に常法に従って実施すればよい。
【0046】
第1の実施形態)
本実施形態に係る固体撮像装置は、画素部と周辺回路(例えば、画素選択のための走査回路、タイミング発生回路、ノイズキャンセル回路など)とをCMOSプロセスを用いて集積化したCMOS型固体撮像装置である。本固体撮像装置は、同一半導体基板内にnMOSとpMOSとを有しており、そのため半導体基板には、pMOSを形成する領域にはn型ウェルが、nMOSを形成する領域にはp型ウェルが各々形成されている。
【0047】
図3は、本実施形態に係る固体撮像装置の画素部の構造を示す断面図である。各画素は、第1の参考例と同様に、受光部と、アンプ用、リセット用および選択用の3個のトランジスタとを含んでいる。これら各部材間の接続および各部材の機能は、第1の参考例で説明した通りである。
【0048】
以下、図3に断面図として示した、受光部周辺の領域の構造について詳細に説明する。この領域の半導体基板31には、nMOSであるリセット用トランジスタを形成するためのp型ウェル33が形成されている。この半導体基板31内に受光部32および電荷排出部34が形成されており、受光部32と電荷排出部34との間の半導体基板31上には絶縁膜35を介してリセット用トランジスタのゲート電極36が形成されている。
【0049】
半導体基板31は、p型ウェルおよびn型ウェルの形成が可能な範囲の不純物濃度を有するp型半導体基板であれば、特に限定するものではない。好ましくは不純物濃度が2×1015cm-3以下(比抵抗が5Ω・cm以上)、更に好ましくは不純物濃度が1×1015〜1.5×1015cm-3程度(比抵抗が10〜15Ω・cm程度)のp-型半導体基板が使用できる。
【0050】
受光部32は、p-型半導体基板31内に形成されたn型不純物拡散領域であり、半導体基板31とのpn接合によりフォトダイオードを形成している。受光部32の不純物濃度は、光電変換が可能であってアンプ回路と電気的に接続し得る範囲であれば特に限定されるものではないが、好ましくは1×1020cm-3以上である。また、受光部32の拡散深さは0.2〜0.4μm程度が適当である。
【0051】
少なくともゲート電極36の下方に位置する領域を含む半導体基板31表層部には、前述したようにp型ウェル33が形成されている。p型ウェル33の不純物濃度は、p-型半導体基板31の不純物濃度よりも高く、リセット用トランジスタなどのnMOSに要求される閾値電圧を得られる範囲であれば特に限定するものではない。しかし、p型ウェル33の不純物濃度が低過ぎると、半導体基板表面において受光部32との接合部に形成される空乏層の幅が大きくなり、暗電流の増大を招くおそれがある。よって、p型ウェル33の不純物濃度は1×1017cm-3以上、更には1.5×1017〜3×1017cm-3程度とすることが好ましい。また、p型ウェル33の拡散深さは、1.0μm程度が適当である。
【0052】
p型ウェル33は、受光部32底面の少なくとも一部に接する領域を避けるように形成されている。つまり、受光部32底部の少なくとも一部は、p型ウェル33よりも不純物濃度の低いp-型の領域と接している。このように、受光部32との接合部における半導体基板の不純物濃度を一部の領域において低く調整することにより、受光部と基板との間のpn接合部における空乏層幅を増大させてフォトダイオードの電荷蓄積容量の低減を図り、固体撮像装置の高感度化を実現することができる。また、p型ウェル33が形成されていない基板領域(以下、「p-型領域」とする。)と受光部32との接合面積によって、フォトダイオードの電荷蓄積容量を適宜調整し、標準感度の調整を図ることができる。
【0053】
受光部32とp-型領域31との接合部における単位面積当たりの接合容量は、受光部32とp型ウェル33との接合部よりも小さくなる。換言すれば、受光部32とp型領域31との接合部に形成される空乏層幅は、受光部32とp型ウェル33との接合部よりも大きくなる。受光部32とp-型領域31との接合部における空乏層幅(図3のa)は1.0〜3.0μm程度、更には1.5〜2.0μm程度であることが好ましい。一方、受光部32とp型ウェル33との接合部における空乏層幅(図3のb)0.2〜0.5μm程度とするのが適当である。
【0054】
受光部32とp-型領域31との接合面積が大きい程、フォトダイオードの電荷蓄積容量を低減することができる。しかし、半導体基板表面においては、暗電流の増大を招くおそれがあるため、受光部32とp-型領域31との接合が形成されないことが好ましい。よって、p型ウェル33は、少なくとも半導体基板表面の受光部32と接する領域を含むように形成されることが好ましい。この場合、受光部32底面のp-型領域と接する部分の幅fは、受光部32の形成幅dの10〜100%、更には40〜80%の寸法とすることが好ましい。また、受光部32底面のp-型領域と接する部分の面積は、受光部32底面の10〜100%、更には20〜65%であることが好ましい。
【0055】
次に、本実施形態に係る固体撮像装置の製造方法の一例について説明する。
【0056】
まず、p-型シリコン基板31にp型不純物をイオン注入し、p型ウェル33を形成する。このイオン注入は、受光部32となる領域の少なくとも一部の上方を避けるように実施される。このイオン注入は、例えば、p型不純物としてホウ素を用いて、加速電圧を400keV、ドーズ量を4×1012cm-2、加えてホウ素を加速電圧50keV、ドーズ量5×1012cm-2として実施される。
【0057】
次に、p型シリコン基板31上に熱酸化によって絶縁膜を形成した後、減圧CVD法によってポリシリコン膜を堆積し、エッチングによってその一部を除去してゲート電極36を形成する。次いで、このゲート電極36をマスクとしてn型不純物をイオン注入し、受光部32および電荷排出部34を形成する。このとき、受光部32は、その底面の少なくとも一部が、p型ウェル33が形成されていない半導体基板内の領域(p-型領域31)に接するように形成される。また、好ましくは、受光部32は、半導体基板表面においてはp型ウェル33と接するように形成される。このイオン注入は、例えば、n型不純物としてヒ素を用いて、加速電圧を40keV、ドーズ量を5×1015cm-2として実施される。
【0058】
更に、層間絶縁膜、金属配線などが形成され、受光部および電荷排出部は、半導体基板の別の領域に形成されたアンプ用トランジスタなどと、図3に示すように電気的に接続される。更に、受光部の上方に相当する部分に開口を有する金属遮光膜、表面保護膜などが適宜形成される。
【0059】
なお、上記製造方法において使用される熱酸化やCVD法などの成膜方法、エッチング方法などは、基本的に常法に従って実施すればよい。
【0060】
【実施例】
参考例1
図1と同様の構造を有する固体撮像装置を作製した。半導体基板として不純物濃度5×1015cm-3(比抵抗3Ω・cm)のp型シリコン基板を使用し、このp型シリコン基板上に熱酸化によってシリコン酸化膜を形成した。シリコン酸化膜上に減圧CVD法によってポリシリコン膜を堆積した後、これをエッチングによりパターニングしてゲート電極を形成した。次に、加速電圧を600keV、ドーズ量を2×1011cm-2としてリンをイオン注入し、p-型拡散領域を形成した。形成されたp-型拡散領域の不純物濃度は2×1015cm-3であった。次に、ゲート電極をマスクとして、加速電圧を40keV、ドーズ量を5×1015cm-2としてヒ素をイオン注入し、受光部および電荷排出部を形成した。形成された受光部の面積は60μm2であり、不純物濃度は2×1020cm-3であった。上記受光部および電荷排出部を、図1に示すように、半導体基板の別の領域に形成したアンプ用トランジスタおよび選択用トランジスタ、電源電圧と電気的に接続して固体撮像装置を得た。
【0061】
上記製造方法において、受光部とp-型拡散領域との接合面積を受光部面積の30%(試料No.1)および60%(試料No.2)に調整し、2種の固体撮像装置を作製した。これら固体撮像装置について空乏層幅を検討したところ、基板内部の受光部−p-型拡散領域間(図1のa)で約1.6μm、基板表面の受光部−基板間(図1のb)で約0.8μmであった。
【0062】
また、各々の固体撮像装置について、フォトダイオード容量および入射光量10lux(色温度3200K)に対する出力電圧を評価したところ、試料No.1においてはフォトダイオード容量16.8fF、出力電圧100mVであり、試料No.2においてはフォトダイオード容量9.6fF、出力電圧160mVであった。なお、出力電圧は、アンプ用トランジスタの容量を2fF、電源電圧を5.0Vとして測定した。
【0063】
参考例2
-型拡散領域に代えてn-型拡散領域を形成したこと以外は、参考例1と同様にして、図2と同様の構造を有する固体撮像装置を作製した。n-型拡散領域の形成は、加速電圧を600keV、ドーズ量を1×1012cm-2としたリンのイオン注入によって実施した。また、形成されたn-型拡散領域の不純物濃度は1×1016cm-3であった。
【0064】
受光部とn-型拡散領域との接合面積を受光部面積の30%(試料No.3)および60%(試料No.4)に調整し、2種の固体撮像装置を作製した。これら固体撮像装置について空乏層幅を検討したところ、基板内部のn-型拡散領域−基板間(図2のa)で約2.0μm、基板表面の受光部(n+型拡散領域)−基板間(図2のb)で約0.8μmであった。
【0065】
また、各々の固体撮像装置について、フォトダイオード容量および入射光量10lux(色温度3200K)に対する出力電圧を評価したところ、試料No.3においてはフォトダイオード容量15fF、出力電圧110mVであり、試料No.4においてはフォトダイオード容量9fF、出力電圧170mVであった。なお、出力電圧は、アンプ用トランジスタの容量を2fF、電源電圧を5.0Vとして測定した。
【0066】
実施例1
図3と同様の構造を有する固体撮像装置を作製した。半導体基板として不純物濃度1.5×1015cm-3(比抵抗10Ω・cm)のp型シリコン基板を使用した。このp型シリコン基板に、加速電圧400keV、ドーズ量4×1012cm-2としてホウ素をイオン注入し、加えて加速電圧50keV、ドーズ量5×1012cm-2としてホウ素をイオン注入して、p型ウェルを形成した。p型ウェルの不純物濃度は2×1017cm-3であった。図3に示すように、p型ウェルは、後に形成される受光部底面の少なくとも一部を避けるように形成した。次に、p型シリコン基板上に熱酸化によってシリコン酸化膜を形成し、シリコン酸化膜上に減圧CVD法によってポリシリコン膜を堆積した後、これをエッチングによりパターニングしてゲート電極を形成した。ゲート電極をマスクとして、加速電圧を40keV、ドーズ量を5×1015cm-2としてヒ素をイオン注入し、受光部および電荷排出部を形成した。形成された受光部の面積は60μm2であり、不純物濃度は2×1020cm-3であった。上記受光部および電荷排出部を、図3に示すように、半導体基板の別の領域に形成したアンプ用トランジスタおよび選択用トランジスタ、電源電圧と電気的に接続し固体撮像装置を得た。
【0067】
上記製造方法において、受光部底面においてp型ウェルと接していない部分の面積、すなわち受光部とp-型領域との接合面積を、受光部面積の60%(試料No.5)および80%(試料No.6)に調整し、2種の固体撮像装置を作製した。これら固体撮像装置について、受光部−基板間に形成される空乏層幅を検討したところ、基板内部の受光部−p-型領域間(図3のa)で約1.2μm、基板表面の受光部−p型ウェル間(図3のb)で約0.2μmであった。
【0068】
また、各々の固体撮像装置について、フォトダイオード容量および入射光量10lux(色温度3200K)に対する出力電圧を評価したところ、試料No.5においてはフォトダイオード容量20fF、出力電圧95mVであり、試料No.6においてはフォトダイオード容量10fF、出力電圧155mVであった。なお、出力電圧は、アンプ用トランジスタの容量を2fF、電源電圧を5.0Vとして測定した。
【0069】
(比較例)
-型拡散領域を形成しないこと以外は参考例1と同様にして、図4と同様の構造を有する固体撮像装置を得た。受光部−基板間に形成される空乏層幅を検討したところ、基板内部および基板表面のいずれにおいても約1.0μmであった。また、フォトダイオード容量および入射光量10lux(色温度3200K)に対する出力電圧を評価したところ、フォトダイオード容量25fF、出力電圧70mVであった。なお、出力電圧は、アンプ用トランジスタの容量を2fF、電源電圧を5.0Vとして測定した。
【0070】
【発明の効果】
発明の固体撮像装置によれば、第1導電型の半導体基板内に形成された第2導電型の受光部および電荷排出部と、前記受光部と前記電荷排出部との間の前記半導体基板上に絶縁膜を介して形成されたゲート電極と、前記受光部と電気的に接続したアンプ回路とを含む画素が複数配置され、前記半導体基板内に、前記ゲート電極の下方に位置する領域を含み、且つ、前記受光部底面の少なくとも一部に接する領域を避けるように、前記半導体基板よりも不純物濃度の高い第1導電型の拡散領域を形成することにより、高感度の固体撮像装置とすることができる。
【0071】
た、本発明の製造方法は、第1導電型の半導体基板内に形成された第2導電型の受光部および電荷排出部と、前記受光部と前記電荷排出部との間の前記半導体基板上に絶縁膜を介して形成されたゲート電極と、前記受光部と電気的に接続したアンプ回路とを含む画素が複数配置された固体撮像装置の製造方法であって、前記半導体基板内に、前記ゲート電極の下方に位置する領域を含み、且つ、前記受光部底面の少なくとも一部に接する領域を避けるように、前記半導体基板よりも不純物濃度の高い第1導電型の拡散領域を形成した後に、前記ゲート電極を形成する工程と、前記受光部および前記電荷排出部を形成する工程とを含むことにより、高感度の固体撮像装置を製造することができる。
【図面の簡単な説明】
【図1】本発明の第1の参考例に係る固体撮像装置の1画素の構造を示す断面図である。
【図2】本発明の第2の参考例に係る固体撮像装置の1画素の構造を示す断面図である。
【図3】本発明の第の実施形態に係る固体撮像装置の1画素の構造を示す断面図である。
【図4】従来の固体撮像装置の1画素の構造を示す断面図である。
【符号の説明】
11、21、41 p型半導体基板
31 p-型半導体基板
12、22、32、42 受光部
13 p-型拡散領域
23 n-型拡散領域
33 p型ウェル
14、24、34、44 電荷排出部
15、25、35、45 絶縁膜
16、26、36、46 ゲート電極
17、27、37、47 空乏層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a MOS type solid-state imaging device using a metal oxide semiconductor (MOS) transistor for signal readout and a method for manufacturing the same.
[0002]
[Prior art]
Solid-state imaging devices are roughly classified into two types depending on the signal readout method. A CCD (charge coupled device) type that sequentially transfers signal charges and a MOS type that reads out a signal pixel by pixel using a readout circuit including a MOS transistor formed in each pixel. In recent years, MOS type solid-state imaging devices, in particular, so-called CMOS type solid-state imaging devices in which a pixel portion and a peripheral circuit are integrated by a CMOS (complementary MOS) process have low voltage and low power consumption. Therefore, it has been attracting attention as an image input element for portable devices such as small PC cameras.
[0003]
FIG. 4 shows the structure of a conventional MOS solid-state imaging device. Each pixel of the solid-state imaging device includes a light receiving unit and an amplifier circuit for amplifying and outputting an electric signal generated in the light receiving unit. The light receiving unit 42 is an n-type diffusion region formed in the p-type semiconductor substrate 41, and forms a photodiode by bonding with the substrate. Electron / hole pairs generated by incident light are separated by a depletion layer formed at a pn junction between the light receiving unit 42 and the semiconductor substrate 41, and electrons are accumulated in the light receiving unit 42. A change in the potential of the light receiving section 42 caused by this charge accumulation is amplified by an amplifier circuit and output.
[0004]
[Problems to be solved by the invention]
As the number of pixels and the size of solid-state imaging devices increase, improvement in sensitivity has become an issue. In order to improve the sensitivity of the solid-state imaging device, the amount of incident light that is photoelectrically converted may be increased by increasing the area of the light receiving unit. However, when the area of the light receiving portion is increased, the junction area between the light receiving portion and the substrate is increased, so that the charge storage capacity of the photodiode is increased. When the charge storage capacity increases, the conversion rate when converting charges into voltage decreases, and as a result, there has been a problem that sufficient sensitivity improvement of the solid-state imaging device cannot be realized.
[0005]
An object of the present invention is to provide a highly sensitive solid-state imaging device and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
As a method for achieving the above object, a plurality of pixels including a second conductivity type light receiving portion formed in a first conductivity type semiconductor substrate and an amplifier circuit electrically connected to the light receiving portion are arranged. In the solid-state imaging device, the width of the depletion layer formed at the junction between the light receiving unit and the semiconductor substrate includes at least a part of the bottom surface of the light receiving unit, rather than a region in contact with the surface of the semiconductor substrate. There is a method of enlarging the area in the substrate.
[0007]
According to such a configuration, the charge storage capacity of the photodiode can be reduced by expanding the depletion layer at the junction between the light receiving unit and the substrate in the region inside the semiconductor substrate. Therefore, according to this solid-state imaging device, since the charge / voltage conversion can be performed with a small capacity, a high conversion rate can be obtained and the sensitivity can be improved. Further, since the depletion layer is expanded in the depth direction of the semiconductor substrate, the spectral sensitivity on the long wavelength side can be improved. Moreover, since the depletion layer width at the junction between the light receiving portion and the substrate is narrow in the region on the surface of the semiconductor substrate, an increase in dark current can be suppressed.
[0008]
In the above configuration, it is preferable that the width of the depletion layer is 1.5 to 10 times as large as a region in contact with the semiconductor surface in the semiconductor substrate including at least a part of the bottom surface of the light receiving unit. According to this preferable example, it is possible to reliably achieve both high sensitivity of the solid-state imaging device and suppression of dark current..
[0009]
PreviousTo achieve the above purpose, the present inventionSolidThe body imaging device includes a second conductive type light receiving unit and a charge discharging unit formed in the first conductive type semiconductor substrate, and an insulating film on the semiconductor substrate between the light receiving unit and the charge discharging unit. A solid-state imaging device in which a plurality of pixels including a gate electrode formed through the amplifier and an amplifier circuit electrically connected to the light receiving unit are disposed, and located in the semiconductor substrate below the gate electrode A diffusion region of a first conductivity type having a higher impurity concentration than the semiconductor substrate is formed so as to avoid a region including a region and contacting at least a part of the bottom surface of the light receiving unit.
[0010]
In such a configurationAccording toThe charge storage capacity of the photodiode can be reduced, and a highly sensitive solid-state imaging device can be obtained. Moreover, the depletion layer formed in the junction part of a light-receiving part and a semiconductor substrate can be extended in the depth direction of a semiconductor substrate, and the spectral sensitivity on the long wavelength side can be improved. In addition, this solid-state imaging device can be manufactured by a conventional CMOS process if a mask for forming a p-type well (first conductivity type diffusion region) is a pattern avoiding a part of the region under the light receiving portion. Is possible.
[0011]
PreviousReconciliationIn the body imaging device, it is preferable that the diffusion region is formed so as to include a region on the surface of the semiconductor substrate in contact with the light receiving unit. This is because a depletion layer formed at the junction between the light receiving portion and the semiconductor substrate can be prevented from increasing on the surface of the semiconductor substrate, and an increase in dark current can be suppressed.
[0012]
Also beforeReconciliationIn the body imaging apparatus, it is preferable that the diffusion region is a region that is in contact with the bottom surface of the light receiving unit, and is formed so as to avoid a region having a width of 10 to 100% of the formation width of the light receiving unit. . This is because it becomes easy to form the diffusion region so as to include the region of the semiconductor substrate surface in contact with the light receiving portion.
[0013]
To achieve the above object, the present inventionSolidA method of manufacturing a body imaging device includes: a second conductive type light receiving unit and a charge discharging unit formed in a first conductive type semiconductor substrate; and the semiconductor substrate between the light receiving unit and the charge discharging unit. A method of manufacturing a solid-state imaging device in which a plurality of pixels including a gate electrode formed through an insulating film and an amplifier circuit electrically connected to the light receiving unit are arranged, wherein the gate is formed in the semiconductor substrate. After forming a first conductivity type diffusion region having an impurity concentration higher than that of the semiconductor substrate so as to avoid a region that includes a region located below the electrode and is in contact with at least a part of the bottom surface of the light receiving unit, The method includes a step of forming a gate electrode and a step of forming the light receiving portion and the charge discharging portion.
[0014]
With this configuration, it is possible to manufacture a highly sensitive solid-state imaging device by reducing the junction capacitance of the pn junction formed between the light receiving portion and the semiconductor substrate, that is, the charge storage capacitance of the photodiode. it can. In addition, a depletion layer formed at the junction between the light receiving portion and the semiconductor substrate can be expanded in the depth direction of the semiconductor substrate, so that a solid-state imaging device excellent in spectral sensitivity on the long wavelength side can be obtained. In addition, this manufacturing method can be carried out by the same operation as a conventional CMOS process if the mask for forming the p-type well (first conductivity type diffusion region) is a pattern that avoids a part of the region under the light receiving portion. .
[0015]
PreviousMakingIn the manufacturing method, it is preferable that the diffusion region is formed so as to include a region on the surface of the semiconductor substrate in contact with the light receiving portion. This is because an increase in dark current can be suppressed.
[0016]
Also beforeMakingIn the manufacturing method, it is preferable that the diffusion region is formed so as to avoid a region that is in contact with the bottom surface of the light receiving unit and has a width of 10 to 100% of the light receiving unit formation width. This is because it becomes easy to form the diffusion region so as to include the region of the semiconductor substrate surface in contact with the light receiving portion.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(FirstReference example)
FIG.According to reference examplesIt is sectional drawing which shows an example of the structure of the pixel part of a solid-state imaging device. This solid-state imaging device employs a method of amplifying and outputting the voltage of the light receiving unit, and each pixel includes a light receiving unit and three transistors for amplifier, reset, and selection. The reset transistor is a transistor having a light receiving portion as a source, and a charge discharging portion which is a drain thereof is electrically connected to a power supply voltage. The amplifier transistor has a gate electrically connected to the light receiving portion, a drain electrically connected to the power supply voltage, and a source electrically connected to the drain of the selection transistor. The source of the selection transistor is connected to the output line.
[0018]
Briefly describing the role of each transistor, the amplifier transistor forms a source follower amplifier circuit with a load transistor (not shown) provided in another region, amplifies the voltage of the light receiving unit, and outputs the output line. It performs the function of reading out. The selection transistor is a switch for taking out the output of the amplifier transistor and functions to select a pixel from which a signal is read out. The reset transistor fulfills the function of discharging the signal charge held by the light receiving unit to the charge discharging unit at regular intervals.
[0019]
Hereinafter, the structure of the area around the light receiving portion shown as a cross-sectional view in FIG. 1 will be described in detail. A light receiving portion 12 and a charge discharging portion 14 are formed in the semiconductor substrate 11 in this region, and the reset transistor is disposed on the semiconductor substrate 11 between the light receiving portion 12 and the charge discharging portion 14 via an insulating film 15. A gate electrode 16 is formed. Although not shown, an interlayer insulating film, a metal light shielding film having an opening on the light receiving portion, a surface protective film, and the like are further formed above the semiconductor substrate 11.
[0020]
The semiconductor substrate 11 is not particularly limited as long as it is a p-type semiconductor substrate having an impurity concentration in a range in which a threshold voltage required for an nMOS such as a reset transistor can be obtained. However, if the impurity concentration of the p-type semiconductor substrate 11 is low, the width of the depletion layer 17 formed at the junction with the light receiving portion 12 becomes large in the region in contact with the surface of the semiconductor substrate, which may increase dark current. There is. Therefore, the impurity concentration of the p-type semiconductor substrate 11 is 1.5 × 10 5.15cm-3Above (specific resistance: 10 Ω · cm or less), 3 × 1015~ 5x1015cm-3It is preferable that the specific resistance is about 3 to 5 Ω · cm.
[0021]
Further, as the p-type semiconductor substrate 11, a semiconductor substrate in which a p-type well is formed in the surface layer portion can also be used. The impurity concentration of the p-type well is not particularly limited as long as the threshold voltage required for the nMOS can be obtained, but from the viewpoint of reducing dark current, it is 1 × 10.17cm-3Above, further 1.5 × 1017~ 3x1017cm-3It is preferable that Further, the semiconductor substrate used at this time is not particularly limited as long as it can form a p-type well.
[0022]
The light receiving unit 12 is an n-type impurity diffusion region formed in the p-type semiconductor substrate 11, and a photodiode is formed by a pn junction with the semiconductor substrate 11. The impurity concentration of the light receiving unit 12 is not particularly limited as long as it is within a range that can be photoelectrically converted and can be electrically connected to the amplifier circuit.20cm-3That's it. Further, the diffusion depth of the light receiving unit 12 is suitably about 0.2 to 0.4 μm.
[0023]
Reference exampleIn the solid-state imaging device, the p-type semiconductor substrate 11 has p in a region in contact with at least a part of the bottom surface of the light receiving unit 12.-A mold diffusion region 13 is formed. This p-By providing the type diffusion region 13, the width of the depletion layer at the pn junction between the light receiving portion and the substrate can be increased, the charge storage capacity of the photodiode can be reduced, and high sensitivity of the solid-state imaging device can be realized. . P-Impurity concentration of the light diffusion region 13 and the light receiving portion 12 and p-The standard sensitivity can be adjusted by adjusting the charge storage capacity of the photodiode according to the junction area with the mold diffusion region 13.
[0024]
p-The impurity concentration of the type diffusion region 13 is not particularly limited as long as it is lower than that of the p-type semiconductor substrate 11 (or p-type well), and preferably 1 × 10 6.15cm-3Or less, more preferably 4 × 1014~ 6 × 1014cm-3Degree. This p-As the impurity concentration of the type diffusion region 13 is lowered, the charge storage capacity of the photodiode can be reduced.
[0025]
By setting such an impurity concentration, the light receiving unit 12 and p-The junction capacitance per unit area at the junction with the mold diffusion region 13 is smaller than that at the junction between the light receiving unit 12 and the p-type semiconductor substrate 11. In other words, the light receiving unit 12 and p-The width of the depletion layer formed at the junction with the type diffusion region 13 is larger than that at the junction between the light receiving unit 12 and the p-type semiconductor substrate 11. Light receiving unit 12 and p-The depletion layer width (a in FIG. 1) at the junction with the mold diffusion region 13 is preferably about 0.6 to 2.0 μm, more preferably about 1.2 to 1.8 μm. On the other hand, the depletion layer width (b in FIG. 1) at the junction between the light receiving portion 12 and the p-type semiconductor substrate 11 is suitably about 0.2 to 1.0 μm.
[0026]
Light receiving unit 12 and p-As the junction area with the mold diffusion region 13 increases, the charge storage capacity of the photodiode can be reduced. However, since the dark current may increase on the surface of the semiconductor substrate, the light receiving unit 12 and p-It is preferable that a bond with the mold diffusion region 13 is not formed. Therefore, p-It is preferable that the mold diffusion region 13 avoids a region on the surface of the semiconductor substrate that is in contact with the light receiving unit 12 and is entirely buried under the light receiving unit. Therefore, p-The formation width c of the mold diffusion region 13 is preferably equal to or smaller than the formation width d of the light receiving portion 12, specifically 10 to 100% of the formation width of the light receiving portion, and more preferably 40 to 40%. 80% is preferable. In terms of the formation area, it is preferably 10 to 100%, more preferably 20 to 65% of the formation area of the light receiving portion 12.
[0027]
P-An appropriate diffusion depth of the mold diffusion region 13 is about 0.8 to 2.0 μm.
[0028]
next,Reference exampleAn example of a method for manufacturing the solid-state imaging device according to the present invention will be described.
[0029]
First, an insulating film is formed on the p-type silicon substrate 11 by thermal oxidation. A polysilicon film is deposited on the insulating film by a low pressure CVD method. The gate electrode 16 is formed by removing a part of the polysilicon film by etching.
[0030]
Next, a resist is formed so as to cover a part of the semiconductor substrate 11 and the gate electrode 16, and n-type impurities are ion-implanted into an appropriate region in the semiconductor substrate 11 within a range in which the conductivity type of the semiconductor substrate is not reversed. P-A diffusion region 13 is formed. This ion implantation uses, for example, phosphorus as an n-type impurity, an acceleration voltage of 50 to 800 keV, and a dose amount of 1 × 10 6.11~ 1x1013cm-2As implemented.
[0031]
After the resist is removed, n-type impurities are ion-implanted using the gate electrode 16 as a mask to form the light receiving portion 12 and the charge discharging portion 14, and a reset transistor is formed. At this time, at least part of the bottom surface of the light receiving unit 12 is p.-It is formed in contact with the mold diffusion region. Preferably, the light receiving unit 12 is p-Adjusted to have a dimension equal to or larger than that of the diffusion region 13, p-The diffusion region 13 is embedded in the semiconductor substrate 11 by the light receiving unit 12. In this ion implantation, for example, arsenic is used as an n-type impurity, the acceleration voltage is 40 keV, and the dose is 5 × 10.15cm-2As implemented.
[0032]
Further, an interlayer insulating film, a metal wiring, and the like are formed, and the light receiving portion and the charge discharging portion are electrically connected to an amplifier transistor or the like formed in another region of the semiconductor substrate as shown in FIG. Although not particularly limited, a silicon oxide film formed by a low pressure CVD method is used as the interlayer insulating film, and an aluminum film is used as the metal wiring. Furthermore, a metal light-shielding film, a surface protective film, and the like having an opening in a portion corresponding to the upper part of the light receiving portion are appropriately formed. An aluminum film can be used as the metal light-shielding film, and a silicon nitride film formed by plasma CVD can be used as the surface protective film.
[0033]
The film formation method such as thermal oxidation or CVD method used in the above manufacturing method, the etching method, etc. may be basically performed according to a conventional method.
[0034]
(SecondReference example)
FIG.According to reference examplesIt is sectional drawing which shows another example of a solid-state imaging device. The structure of each pixel of the solid-state imaging device is the same as that of the first embodiment except for the structure of the area around the light receiving portion shown as a cross-sectional view in FIG.Reference exampleIt is the same. Hereinafter, the area around the light receiving unit will be described in detail. In this region, the light receiving portion 22 and the charge discharging portion 24 are formed in the semiconductor substrate 21, and the reset transistor is disposed on the semiconductor substrate 21 between the light receiving portion 22 and the charge discharging portion 24 via the insulating film 25. A gate electrode 26 is formed. Although not shown, an interlayer insulating film, a metal light shielding film having an opening on the light receiving portion, a surface protective film, and the like are further formed above the semiconductor substrate 21.
[0035]
As the semiconductor substrate 21, the firstReference exampleSimilarly to the above, a p-type semiconductor substrate or a semiconductor substrate in which a p-type well is formed can be used. In addition, the light receiving unit 22 includes the firstReference exampleLike, preferably, the impurity concentration is 1 × 1020cm-3The n-type diffusion region has a diffusion depth of about 0.2 to 0.4 μm.
[0036]
Reference example, In a region in contact with at least a part of the bottom surface of the light receiving portion 22 in the p-type semiconductor substrate 21, n-A mold diffusion region 23 is formed. This n-The mold diffusion region 23 together with the light receiving unit 22 forms a photodiode by a pn junction with the semiconductor substrate 21. n-By providing the mold diffusion region 23, the depletion layer width of the pn junction between the light receiving portion and the substrate is increased, the charge storage capacity of the photodiode is reduced, and high sensitivity of the solid-state imaging device is realized. N-Impurity concentration of the n-type diffusion region 23 and n-The standard sensitivity can be adjusted by appropriately adjusting the charge storage capacity of the photodiode according to the junction area between the mold diffusion region 23 and the semiconductor substrate 21.
[0037]
n-The impurity concentration of the mold diffusion region 23 is not particularly limited as long as it is lower than the impurity concentration of the light receiving portion 22, but preferably 1 × 10 6.16cm-3Or less, more preferably 5 × 1015~ 8x1015cm-3It is. This n-The lower the impurity concentration in the mold diffusion region 23, the lower the charge storage capacity of the photodiode.
[0038]
By setting such an impurity concentration, n-The junction capacitance per unit area at the junction between the mold diffusion region 23 and the semiconductor substrate 21 is smaller than that at the junction between the light receiving unit 22 and the semiconductor substrate 21. In other words, n-The width of the depletion layer formed at the junction between the mold diffusion region 23 and the semiconductor substrate 21 is larger than that at the junction between the light receiving portion 22 and the semiconductor substrate 21. n-The depletion layer width (a in FIG. 2) at the junction between the mold diffusion region 23 and the semiconductor substrate 21 is preferably about 0.8 to 2.5 μm, and more preferably about 1.2 to 2.0 μm. On the other hand, the depletion layer width (b in FIG. 2) at the junction between the light receiving portion 22 and the semiconductor substrate 21 is suitably about 0.2 to 1.0 μm.
[0039]
n-As the junction area between the mold diffusion region 23 and the semiconductor substrate 21 increases, the charge storage capacity of the photodiode can be reduced. However, since the dark current may increase on the surface of the semiconductor substrate, the light receiving portions 22 and n-It is preferable that a bond with the mold diffusion region 23 is not formed. Therefore, n-It is preferable that the mold diffusion region 23 avoids a region on the surface of the semiconductor substrate that is in contact with the light receiving unit 22, and is entirely embedded under the light receiving unit 22. Therefore, n-The formation width e of the mold diffusion region 23 is preferably equal to or smaller than the formation width d of the light receiving portion 22, specifically, 10 to 100% of the formation width of the light receiving portion 22, and further 40 It is preferable that it is -80%. In terms of the formation area, it is preferably 10 to 100%, more preferably 20 to 65% of the formation area of the light receiving portion 22.
[0040]
N-An appropriate diffusion depth of the mold diffusion region 23 is about 0.8 to 2.0 μm.
[0041]
Reference exampleThe solid-state imaging device according to-Instead of the step of forming the mold diffusion region, n-Except for performing the step of forming the mold diffusion region,Reference exampleIt can be manufactured in the same manner as the manufacturing method described above.
[0042]
After a resist is formed on the semiconductor substrate 21 on which the insulating film 25 and the gate electrode 26 are formed, n-type impurities are ion-implanted to form an n region in an appropriate region in the semiconductor substrate 21.-A mold diffusion region 23 is formed. This ion implantation uses, for example, phosphorus as an n-type impurity, an acceleration voltage of 50 to 800 keV, and a dose amount of 1 × 10 6.12~ 1x1015cm-2As implemented.
[0043]
After removing the resist, n-type impurities are ion-implanted using the gate electrode 26 as a mask to form the light receiving portion 22 and the charge discharging portion 24. At this time, at least a part of the bottom surface of the light receiving unit 22 is n.-It is formed in contact with the mold diffusion region 23. Preferably, the light receiving unit 22 is n-Adjusted to have a dimension equal to or larger than the mold diffusion region 23, n-The mold diffusion region 23 is embedded in the semiconductor substrate 21 by the light receiving unit 22. In this ion implantation, for example, arsenic is used as an n-type impurity, the acceleration voltage is 40 keV, and the dose is 5 × 10.15cm-2As implemented.
[0044]
Furthermore, an interlayer insulating film, metal wiring, a metal light-shielding film having an opening in a portion corresponding to the upper part of the light-receiving portion, a surface protective film, and the like are appropriately formed to obtain a solid-state imaging device.
[0045]
The film formation method such as thermal oxidation or CVD method used in the above manufacturing method, the etching method, etc. may be basically performed according to a conventional method.
[0046]
(FirstEmbodiment)
The solid-state imaging device according to this embodiment includes a CMOS solid-state imaging device in which a pixel unit and peripheral circuits (for example, a scanning circuit for pixel selection, a timing generation circuit, a noise cancellation circuit, etc.) are integrated using a CMOS process. It is. This solid-state imaging device has an nMOS and a pMOS in the same semiconductor substrate. Therefore, the semiconductor substrate has an n-type well in a region for forming the pMOS and a p-type well in a region for forming the nMOS. Each is formed.
[0047]
FIG. 3 is a cross-sectional view illustrating the structure of the pixel portion of the solid-state imaging device according to the present embodiment. Each pixel has a firstReference exampleSimilarly, the light receiving unit and three transistors for amplifier, reset, and selection are included. The connection between these members and the function of each member are as follows.Reference exampleAs explained in.
[0048]
Hereinafter, the structure of the area around the light receiving portion shown as a cross-sectional view in FIG. 3 will be described in detail. A p-type well 33 for forming an nMOS reset transistor is formed on the semiconductor substrate 31 in this region. A light receiving portion 32 and a charge discharging portion 34 are formed in the semiconductor substrate 31, and a gate electrode of a resetting transistor is provided on the semiconductor substrate 31 between the light receiving portion 32 and the charge discharging portion 34 via an insulating film 35. 36 is formed.
[0049]
The semiconductor substrate 31 is not particularly limited as long as it is a p-type semiconductor substrate having an impurity concentration within a range in which a p-type well and an n-type well can be formed. Preferably the impurity concentration is 2 × 1015cm-3(Specific resistance is 5 Ω · cm or more), more preferably the impurity concentration is 1 × 1015~ 1.5 × 1015cm-3P (specific resistance is about 10-15Ω · cm)-Type semiconductor substrate can be used.
[0050]
The light receiving unit 32 is p-An n-type impurity diffusion region formed in the type semiconductor substrate 31, and a photodiode is formed by a pn junction with the semiconductor substrate 31. The impurity concentration of the light receiving unit 32 is not particularly limited as long as it is a range that can be photoelectrically converted and can be electrically connected to the amplifier circuit, but is preferably 1 × 10.20cm-3That's it. Further, the diffusion depth of the light receiving part 32 is suitably about 0.2 to 0.4 μm.
[0051]
As described above, the p-type well 33 is formed in the surface layer portion of the semiconductor substrate 31 including at least the region located below the gate electrode 36. The impurity concentration of the p-type well 33 is p-There is no particular limitation as long as it is higher than the impurity concentration of the type semiconductor substrate 31 and can obtain a threshold voltage required for an nMOS such as a reset transistor. However, if the impurity concentration of the p-type well 33 is too low, the width of the depletion layer formed at the junction with the light receiving portion 32 on the surface of the semiconductor substrate becomes large, which may increase the dark current. Therefore, the impurity concentration of the p-type well 33 is 1 × 10.17cm-3Above, further 1.5 × 1017~ 3x1017cm-3It is preferable to set the degree. Further, the diffusion depth of the p-type well 33 is suitably about 1.0 μm.
[0052]
The p-type well 33 is formed so as to avoid a region in contact with at least a part of the bottom surface of the light receiving unit 32. That is, at least a part of the bottom of the light receiving portion 32 is p having a lower impurity concentration than the p-type well 33.-It is in contact with the mold area. In this way, by adjusting the impurity concentration of the semiconductor substrate at the junction with the light receiving portion 32 to be low in a part of the region, the depletion layer width at the pn junction between the light receiving portion and the substrate is increased, thereby increasing the photodiode. The charge storage capacity of the solid-state imaging device can be increased and the sensitivity of the solid-state imaging device can be increased. Further, a substrate region in which the p-type well 33 is not formed (hereinafter referred to as “p-Type area ”. ) And the light receiving portion 32, the charge storage capacity of the photodiode can be adjusted as appropriate to adjust the standard sensitivity.
[0053]
Light receiving unit 32 and p-The junction capacitance per unit area at the junction with the mold region 31 is smaller than that at the junction between the light receiving unit 32 and the p-type well 33. In other words, the width of the depletion layer formed at the junction between the light receiving portion 32 and the p-type region 31 is larger than that at the junction between the light receiving portion 32 and the p-type well 33. Light receiving unit 32 and p-The depletion layer width (a in FIG. 3) at the junction with the mold region 31 is preferably about 1.0 to 3.0 μm, more preferably about 1.5 to 2.0 μm. On the other hand, the depletion layer width (b in FIG. 3) at the junction between the light receiving portion 32 and the p-type well 33 is suitably about 0.2 to 0.5 μm.
[0054]
Light receiving unit 32 and p-As the junction area with the mold region 31 increases, the charge storage capacity of the photodiode can be reduced. However, since the dark current may increase on the surface of the semiconductor substrate, the light receiving unit 32 and p-It is preferable that a bond with the mold region 31 is not formed. Therefore, the p-type well 33 is preferably formed so as to include at least a region in contact with the light receiving portion 32 on the surface of the semiconductor substrate. In this case, p on the bottom surface of the light receiving unit 32-The width f of the portion in contact with the mold region is preferably 10 to 100%, more preferably 40 to 80% of the formation width d of the light receiving portion 32. In addition, p on the bottom surface of the light receiving unit 32-The area of the portion in contact with the mold region is preferably 10 to 100%, more preferably 20 to 65% of the bottom surface of the light receiving unit 32.
[0055]
Next, an example of a method for manufacturing the solid-state imaging device according to the present embodiment will be described.
[0056]
First, p-A p-type impurity is ion-implanted into the p-type silicon substrate 31 to form a p-type well 33. This ion implantation is performed so as to avoid the upper part of at least a part of the region to be the light receiving unit 32. In this ion implantation, for example, boron is used as a p-type impurity, the acceleration voltage is 400 keV, and the dose amount is 4 × 10.12cm-2In addition, boron acceleration voltage 50 keV, dose amount 5 × 1012cm-2As implemented.
[0057]
Next, after forming an insulating film on the p-type silicon substrate 31 by thermal oxidation, a polysilicon film is deposited by a low pressure CVD method, and a part thereof is removed by etching to form a gate electrode 36. Next, n-type impurities are ion-implanted using the gate electrode 36 as a mask to form the light receiving portion 32 and the charge discharging portion 34. At this time, at least a part of the bottom surface of the light receiving unit 32 is a region in the semiconductor substrate where the p-type well 33 is not formed (p-It is formed in contact with the mold region 31). Preferably, the light receiving portion 32 is formed in contact with the p-type well 33 on the surface of the semiconductor substrate. In this ion implantation, for example, arsenic is used as an n-type impurity, the acceleration voltage is 40 keV, and the dose is 5 × 10.15cm-2As implemented.
[0058]
Further, an interlayer insulating film, a metal wiring, and the like are formed, and the light receiving portion and the charge discharging portion are electrically connected to an amplifier transistor or the like formed in another region of the semiconductor substrate as shown in FIG. Furthermore, a metal light-shielding film, a surface protective film, and the like having an opening in a portion corresponding to the upper part of the light receiving portion are appropriately formed.
[0059]
The film formation method such as thermal oxidation or CVD method used in the above manufacturing method, the etching method, etc. may be basically performed according to a conventional method.
[0060]
【Example】
(Reference example 1)
A solid-state imaging device having the same structure as that in FIG. 1 was produced. Impurity concentration of 5 × 10 as a semiconductor substrate15cm-3A p-type silicon substrate having a specific resistance of 3 Ω · cm was used, and a silicon oxide film was formed on the p-type silicon substrate by thermal oxidation. After depositing a polysilicon film on the silicon oxide film by a low pressure CVD method, it was patterned by etching to form a gate electrode. Next, the acceleration voltage is 600 keV, and the dose is 2 × 10.11cm-2As phosphorus ions are implanted, p-A mold diffusion region was formed. Formed p-The impurity concentration of the mold diffusion region is 2 × 1015cm-3Met. Next, using the gate electrode as a mask, the acceleration voltage is 40 keV, and the dose is 5 × 10.15cm-2Arsenic was ion-implanted to form a light receiving portion and a charge discharging portion. The area of the formed light receiving part is 60 μm2The impurity concentration is 2 × 1020cm-3Met. As shown in FIG. 1, the light receiving unit and the charge discharging unit were electrically connected to an amplifier transistor, a selection transistor, and a power supply voltage formed in another region of the semiconductor substrate to obtain a solid-state imaging device.
[0061]
In the above manufacturing method, the light receiving portion and p-The junction area with the mold diffusion region was adjusted to 30% (sample No. 1) and 60% (sample No. 2) of the light receiving area, and two types of solid-state imaging devices were manufactured. The width of the depletion layer was examined for these solid-state imaging devices.-It was about 1.6 μm between the mold diffusion regions (a in FIG. 1), and about 0.8 μm between the light receiving portion on the substrate surface and the substrate (b in FIG. 1).
[0062]
For each solid-state imaging device, the output voltage with respect to the photodiode capacity and the incident light quantity of 10 lux (color temperature 3200 K) was evaluated. 1 has a photodiode capacitance of 16.8 fF and an output voltage of 100 mV. In No. 2, the photodiode capacity was 9.6 fF and the output voltage was 160 mV. The output voltage was measured by setting the capacity of the amplifier transistor to 2 fF and the power supply voltage to 5.0V.
[0063]
(Reference example 2)
p-N instead of the mold diffusion region-Except for forming the mold diffusion region,Reference example 1In the same manner, a solid-state imaging device having the same structure as that of FIG. 2 was produced. n-The mold diffusion region is formed by accelerating voltage of 600 keV and dose amount of 1 × 10.12cm-2This was carried out by phosphorus ion implantation. Also formed n-The impurity concentration of the mold diffusion region is 1 × 1016cm-3Met.
[0064]
Light receiver and n-The junction area with the mold diffusion region was adjusted to 30% (sample No. 3) and 60% (sample No. 4) of the light receiving area, and two types of solid-state imaging devices were manufactured. When the depletion layer width was examined for these solid-state imaging devices, n inside the substrate was-About 2.0 μm between the mold diffusion region and the substrate (a in FIG. 2), the light receiving portion (n+It was about 0.8 μm between the mold diffusion region) and the substrate (b in FIG. 2).
[0065]
For each solid-state imaging device, the output voltage with respect to the photodiode capacity and the incident light quantity of 10 lux (color temperature 3200 K) was evaluated. 3 has a photodiode capacitance of 15 fF and an output voltage of 110 mV. In No. 4, the photodiode capacitance was 9 fF and the output voltage was 170 mV. The output voltage was measured by setting the capacity of the amplifier transistor to 2 fF and the power supply voltage to 5.0V.
[0066]
(Example 1)
A solid-state imaging device having the same structure as FIG. 3 was produced. Impurity concentration of 1.5 × 10 as semiconductor substrate15cm-3A p-type silicon substrate having a specific resistance of 10 Ω · cm was used. On this p-type silicon substrate, an acceleration voltage of 400 keV and a dose of 4 × 1012cm-2As an ion implantation of boron, an acceleration voltage of 50 keV and a dose of 5 × 1012cm-2As a result, boron was ion-implanted to form a p-type well. The impurity concentration of the p-type well is 2 × 1017cm-3Met. As shown in FIG. 3, the p-type well was formed so as to avoid at least a part of the bottom surface of the light receiving portion that will be formed later. Next, a silicon oxide film was formed on the p-type silicon substrate by thermal oxidation, a polysilicon film was deposited on the silicon oxide film by a low pressure CVD method, and this was then patterned by etching to form a gate electrode. Using the gate electrode as a mask, the acceleration voltage is 40 keV, and the dose is 5 × 10.15cm-2Arsenic was ion-implanted to form a light receiving portion and a charge discharging portion. The area of the formed light receiving part is 60 μm2The impurity concentration is 2 × 1020cm-3Met. As shown in FIG. 3, the light receiving unit and the charge discharging unit were electrically connected to an amplifier transistor, a selection transistor, and a power supply voltage formed in another region of the semiconductor substrate, to obtain a solid-state imaging device.
[0067]
In the above manufacturing method, the area of the bottom surface of the light receiving portion that is not in contact with the p-type well, that is, the light receiving portion and p-The junction area with the mold region was adjusted to 60% (sample No. 5) and 80% (sample No. 6) of the light receiving area, and two types of solid-state imaging devices were manufactured. For these solid-state imaging devices, the width of the depletion layer formed between the light receiving unit and the substrate was examined.-It was about 1.2 μm between the mold regions (a in FIG. 3), and about 0.2 μm between the light receiving portion on the substrate surface and the p-type well (b in FIG. 3).
[0068]
For each solid-state imaging device, the output voltage with respect to the photodiode capacity and the incident light quantity of 10 lux (color temperature 3200 K) was evaluated. 5 has a photodiode capacity of 20 fF and an output voltage of 95 mV. 6 had a photodiode capacitance of 10 fF and an output voltage of 155 mV. The output voltage was measured by setting the capacity of the amplifier transistor to 2 fF and the power supply voltage to 5.0V.
[0069]
(Comparative example)
p-Except not forming the mold diffusion regionReference example 1In the same manner, a solid-state imaging device having the same structure as that of FIG. 4 was obtained. When the width of the depletion layer formed between the light receiving portion and the substrate was examined, it was about 1.0 μm both inside the substrate and on the substrate surface. When the output voltage with respect to the photodiode capacitance and the incident light quantity of 10 lux (color temperature 3200 K) was evaluated, the photodiode capacitance was 25 fF and the output voltage was 70 mV. The output voltage was measured by setting the capacity of the amplifier transistor to 2 fF and the power supply voltage to 5.0V.
[0070]
【The invention's effect】
BookAccording to the solid-state imaging device of the invention, the second conductive type light receiving unit and the charge discharging unit formed in the first conductive type semiconductor substrate, and the semiconductor substrate between the light receiving unit and the charge discharging unit. A plurality of pixels including a gate electrode formed through an insulating film and an amplifier circuit electrically connected to the light receiving portion are disposed, and a region located below the gate electrode is included in the semiconductor substrate. In addition, a highly sensitive solid-state imaging device is formed by forming a first conductivity type diffusion region having a higher impurity concentration than the semiconductor substrate so as to avoid a region in contact with at least a part of the bottom surface of the light receiving unit Can do.
[0071]
MaIn addition, the manufacturing method of the present invention includes a second conductivity type light receiving portion and a charge discharging portion formed in the first conductivity type semiconductor substrate, and the semiconductor substrate between the light receiving portion and the charge discharging portion. A method of manufacturing a solid-state imaging device in which a plurality of pixels including a gate electrode formed through an insulating film and an amplifier circuit electrically connected to the light receiving unit are arranged,A first conductivity type having a higher impurity concentration than the semiconductor substrate so as to avoid a region including a region located below the gate electrode in the semiconductor substrate and in contact with at least a part of the bottom surface of the light receiving unit. Forming a gate electrode after forming a diffusion region, and forming the light receiving portion and the charge discharging portion.Thus, a highly sensitive solid-state imaging device can be manufactured.
[Brief description of the drawings]
FIG. 1 shows the first of the present invention.Reference exampleIt is sectional drawing which shows the structure of 1 pixel of the solid-state imaging device concerning.
FIG. 2 shows a second embodiment of the present invention.Reference exampleIt is sectional drawing which shows the structure of 1 pixel of the solid-state imaging device concerning.
FIG. 3 shows the first aspect of the present invention.1It is sectional drawing which shows the structure of 1 pixel of the solid-state imaging device which concerns on this embodiment.
FIG. 4 is a cross-sectional view showing the structure of one pixel of a conventional solid-state imaging device.
[Explanation of symbols]
11, 21, 41 p-type semiconductor substrate
31 p-type semiconductor substrate
12, 22, 32, 42
13 p-type diffusion region
23 n-type diffusion region
33 p-type well
14, 24, 34, 44 Charge discharging part
15, 25, 35, 45 Insulating film
16, 26, 36, 46 Gate electrode
17, 27, 37, 47 Depletion layer

Claims (6)

第1導電型の半導体基板内に形成された第2導電型の受光部および電荷排出部と、前記受光部と前記電荷排出部との間の前記半導体基板上に絶縁膜を介して形成されたゲート電極と、前記受光部と電気的に接続したアンプ回路とを含む画素が複数配置された固体撮像装置であって、前記半導体基板内に、前記ゲート電極の下方に位置する領域を含み、且つ、前記受光部底面の少なくとも一部に接する領域を避けるように、前記半導体基板よりも不純物濃度の高い第1導電型の拡散領域が形成されていることを特徴とする固体撮像装置。A second conductive type light receiving portion and charge discharging portion formed in the first conductive type semiconductor substrate, and an insulating film formed on the semiconductor substrate between the light receiving portion and the charge discharging portion; A solid-state imaging device in which a plurality of pixels including a gate electrode and an amplifier circuit electrically connected to the light receiving unit are arranged, the semiconductor substrate including a region located below the gate electrode, and A solid-state imaging device, wherein a first conductivity type diffusion region having an impurity concentration higher than that of the semiconductor substrate is formed so as to avoid a region in contact with at least a part of the bottom surface of the light receiving unit. 前記拡散領域が、前記受光部に接する前記半導体基板表面の領域を含むように形成されている請求項1に記載の固体撮像装置。The solid-state imaging device according to claim 1, wherein the diffusion region includes a region on the surface of the semiconductor substrate that is in contact with the light receiving unit. 前記拡散領域が、前記受光部底面に接する領域であって、前記受光部の形成幅の10〜100%の幅を有する領域を避けるように形成されている請求項2に記載の固体撮像装置。3. The solid-state imaging device according to claim 2, wherein the diffusion region is a region in contact with the bottom surface of the light receiving unit and is formed so as to avoid a region having a width of 10 to 100% of a formation width of the light receiving unit. 第1導電型の半導体基板内に形成された第2導電型の受光部および電荷排出部と、前記受光部と前記電荷排出部との間の前記半導体基板上に絶縁膜を介して形成されたゲート電極と、前記受光部と電気的に接続したアンプ回路とを含む画素が複数配置された固体撮像装置の製造方法であって、前記半導体基板内に、前記ゲート電極の下方に位置する領域を含み、且つ、前記受光部底面の一部に接する領域を避けるように、前記半導体基板よりも不純物濃度の高い第1導電型の拡散領域を形成した後に、前記ゲート電極を形成する工程と、前記受光部および前記電荷排出部を形成する工程とを含むことを特徴とする固体撮像装置の製造方法。A second conductive type light receiving portion and charge discharging portion formed in the first conductive type semiconductor substrate, and an insulating film formed on the semiconductor substrate between the light receiving portion and the charge discharging portion; A method of manufacturing a solid-state imaging device in which a plurality of pixels including a gate electrode and an amplifier circuit electrically connected to the light receiving unit are arranged, wherein a region located below the gate electrode is formed in the semiconductor substrate. And forming a gate electrode after forming a first conductivity type diffusion region having an impurity concentration higher than that of the semiconductor substrate so as to avoid a region in contact with a part of the bottom surface of the light receiving unit. And a step of forming the light receiving portion and the charge discharging portion. 前記拡散領域を、前記受光部に接する前記半導体基板表面の領域を含むように形成する請求項4に記載の固体撮像装置の製造方法。The manufacturing method of the solid-state imaging device according to claim 4, wherein the diffusion region is formed so as to include a region on the surface of the semiconductor substrate in contact with the light receiving unit. 前記拡散領域を、前記受光部底面に接する領域であって、前記受光部の形成幅の10〜100%の幅を有する領域を避けるように形成する請求項5に記載の固体撮像装置。The solid-state imaging device according to claim 5, wherein the diffusion region is formed so as to avoid a region that is in contact with a bottom surface of the light receiving unit and has a width of 10 to 100% of a formation width of the light receiving unit.
JP25558298A 1998-09-09 1998-09-09 Solid-state imaging device and manufacturing method thereof Expired - Fee Related JP3621273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25558298A JP3621273B2 (en) 1998-09-09 1998-09-09 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25558298A JP3621273B2 (en) 1998-09-09 1998-09-09 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000091550A JP2000091550A (en) 2000-03-31
JP3621273B2 true JP3621273B2 (en) 2005-02-16

Family

ID=17280728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25558298A Expired - Fee Related JP3621273B2 (en) 1998-09-09 1998-09-09 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3621273B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397665B1 (en) * 2001-03-29 2003-09-17 (주) 픽셀플러스 Cmos active pixel for improving sensitivity
KR100449952B1 (en) * 2001-11-06 2004-09-30 주식회사 하이닉스반도체 Cmos image sensor and method of manufacturing the same
KR100748345B1 (en) * 2001-12-31 2007-08-09 매그나칩 반도체 유한회사 Image sensor with improved light sensitivityy and fabricating method of the same
JP3793205B2 (en) * 2003-03-06 2006-07-05 松下電器産業株式会社 Charge detection device and solid-state imaging device
JP2005167187A (en) * 2003-11-13 2005-06-23 Seiko Epson Corp Solid-state image pickup device and its manufacturing method
US7605415B2 (en) * 2004-06-07 2009-10-20 Canon Kabushiki Kaisha Image pickup device comprising photoelectric conversation unit, floating diffusion region and guard ring
JP5932720B2 (en) * 2013-06-13 2016-06-08 キヤノン株式会社 Photoelectric conversion device and method for manufacturing photoelectric conversion device.

Also Published As

Publication number Publication date
JP2000091550A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP6541080B2 (en) Solid-state imaging device
US6180969B1 (en) CMOS image sensor with equivalent potential diode
JP3584196B2 (en) Light receiving element and photoelectric conversion device having the same
US7884401B2 (en) CMOS image sensor and manufacturing method thereof
EP2287917B1 (en) Light-receiving element and photoelectric conversion device
US20080157150A1 (en) CMOS image sensor and method for manufacturing the same
US7977711B2 (en) Pixel sensor cell for collecting electrons and holes
JP2006261411A (en) Image sensor having buried photodiode region, and manufacturing method thereof
JP2002043557A (en) Semiconductor device comprising solid-state imaging element and manufacturing method thereof
JP2009283649A (en) Solid-state imaging apparatus, and manufacturing method thereof
JP2013045879A (en) Semiconductor device, semiconductor device manufacturing method, solid state image pickup device, solid state image pickup device manufacturing method and electronic apparatus
JP2007110133A (en) Cmos image sensor and manufacturing method thereof
JP2921567B1 (en) Solid-state imaging device and method of manufacturing the same
JP3621273B2 (en) Solid-state imaging device and manufacturing method thereof
JP2004312039A (en) Photoelectric conversion device
KR20050038034A (en) Image sensor, camera system comprising the image sensor and method of manufacturing such a device
JP2003101004A (en) Solid-state image pickup device and manufacturing method therefor
JP5274118B2 (en) Solid-state imaging device
JP2001156280A (en) Photoelectric conversion device and its manufacturing method
KR100792334B1 (en) Image sensor and method of manufacturing the same
JP2004241487A (en) Manufacturing method of solid-state imaging element
KR100340059B1 (en) image sensor with finger type photodiode
JP4185807B2 (en) Manufacturing method of MOS type solid-state imaging device
JP2004247647A (en) Photo-diode and image sensor
JP2005039219A (en) Solid-state imaging device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees