JP2000091550A - Solid image pickup device and manufacture thereof - Google Patents

Solid image pickup device and manufacture thereof

Info

Publication number
JP2000091550A
JP2000091550A JP10255582A JP25558298A JP2000091550A JP 2000091550 A JP2000091550 A JP 2000091550A JP 10255582 A JP10255582 A JP 10255582A JP 25558298 A JP25558298 A JP 25558298A JP 2000091550 A JP2000091550 A JP 2000091550A
Authority
JP
Japan
Prior art keywords
light receiving
semiconductor substrate
region
solid
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10255582A
Other languages
Japanese (ja)
Other versions
JP3621273B2 (en
Inventor
Toshihiro Kuriyama
俊寛 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP25558298A priority Critical patent/JP3621273B2/en
Publication of JP2000091550A publication Critical patent/JP2000091550A/en
Application granted granted Critical
Publication of JP3621273B2 publication Critical patent/JP3621273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To make feasible high sensitizing a solid image pickup device by decreasing the charge accumulation capacity of a photodiode. SOLUTION: Multiple picture elements containing the second conductivity type photodetecters 12 formed in the first conductivity type semiconductor substrate 11 and amplifier circuits electrically connecting to the photodetectors 12 are arranged in this solid image pickup device. In such a constitution, the first conductivity type diffused regions 13 in lower impurity concentration than that of the semiconductor substrate 11 are formed in the semiconductor substrate 11 connecting to at least a part of the bottom face of the photodetectors 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、信号の読み出しに
MOS(metal oxide semiconductor)トランジスタを
用いたMOS型固体撮像装置およびその製造方法に関す
るものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a MOS solid-state imaging device using a MOS (metal oxide semiconductor) transistor for reading out a signal, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】固体撮像装置は、信号の読み出し方式に
よって大きく二種類に分類される。信号電荷を順次転送
するCCD(charge coupled device;電荷結合素子)
型と、各画素に形成されたMOSトランジスタを含む読
み出し回路を用いて1画素づつ信号を読み出すMOS型
である。近年、MOS型固体撮像装置、特に、CMOS
(complementary MOS)プロセスによって画素部と周辺
回路とを集積化したいわゆるCMOS型固体撮像装置
は、低電圧・低消費電力であり、周辺回路とワン・チッ
プ化できるという長所を有するため、PC用小型カメラ
などの携帯機器の画像入力素子として注目されている。
2. Description of the Related Art Solid-state imaging devices are roughly classified into two types according to a signal reading method. CCD (charge coupled device) that sequentially transfers signal charges
And a MOS type in which a signal is read out pixel by pixel using a readout circuit including a MOS transistor formed in each pixel. In recent years, MOS type solid-state imaging devices, especially CMOS
A so-called CMOS solid-state imaging device in which a pixel portion and a peripheral circuit are integrated by a (complementary MOS) process has advantages of low voltage and low power consumption, and has the advantage that the peripheral circuit can be integrated into one chip. It is attracting attention as an image input element of a portable device such as a camera.

【0003】図4に従来のMOS型固体撮像装置の構造
を示す。この固体撮像装置の各画素は、受光部と、受光
部で発生した電気信号を増幅して出力するためのアンプ
回路とを備えている。受光部42は、p型半導体基板4
1内に形成されたn型拡散領域であって、基板との接合
によりフォトダイオードを形成している。入射光によっ
て生じた電子・正孔対は、受光部42と半導体基板41
との間のpn接合部に形成される空乏層で分離され、電
子は受光部42に蓄積される。この電荷蓄積により生じ
る受光部42の電位変化が、アンプ回路で増幅されて出
力される。
FIG. 4 shows the structure of a conventional MOS type solid-state imaging device. Each pixel of the solid-state imaging device includes a light receiving unit and an amplifier circuit for amplifying and outputting an electric signal generated in the light receiving unit. The light receiving section 42 is a p-type semiconductor substrate 4
1 is an n-type diffusion region formed therein and forms a photodiode by bonding with a substrate. The electron-hole pairs generated by the incident light are
The electrons are separated by a depletion layer formed at the pn junction between the electrons, and the electrons are accumulated in the light receiving section 42. The potential change of the light receiving section 42 caused by the charge accumulation is amplified and output by the amplifier circuit.

【0004】[0004]

【発明が解決しようとする課題】固体撮像装置の高画素
化および小型化が進むに伴って、その感度の向上が課題
となっている。固体撮像装置の感度向上を図るには、受
光部の面積を増大させて光電変換される入射光量を増大
させればよい。しかし、受光部面積を増大させると、受
光部と基板との間の接合面積が増大するため、フォトダ
イオードの電荷蓄積容量が増大する。電荷蓄積容量が増
大すると電荷を電圧に変換する際の変換率が低下し、結
果として固体撮像装置の十分な感度向上を実現すること
ができないという問題があった。
As the number of pixels and the size of the solid-state imaging device increase, the sensitivity of the device has to be improved. In order to improve the sensitivity of the solid-state imaging device, the area of the light receiving unit may be increased to increase the amount of incident light that is photoelectrically converted. However, when the area of the light receiving section is increased, the junction area between the light receiving section and the substrate increases, so that the charge storage capacity of the photodiode increases. When the charge storage capacity increases, the conversion rate when converting charges into a voltage decreases, and as a result, there is a problem that a sufficient improvement in sensitivity of the solid-state imaging device cannot be realized.

【0005】本発明は、高感度の固体撮像装置およびそ
の製造方法を提供することを目的とする。
An object of the present invention is to provide a high-sensitivity solid-state imaging device and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の第1の固体撮像装置は、第1導電型の半導
体基板内に形成された第2導電型の受光部と、前記受光
部と電気的に接続したアンプ回路とを含む画素が複数配
置された固体撮像装置であって、前記受光部と前記半導
体基板との接合部に形成される空乏層の幅が、前記半導
体基板表面に接する領域よりも、前記受光部底面の少な
くとも一部を含む前記半導体基板内の領域で大きいこと
を特徴とする。
In order to achieve the above object, a first solid-state imaging device according to the present invention comprises: a second conductive type light receiving portion formed in a first conductive type semiconductor substrate; A solid-state imaging device in which a plurality of pixels including an amplifier circuit electrically connected to a portion are arranged, wherein a width of a depletion layer formed at a junction between the light receiving portion and the semiconductor substrate is larger than a width of the semiconductor substrate surface. A region in the semiconductor substrate including at least a part of the bottom surface of the light receiving unit is larger than a region in contact with the light receiving unit.

【0007】このような構成によれば、半導体基板内部
の領域において受光部−基板間の接合部における空乏層
を広げてフォトダイオードの電荷蓄積容量の低減するこ
とができる。よって、この固体撮像装置によれば、小さ
い容量で電荷・電圧変換できるため高い変換率が得ら
れ、感度を向上させることができる。また、半導体基板
の深さ方向に空乏層を広げるため、長波長側の分光感度
を向上させることができる。また、半導体基板表面の領
域では受光部−基板間の接合部における空乏層幅が狭い
ので、暗電流の増大を抑制することができる。
According to such a configuration, the charge storage capacity of the photodiode can be reduced by expanding the depletion layer at the junction between the light receiving portion and the substrate in the region inside the semiconductor substrate. Therefore, according to this solid-state imaging device, a charge / voltage conversion can be performed with a small capacitance, so that a high conversion rate can be obtained and the sensitivity can be improved. Further, since the depletion layer is expanded in the depth direction of the semiconductor substrate, the spectral sensitivity on the long wavelength side can be improved. Further, in the region on the surface of the semiconductor substrate, the width of the depletion layer at the junction between the light receiving portion and the substrate is narrow, so that an increase in dark current can be suppressed.

【0008】前記第1の固体撮像装置においては、前記
空乏層の幅が、前記受光部底面の少なくとも一部を含む
前記半導体基板内の領域で、前記半導体表面に接する領
域の1.5〜10倍であることが好ましい。この好まし
い例によれば、固体撮像装置の高感度化と、暗電流の抑
制とを確実に両立することができる。
In the first solid-state imaging device, the width of the depletion layer is 1.5 to 10 times that of a region in contact with the semiconductor surface in a region in the semiconductor substrate including at least a part of a bottom surface of the light receiving section. Preferably it is twice. According to this preferred example, it is possible to reliably achieve both high sensitivity of the solid-state imaging device and suppression of dark current.

【0009】前記目的を達成するため、本発明の第2の
固体撮像装置は、第1導電型の半導体基板内に形成され
た第2導電型の受光部と、前記受光部と電気的に接続し
たアンプ回路とを含む画素が複数配置された固体撮像装
置であって、前記受光部底面の少なくとも一部に接する
前記半導体基板内の領域に、前記半導体基板よりも不純
物濃度の低い第1導電型の拡散領域、または、前記受光
部よりも不純物濃度の低い第2導電型の拡散領域が形成
されていることを特徴とする。
In order to achieve the above object, a second solid-state imaging device according to the present invention includes a light-receiving portion of a second conductivity type formed in a semiconductor substrate of a first conductivity type, and electrically connected to the light-receiving portion. A solid-state imaging device in which a plurality of pixels including an amplifier circuit are arranged, wherein a first conductivity type having an impurity concentration lower than that of the semiconductor substrate is provided in a region in the semiconductor substrate that is in contact with at least a part of a bottom surface of the light receiving unit. Or a diffusion region of the second conductivity type having an impurity concentration lower than that of the light receiving portion is formed.

【0010】このような構成によれば、受光部と半導体
基板との間で形成されるpn接合の接合容量、すなわち
フォトダイオードの電荷蓄積容量を低減することができ
る。よって、この固体撮像装置によれば、小さい容量で
電荷・電圧変換できるため高い変換率が得られ、感度を
向上させることができる。また、受光部と半導体基板と
の接合部に形成される空乏層を半導体基板の深さ方向に
広げることができるため、長波長側の分光感度を向上さ
せることができる。
According to such a configuration, the junction capacitance of the pn junction formed between the light receiving portion and the semiconductor substrate, that is, the charge storage capacitance of the photodiode can be reduced. Therefore, according to this solid-state imaging device, a charge / voltage conversion can be performed with a small capacitance, so that a high conversion rate can be obtained and the sensitivity can be improved. Further, the depletion layer formed at the junction between the light receiving portion and the semiconductor substrate can be expanded in the depth direction of the semiconductor substrate, so that the spectral sensitivity on the long wavelength side can be improved.

【0011】前記第2の固体撮像装置においては、前記
拡散領域が、前記受光部に接する前記半導体基板表面の
領域を避けるように形成されていることが好ましい。こ
の好ましい例によれば、受光部と半導体基板との接合部
に形成される空乏層が半導体基板表面において増大する
ことを回避できるので、暗電流の増大を抑制することが
できる。
In the second solid-state imaging device, it is preferable that the diffusion region is formed so as to avoid a region on the surface of the semiconductor substrate which is in contact with the light receiving section. According to this preferred example, it is possible to avoid an increase in the depletion layer formed at the junction between the light receiving portion and the semiconductor substrate on the surface of the semiconductor substrate, and thus it is possible to suppress an increase in dark current.

【0012】また、前記第2の固体撮像装置において
は、前記拡散領域の形成幅が、前記受光部の形成幅の1
0〜100%であることが好ましい。拡散領域を半導体
基板表面の領域を避けるように形成することが容易とな
るからである。
Further, in the second solid-state imaging device, the width of the diffusion region is one of the width of the light receiving portion.
Preferably it is 0 to 100%. This is because it becomes easy to form the diffusion region so as to avoid the region on the surface of the semiconductor substrate.

【0013】前記目的を達成するため、本発明の第3の
固体撮像装置は、第1導電型の半導体基板内に形成され
た第2導電型の受光部および電荷排出部と、前記受光部
と前記電荷排出部との間の前記半導体基板上に絶縁膜を
介して形成されたゲート電極と、前記受光部と電気的に
接続したアンプ回路とを含む画素が複数配置された固体
撮像装置であって、前記半導体基板内に、前記ゲート電
極の下方に位置する領域を含み、且つ、前記受光部底面
の少なくとも一部に接する領域を避けるように、前記半
導体基板よりも不純物濃度の高い第1導電型の拡散領域
が形成されていることを特徴とする。
According to a third aspect of the present invention, there is provided a solid-state imaging device according to the present invention, wherein a light receiving unit of a second conductivity type and a charge discharging unit formed in a semiconductor substrate of a first conductivity type; A solid-state imaging device in which a plurality of pixels including a gate electrode formed on the semiconductor substrate via an insulating film between the charge discharging unit and an amplifier circuit electrically connected to the light receiving unit are arranged. A first conductive layer having an impurity concentration higher than that of the semiconductor substrate so as to include a region located below the gate electrode in the semiconductor substrate and to avoid a region in contact with at least a part of the bottom surface of the light receiving unit. A mold diffusion region is formed.

【0014】このような構成によっても、フォトダイオ
ードの電荷蓄積容量を低減し、高感度の固体撮像装置と
することができる。また、受光部と半導体基板との接合
部に形成される空乏層を半導体基板の深さ方向に広げ、
長波長側の分光感度を向上させることができる。また、
この固体撮像装置は、p型ウェル(第1導電型の拡散領
域)形成のためのマスクを受光部下の一部の領域を避け
たパターンとすれば、慣用のCMOSプロセスによって
製造することが可能である。
With such a configuration, the charge storage capacity of the photodiode can be reduced, and a high-sensitivity solid-state imaging device can be obtained. In addition, a depletion layer formed at a junction between the light receiving unit and the semiconductor substrate is expanded in a depth direction of the semiconductor substrate,
The spectral sensitivity on the long wavelength side can be improved. Also,
This solid-state imaging device can be manufactured by a conventional CMOS process if a mask for forming a p-type well (a diffusion region of the first conductivity type) is a pattern avoiding a part of the region under the light receiving portion. is there.

【0015】前記第3の固体撮像装置においては、前記
拡散領域が、前記受光部に接する前記半導体基板表面の
領域を含むように形成されていることが好ましい。受光
部と半導体基板との接合部に形成される空乏層が半導体
基板表面において増大することを回避して、暗電流の増
大を抑制することができるからである。
In the third solid-state imaging device, it is preferable that the diffusion region is formed so as to include a region on the surface of the semiconductor substrate which is in contact with the light receiving section. This is because a depletion layer formed at a junction between the light receiving unit and the semiconductor substrate can be prevented from increasing on the surface of the semiconductor substrate, and an increase in dark current can be suppressed.

【0016】また、前記第3の固体撮像装置において
は、前記拡散領域が、前記受光部の底面に接する領域で
あって、前記受光部の形成幅の10〜100%の幅を有
する領域を避けるように形成されていることが好まし
い。拡散領域を、受光部に接する半導体基板表面の領域
を含むように形成することが容易となるからである。
In the third solid-state imaging device, the diffusion region is a region that is in contact with a bottom surface of the light receiving unit and avoids a region having a width of 10 to 100% of a formation width of the light receiving unit. It is preferable that it is formed as follows. This is because the diffusion region can be easily formed so as to include the region on the surface of the semiconductor substrate that is in contact with the light receiving portion.

【0017】前記目的を達成するため、本発明の第1の
固体撮像装置の製造方法は、第1導電型の半導体基板内
に形成された第2導電型の受光部と、前記受光部と電気
的に接続したアンプ回路とを含む画素が複数配置された
固体撮像装置の製造方法であって、前記受光部を形成す
る工程と、前記受光部底面の少なくとも一部に接する前
記半導体基板内の領域に、前記半導体基板よりも不純物
濃度の低い第1導電型の拡散領域、または、前記受光部
よりも不純物濃度の低い第2導電型の拡散領域を形成す
る工程とを含むことを特徴とする。
To achieve the above object, a first method for manufacturing a solid-state imaging device according to the present invention comprises a second conductive type light receiving portion formed in a first conductive type semiconductor substrate; A method for manufacturing a solid-state imaging device in which a plurality of pixels including an electrically connected amplifier circuit are arranged, wherein the step of forming the light receiving unit and the region in the semiconductor substrate contacting at least a part of the bottom surface of the light receiving unit Forming a first conductivity type diffusion region having a lower impurity concentration than the semiconductor substrate or a second conductivity type diffusion region having a lower impurity concentration than the light receiving portion.

【0018】このような製造方法によれば、受光部と半
導体基板との間で形成されるpn接合の接合容量、すな
わちフォトダイオードの電荷蓄積容量を低減して、高感
度の固体撮像装置を製造することができる。また、受光
部と半導体基板との接合部に形成される空乏層を半導体
基板の深さ方向に広げて、長波長側の分光感度に優れた
固体撮像装置を得ることができる。
According to such a manufacturing method, the junction capacitance of the pn junction formed between the light receiving section and the semiconductor substrate, that is, the charge storage capacity of the photodiode is reduced, and a high-sensitivity solid-state imaging device is manufactured. can do. In addition, a depletion layer formed at the junction between the light receiving section and the semiconductor substrate is expanded in the depth direction of the semiconductor substrate, so that a solid-state imaging device having excellent spectral sensitivity on the long wavelength side can be obtained.

【0019】前記第1の製造方法においては、前記拡散
領域を、前記受光部に接する前記半導体基板表面の領域
を避けるように形成することが好ましい。暗電流の増大
を抑制することができるからである。
In the first manufacturing method, it is preferable that the diffusion region is formed so as to avoid a region on the surface of the semiconductor substrate which is in contact with the light receiving portion. This is because an increase in dark current can be suppressed.

【0020】また、前記第1の製造方法においては、前
記拡散領域の形成幅を、前記受光部の形成幅の10〜1
00%とすることが好ましい。拡散領域を半導体基板表
面に接しないように形成することが容易となるからであ
る。
In the first manufacturing method, the formation width of the diffusion region may be set to 10 to 1 times the formation width of the light receiving portion.
It is preferably set to 00%. This is because it becomes easy to form the diffusion region so as not to contact the surface of the semiconductor substrate.

【0021】前記目的を達成するため、本発明の第2の
固体撮像装置の製造方法は、第1導電型の半導体基板内
に形成された第2導電型の受光部および電荷排出部と、
前記受光部と前記電荷排出部との間の前記半導体基板上
に絶縁膜を介して形成されたゲート電極と、前記受光部
と電気的に接続したアンプ回路とを含む画素が複数配置
された固体撮像装置の製造方法であって、前記ゲート電
極を形成する工程と、前記受光部および前記電荷排出部
を形成する工程と、前記半導体基板内に、前記ゲート電
極の下方に位置する領域を含み、且つ、前記受光部底面
の少なくとも一部に接する領域を避けるように、前記半
導体基板よりも不純物濃度の高い第1導電型の拡散領域
を形成する工程とを含むことを特徴とする。
In order to achieve the above object, a second method of manufacturing a solid-state imaging device according to the present invention includes a method of manufacturing a solid-state imaging device, comprising: a light-receiving section of a second conductivity type formed in a semiconductor substrate of a first conductivity type;
A solid body in which a plurality of pixels including a gate electrode formed on the semiconductor substrate between the light receiving unit and the charge discharging unit via an insulating film, and an amplifier circuit electrically connected to the light receiving unit are arranged. A method of manufacturing an imaging device, comprising: a step of forming the gate electrode; a step of forming the light receiving unit and the charge discharging unit; and a region located below the gate electrode in the semiconductor substrate. And forming a first conductivity type diffusion region having a higher impurity concentration than the semiconductor substrate so as to avoid a region in contact with at least a part of the bottom surface of the light receiving unit.

【0022】このような構成にしたことにより、受光部
と半導体基板との間で形成されるpn接合の接合容量、
すなわちフォトダイオードの電荷蓄積容量を低減して、
高感度の固体撮像装置を製造することができる。また、
受光部と半導体基板との接合部に形成される空乏層を半
導体基板の深さ方向に広げて、長波長側の分光感度に優
れた固体撮像装置とすることができる。また、この製造
方法は、p型ウェル(第1導電型の拡散領域)形成用の
マスクを受光部下の一部の領域を避けたパターンとすれ
ば、慣用のCMOSプロセスと同様の操作により実施で
きる。
With such a structure, the junction capacitance of the pn junction formed between the light receiving portion and the semiconductor substrate can be improved.
That is, the charge storage capacity of the photodiode is reduced,
A high-sensitivity solid-state imaging device can be manufactured. Also,
The depletion layer formed at the junction between the light receiving portion and the semiconductor substrate is expanded in the depth direction of the semiconductor substrate, so that a solid-state imaging device having excellent spectral sensitivity on the long wavelength side can be obtained. Further, this manufacturing method can be carried out by the same operation as a conventional CMOS process, provided that the mask for forming the p-type well (the diffusion region of the first conductivity type) is a pattern avoiding a part of the region under the light receiving portion. .

【0023】前記第2の製造方法においては、前記拡散
領域を、前記受光部に接する前記半導体基板表面の領域
を含むように形成することが好ましい。暗電流の増大を
抑制することができるからである。
In the second manufacturing method, it is preferable that the diffusion region is formed so as to include a region on the surface of the semiconductor substrate which is in contact with the light receiving portion. This is because an increase in dark current can be suppressed.

【0024】また、前記第2の製造方法においては、前
記拡散領域を、前記受光部底面に接する領域であって、
前記受光部形成幅の10〜100%の幅を有する領域を
避けるように形成することが好ましい。拡散領域を、受
光部に接する半導体基板表面の領域を含むように形成す
ることが容易となるからである。
[0024] In the second manufacturing method, the diffusion region may be a region in contact with a bottom surface of the light receiving unit,
It is preferable to form so as to avoid a region having a width of 10 to 100% of the light receiving portion formation width. This is because the diffusion region can be easily formed so as to include the region on the surface of the semiconductor substrate that is in contact with the light receiving portion.

【0025】[0025]

【発明の実施の形態】(第1の実施形態)図1は、本発
明の固体撮像装置の画素部の構造の一例を示す断面図で
ある。本固体撮像装置は受光部の電圧を増幅して出力す
る方式を採用しており、各画素は、受光部と、アンプ
用、リセット用および選択用の3個のトランジスタとを
含んでいる。リセット用トランジスタは受光部をソース
とするトランジスタであり、そのドレインである電荷排
出部が電源電圧と電気的に接続されている。アンプ用ト
ランジスタは、ゲートが受光部と、ドレインが電源電圧
と、ソースが選択用トランジスタのドレインと各々電気
的に接続されている。また、選択用トランジスタは、ソ
ースが出力線に接続されている。
(First Embodiment) FIG. 1 is a sectional view showing an example of the structure of a pixel portion of a solid-state imaging device according to the present invention. This solid-state imaging device employs a method of amplifying and outputting the voltage of the light receiving unit, and each pixel includes a light receiving unit and three transistors for amplifier, reset, and selection. The reset transistor is a transistor having a light receiving section as a source, and a charge discharging section as a drain thereof is electrically connected to a power supply voltage. The amplifier transistor has a gate electrically connected to the light receiving section, a drain electrically connected to the power supply voltage, and a source electrically connected to the drain of the selection transistor. The source of the selection transistor is connected to the output line.

【0026】各トランジスタの役割を簡単に説明する
と、アンプ用トランジスタは、別の領域に設けられた負
荷用トランジスタ(図示せず。)とソースフォロワアン
プ回路を形成し、受光部の電圧を増幅して出力線に読み
出す機能を果たす。選択用トランジスタは、アンプ用ト
ランジスタの出力を取り出すスイッチであって信号を読
み出す画素を選択する機能を果たす。また、リセット用
トランジスタは、受光部が保持している信号電荷を、一
定時間毎に電荷排出部に排出する機能を果たす。
To briefly explain the role of each transistor, the amplifier transistor forms a source follower amplifier circuit with a load transistor (not shown) provided in another region, and amplifies the voltage of the light receiving section. Out of the output line. The selection transistor is a switch for extracting the output of the amplifier transistor, and has a function of selecting a pixel from which a signal is read. Further, the reset transistor has a function of discharging the signal charges held by the light receiving unit to the charge discharging unit at regular time intervals.

【0027】以下、図1に断面図として示した受光部周
辺の領域の構造について詳細に説明する。この領域の半
導体基板11内には受光部12および電荷排出部14が
形成されており、受光部12と電荷排出部14との間の
半導体基板11上に絶縁膜15を介してリセット用トラ
ンジスタのゲート電極16が形成されている。また、図
示を省略しているが、半導体基板11の上方には、更
に、層間絶縁膜、受光部上に開口を有する金属遮光膜、
表面保護膜などが形成されている。
Hereinafter, the structure of the area around the light receiving section shown in the sectional view of FIG. 1 will be described in detail. A light receiving portion 12 and a charge discharging portion 14 are formed in the semiconductor substrate 11 in this region, and a reset transistor for a reset transistor is formed on the semiconductor substrate 11 between the light receiving portion 12 and the charge discharging portion 14 via an insulating film 15. A gate electrode 16 is formed. Although not shown, an interlayer insulating film, a metal light-shielding film having an opening on the light-receiving portion,
A surface protection film and the like are formed.

【0028】半導体基板11は、リセット用トランジス
タなどのnMOSに要求される閾値電圧を得られる範囲
の不純物濃度を有するp型半導体基板であれば特に限定
するものではない。しかし、p型半導体基板11の不純
物濃度が低いと、受光部12との接合部に形成される空
乏層17の幅が、半導体基板表面に接する領域で大きく
なるため、暗電流の増大を招くおそれがある。したがっ
て、p型半導体基板11の不純物濃度は、1.5×10
15cm-3以上(比抵抗10Ω・cm以下)、更には3×
1015〜5×1015cm-3程度(比抵抗3〜5Ω・cm
程度)であることが好ましい。
The semiconductor substrate 11 is not particularly limited as long as it is a p-type semiconductor substrate having an impurity concentration in a range capable of obtaining a threshold voltage required for an nMOS such as a reset transistor. However, if the impurity concentration of the p-type semiconductor substrate 11 is low, the width of the depletion layer 17 formed at the junction with the light receiving unit 12 increases in a region in contact with the surface of the semiconductor substrate, which may cause an increase in dark current. There is. Therefore, the impurity concentration of the p-type semiconductor substrate 11 is 1.5 × 10
15 cm -3 or more (specific resistance 10 Ω · cm or less), and 3 ×
About 10 15 -5 × 10 15 cm -3 (specific resistance 3-5 Ω · cm
Degree).

【0029】また、p型半導体基板11としては、表層
部にp型ウェルを形成した半導体基板を使用することも
できる。p型ウェルの不純物濃度は、nMOSに要求さ
れる閾値電圧を得られる範囲であれば特に限定するもの
ではないが、暗電流低減の観点から1×1017cm-3
上、更には1.5×1017〜3×1017cm-3であるこ
とが好ましい。また、このとき使用する半導体基板は、
p型ウェルを形成し得るものであれば、その導電型およ
び不純物濃度については特に限定するものではない。
As the p-type semiconductor substrate 11, a semiconductor substrate having a p-type well formed in a surface layer can be used. The impurity concentration of the p-type well is not particularly limited as long as the threshold voltage required for the nMOS can be obtained. From the viewpoint of reducing dark current, the impurity concentration is 1 × 10 17 cm −3 or more, and more preferably 1.5 × 10 17 cm −3 or more. It is preferably from × 10 17 to 3 × 10 17 cm −3 . The semiconductor substrate used at this time is
The conductivity type and impurity concentration are not particularly limited as long as a p-type well can be formed.

【0030】受光部12は、p型半導体基板11内に形
成されたn型不純物拡散領域であり、半導体基板11と
のpn接合によってフォトダイオードを形成している。
受光部12の不純物濃度は、光電変換が可能であってア
ンプ回路と電気的に接続し得る範囲であれば特に限定さ
れるものではないが、好ましくは1020cm-3以上であ
る。また、受光部12の拡散深さは0.2〜0.4μm
程度が適当である。
The light receiving section 12 is an n-type impurity diffusion region formed in the p-type semiconductor substrate 11, and forms a photodiode by a pn junction with the semiconductor substrate 11.
The impurity concentration of the light receiving section 12 is not particularly limited as long as it can perform photoelectric conversion and can be electrically connected to an amplifier circuit, but is preferably 10 20 cm −3 or more. The diffusion depth of the light receiving section 12 is 0.2 to 0.4 μm.
The degree is appropriate.

【0031】本実施形態の固体撮像装置には、p型半導
体基板11内の受光部12底面の少なくとも一部に接す
る領域に、p-型拡散領域13が形成されている。この
-型拡散領域13を設けることにより、受光部−基板
間のpn接合部における空乏層幅を増大させてフォトダ
イオードの電荷蓄積容量の低減を図り、固体撮像装置の
高感度化を実現することができる。また、p-型拡散領
域13の不純物濃度および受光部12とp-型拡散領域
13との間の接合面積により、フォトダイオードの電荷
蓄積容量を調整して標準感度を調整することができる。
In the solid-state imaging device according to the present embodiment, a p type diffusion region 13 is formed in a region in contact with at least a part of the bottom surface of the light receiving section 12 in the p type semiconductor substrate 11. By providing this p -type diffusion region 13, the width of the depletion layer at the pn junction between the light-receiving portion and the substrate is increased to reduce the charge storage capacitance of the photodiode, thereby realizing high sensitivity of the solid-state imaging device. be able to. Further, p - -type diffusion impurity concentration in the region 13 and the light receiving unit 12 and p - the junction area between the diffusion regions 13, it is possible to adjust the standard sensitivity by adjusting the charge storage capacity of the photodiode.

【0032】p-型拡散領域13の不純物濃度は、p型
半導体基板11(またはp型ウェル)より低い不純物濃
度であれば特に限定されるものではなく、好ましくは1
×1015cm-3以下、更に好ましくは4×1014〜6×
1014cm-3程度である。このp-型拡散領域13の不
純物濃度を低くする程、フォトダイオードの電荷蓄積容
量を低減することができる。
The impurity concentration of p type diffusion region 13 is not particularly limited as long as it is lower than that of p type semiconductor substrate 11 (or p type well).
× 10 15 cm -3 or less, more preferably 4 × 10 14 to 6 ×
It is about 10 14 cm -3 . As the impurity concentration of the p type diffusion region 13 is reduced, the charge storage capacity of the photodiode can be reduced.

【0033】このような不純物濃度とすることにより、
受光部12とp-型拡散領域13との接合部における単
位面積当たりの接合容量は、受光部12とp型半導体基
板11との接合部よりも小さくなる。換言すれば、受光
部12とp-型拡散領域13との接合部に形成される空
乏層幅は、受光部12とp型半導体基板11との接合部
よりも大きくなる。受光部12とp-型拡散領域13と
の接合部における空乏層幅(図1のa)は0.6〜2.
0μm程度、更には1.2〜1.8μm程度であること
が好ましい。一方、受光部12とp型半導体基板11と
の接合部における空乏層幅(図1のb)は0.2〜1.
0μm程度とするのが適当である。
With such an impurity concentration,
The junction capacitance per unit area at the junction between the light receiving unit 12 and the p type diffusion region 13 is smaller than the junction between the light receiving unit 12 and the p-type semiconductor substrate 11. In other words, the width of the depletion layer formed at the junction between the light receiving section 12 and the p -type diffusion region 13 is larger than the junction between the light receiving section 12 and the p-type semiconductor substrate 11. The width of the depletion layer (a in FIG. 1) at the junction between the light receiving section 12 and the p type diffusion region 13 is 0.6 to 2.0.
It is preferably about 0 μm, and more preferably about 1.2 to 1.8 μm. On the other hand, the depletion layer width (b in FIG. 1) at the junction between the light receiving unit 12 and the p-type semiconductor substrate 11 is 0.2 to 1.
Suitably, it is about 0 μm.

【0034】受光部12とp-型拡散領域13との接合
面積が大きい程、フォトダイオードの電荷蓄積容量を低
減することができる。しかし、半導体基板表面において
は、暗電流の増大を招くおそれがあるため、受光部12
とp-型拡散領域13との接合が形成されないことが好
ましい。よって、p-型拡散領域13は、受光部12と
接する半導体基板表面の領域を避け、その全体が受光部
下に埋設されていることが好ましい。したがって、p-
型拡散領域13は、その形成幅cが、受光部12の形成
幅dと同等かそれよりも小さいことが好ましく、具体的
には、受光部の形成幅の10〜100%、更には40〜
80%であることが好ましい。また、形成面積でいえ
ば、受光部12の形成面積の10〜100%、更には2
0〜65%であることが好ましい。
The larger the junction area between the light receiving section 12 and the p type diffusion region 13, the more the charge storage capacity of the photodiode can be reduced. However, on the surface of the semiconductor substrate, an increase in dark current may be caused.
It is preferable that no junction is formed with the p type diffusion region 13. Therefore, it is preferable that the p -type diffusion region 13 be buried under the light receiving portion, avoiding the region on the surface of the semiconductor substrate in contact with the light receiving portion 12. Therefore, p -
It is preferable that the forming width c of the mold diffusion region 13 is equal to or smaller than the forming width d of the light receiving unit 12, specifically, 10 to 100% of the forming width of the light receiving unit, and more preferably 40 to 100%.
Preferably it is 80%. Also, in terms of the formation area, 10 to 100% of the formation area of the light receiving section 12, and more preferably 2%
Preferably it is 0-65%.

【0035】また、p-型拡散領域13の拡散深さは、
0.8〜2.0μm程度が適当である。
The diffusion depth of the p type diffusion region 13 is
About 0.8 to 2.0 μm is appropriate.

【0036】次に、本実施形態に係る固体撮像装置の製
造方法の一例について説明する。
Next, an example of a method for manufacturing the solid-state imaging device according to the present embodiment will be described.

【0037】まず、熱酸化によってp型シリコン基板1
1上に絶縁膜を形成する。絶縁膜上に、減圧CVD法に
よってポリシリコン膜を堆積する。エッチングによって
ポリシリコン膜の一部を除去することによりゲート電極
16を形成する。
First, the p-type silicon substrate 1 is thermally oxidized.
An insulating film is formed on 1. A polysilicon film is deposited on the insulating film by a low pressure CVD method. The gate electrode 16 is formed by removing a part of the polysilicon film by etching.

【0038】次に、半導体基板11の一部およびゲート
電極16を被覆するようにレジストを形成し、半導体基
板11内の適当な領域に、半導体基板の導電型が逆転し
ない範囲でn型不純物をイオン注入してp-拡散領域1
3を形成する。このイオン注入は、例えば、n型不純物
としてリンを用いて、加速電圧を50〜800keV、
ドーズ量を1×1011〜1×1013cm-2として実施さ
れる。
Next, a resist is formed so as to cover a part of the semiconductor substrate 11 and the gate electrode 16, and an n-type impurity is applied to an appropriate region in the semiconductor substrate 11 within a range where the conductivity type of the semiconductor substrate is not reversed. P - diffusion region 1 by ion implantation
Form 3 In this ion implantation, for example, phosphorus is used as an n-type impurity, the acceleration voltage is set to 50 to 800 keV,
The dose is set at 1 × 10 11 to 1 × 10 13 cm −2 .

【0039】レジストを除去した後、ゲート電極16を
マスクとしてn型不純物をイオン注入し、受光部12お
よび電荷排出部14を形成し、リセット用トランジスタ
を形成する。このとき、受光部12は、その底面の少な
くとも一部がp-型拡散領域に接するように形成され
る。また、好ましくは、受光部12は、p-拡散領域1
3と同等かまたはそれより大きい寸法となるように調整
され、p-拡散領域13は受光部12によって半導体基
板11内に埋め込まれる。このイオン注入は、例えば、
n型不純物としてヒ素を用いて、加速電圧を40ke
V、ドーズ量を5×1015cm-2として実施される。
After removing the resist, an n-type impurity is ion-implanted using the gate electrode 16 as a mask to form the light receiving section 12 and the charge discharging section 14, thereby forming a reset transistor. At this time, the light receiving section 12 is formed such that at least a part of the bottom surface is in contact with the p type diffusion region. Also, preferably, the light receiving unit 12 is a p - diffusion region 1
The size is adjusted to be equal to or larger than 3, and the p diffusion region 13 is embedded in the semiconductor substrate 11 by the light receiving unit 12. This ion implantation, for example,
Using arsenic as an n-type impurity, an acceleration voltage of 40 ke
V and the dose amount are set to 5 × 10 15 cm −2 .

【0040】更に、層間絶縁膜、金属配線などが形成さ
れ、受光部および電荷排出部が、半導体基板の別の領域
に形成されたアンプ用トランジスタなどと、図1に示す
ように電気的に接続される。特に限定するものではない
が、層間絶縁膜としては減圧CVD法によって形成され
たシリコン酸化膜が、金属配線としてはアルミニウム膜
が使用される。更に、受光部の上方に相当する部分に開
口を有する金属遮光膜、表面保護膜などが適宜形成され
る。金属遮光膜にはアルミニウム膜が、表面保護膜には
プラズマCVD法によって形成されたシリコン窒化膜が
使用できる。
Further, an interlayer insulating film, a metal wiring, and the like are formed, and the light receiving portion and the charge discharging portion are electrically connected to an amplifier transistor and the like formed in another region of the semiconductor substrate as shown in FIG. Is done. Although not particularly limited, a silicon oxide film formed by a low pressure CVD method is used as the interlayer insulating film, and an aluminum film is used as the metal wiring. Further, a metal light-shielding film, a surface protection film, and the like having an opening in a portion corresponding to an upper part of the light receiving unit are appropriately formed. An aluminum film can be used as the metal light shielding film, and a silicon nitride film formed by a plasma CVD method can be used as the surface protection film.

【0041】なお、上記製造方法において使用される熱
酸化やCVD法などの成膜方法、エッチング方法など
は、基本的に常法に従って実施すればよい。
The film forming method such as thermal oxidation or CVD method and the etching method used in the above-mentioned manufacturing method may be basically performed according to a conventional method.

【0042】(第2の実施形態)図2は、本発明の固体
撮像装置の別の一例を示す断面図である。この固体撮像
装置の各画素の構造は、図2に断面図として示した受光
部周辺の領域の構造を除いては第1の実施形態と同様で
ある。以下、受光部周辺の領域について詳細に説明す
る。この領域は、半導体基板21内に受光部22および
電荷排出部24が形成されており、受光部22と電荷排
出部24との間の半導体基板21上に絶縁膜25を介し
てリセット用トランジスタのゲート電極26が形成され
ている。また、図示を省略しているが、半導体基板21
の上方には、更に、層間絶縁膜、受光部上に開口を有す
る金属遮光膜、表面保護膜などが形成されている。
(Second Embodiment) FIG. 2 is a sectional view showing another example of the solid-state imaging device of the present invention. The structure of each pixel of this solid-state imaging device is the same as that of the first embodiment, except for the structure of the area around the light receiving section shown as a cross-sectional view in FIG. Hereinafter, the area around the light receiving unit will be described in detail. In this region, a light receiving portion 22 and a charge discharging portion 24 are formed in a semiconductor substrate 21, and a reset transistor is formed on the semiconductor substrate 21 between the light receiving portion 22 and the charge discharging portion 24 via an insulating film 25. A gate electrode 26 is formed. Although not shown, the semiconductor substrate 21
Above this, an interlayer insulating film, a metal light shielding film having an opening on the light receiving portion, a surface protection film, and the like are further formed.

【0043】半導体基板21としては、第1の実施形態
と同様に、p型半導体基板またはp型ウェルを形成した
半導体基板を使用することができる。また、受光部22
は、第1の実施形態と同様に、好ましくは、不純物濃度
1×1020cm-3以上、拡散深さ0.2〜0.4μm程
度のn型拡散領域である。
As the semiconductor substrate 21, as in the first embodiment, a p-type semiconductor substrate or a semiconductor substrate having a p-type well formed thereon can be used. The light receiving section 22
Is preferably an n-type diffusion region having an impurity concentration of 1 × 10 20 cm −3 or more and a diffusion depth of about 0.2 to 0.4 μm, as in the first embodiment.

【0044】本実施形態においては、p型半導体基板2
1内の受光部22底面の少なくとも一部に接する領域
に、n-型拡散領域23が形成されている。このn-型拡
散領域23は、受光部22とともに、半導体基板21と
のpn接合によってフォトダイオードを構成している。
-型拡散領域23を設けることにより、受光部と基板
との間のpn接合の空乏層幅を増大させてフォトダイオ
ードの電荷蓄積容量の低減し、固体撮像装置の高感度化
を実現している。また、n-型拡散領域23の不純物濃
度およびn-型拡散領域23と半導体基板21との間の
接合面積によって、フォトダイオードの電荷蓄積容量を
適宜調整し、標準感度を調整できる。
In this embodiment, the p-type semiconductor substrate 2
An n -type diffusion region 23 is formed in a region in contact with at least a part of the bottom surface of the light receiving unit 22 in 1. The n type diffusion region 23 forms a photodiode together with the light receiving unit 22 by a pn junction with the semiconductor substrate 21.
By providing the n -type diffusion region 23, the width of the depletion layer of the pn junction between the light receiving portion and the substrate is increased, the charge storage capacity of the photodiode is reduced, and high sensitivity of the solid-state imaging device is realized. I have. Further, n - type impurity concentration in the diffusion region 23 and the n - by the junction area between the diffusion region 23 and the semiconductor substrate 21, by appropriately adjusting the charge storage capacity of the photo diode, can adjust the standard sensitivity.

【0045】n-型拡散領域23の不純物濃度は、受光
部22の不純物濃度よりも低ければ特に限定されるもの
ではないが、好ましくは1×1016cm-3以下、更に好
ましくは5×1015〜8×1015cm-3である。なお、
このn-型拡散領域23の不純物濃度が低い程、フォト
ダイオードの電荷蓄積容量を低減することができる。
The impurity concentration of the n -type diffusion region 23 is not particularly limited as long as it is lower than the impurity concentration of the light receiving section 22, but is preferably 1 × 10 16 cm −3 or less, and more preferably 5 × 10 16 cm −3 or less. It is 15 to 8 × 10 15 cm −3 . In addition,
As the impurity concentration of the n type diffusion region 23 is lower, the charge storage capacity of the photodiode can be reduced.

【0046】このような不純物濃度とすることにより、
-型拡散領域23と半導体基板21との接合部におけ
る単位面積当たりの接合容量は、受光部22と半導体基
板21との接合部よりも小さくなる。換言すれば、n-
型拡散領域23と半導体基板21との接合部に形成され
る空乏層幅は、受光部22と半導体基板21との接合部
よりも大きくなる。n-型拡散領域23と半導体基板2
1との接合部における空乏層幅(図2のa)は0.8〜
2.5μm程度、更には1.2〜2.0μm程度である
ことが好ましい。一方、受光部22と半導体基板21と
の接合部における空乏層幅(図2のb)は、0.2〜
1.0μm程度とするのが適当である。
With such an impurity concentration,
The junction capacitance per unit area at the junction between the n type diffusion region 23 and the semiconductor substrate 21 is smaller than the junction between the light receiving unit 22 and the semiconductor substrate 21. In other words, n -
The width of the depletion layer formed at the junction between the mold diffusion region 23 and the semiconductor substrate 21 is larger than the junction between the light receiving unit 22 and the semiconductor substrate 21. N - type diffusion region 23 and semiconductor substrate 2
The width of the depletion layer (a in FIG. 2) at the junction with No. 1 is 0.8 to
It is preferably about 2.5 μm, more preferably about 1.2 to 2.0 μm. On the other hand, the depletion layer width (b in FIG. 2) at the junction between the light receiving unit 22 and the semiconductor substrate 21 is 0.2 to 0.2.
Suitably, it is about 1.0 μm.

【0047】n-型拡散領域23と半導体基板21との
接合面積が大きい程、フォトダイオードの電荷蓄積容量
を低減することができる。しかし、半導体基板表面にお
いては、暗電流の増大を招くおそれがあるため、受光部
22とn-型拡散領域23との接合が形成されないこと
が好ましい。よって、n-型拡散領域23は、受光部2
2と接する半導体基板表面の領域を避け、その全体が受
光部22下に埋設されていることが好ましい。したがっ
て、n-型拡散領域23は、その形成幅eが、受光部2
2の形成幅dと同等かそれよりも小さいことが好まし
く、具体的には、受光部22の形成幅の10〜100
%、更には40〜80%であることが好ましい。また、
形成面積でいえば、受光部22の形成面積の10〜10
0%、更には20〜65%であることが好ましい。
As the junction area between the n type diffusion region 23 and the semiconductor substrate 21 increases, the charge storage capacity of the photodiode can be reduced. However, on the surface of the semiconductor substrate, it is preferable that the junction between the light receiving portion 22 and the n -type diffusion region 23 is not formed because there is a possibility that the dark current increases. Therefore, the n type diffusion region 23 is
It is preferable that the entirety of the semiconductor substrate is buried under the light receiving section 22, avoiding a region on the surface of the semiconductor substrate in contact with 2. Therefore, the formation width e of the n type diffusion region 23 is
2 is preferably equal to or smaller than the formation width d.
%, More preferably 40 to 80%. Also,
In terms of the formation area, 10 to 10 of the formation area of the light receiving portion 22
It is preferably 0%, more preferably 20 to 65%.

【0048】また、n-型拡散領域23の拡散深さは、
0.8〜2.0μm程度が適当である。
The diffusion depth of the n type diffusion region 23 is
About 0.8 to 2.0 μm is appropriate.

【0049】本実施形態に係る固体撮像装置は、p-
拡散領域を形成する工程に代えて、n-型拡散領域を形
成する工程を実施することを除いては、第1の実施形態
において説明した製造方法と同様にして製造することが
できる。
The solid-state imaging device according to the present embodiment is similar to the solid-state imaging device according to the first embodiment except that a step of forming an n type diffusion region is performed instead of a step of forming a p type diffusion region. It can be manufactured in the same manner as the manufacturing method described.

【0050】絶縁膜25およびゲート電極26を形成し
た半導体基板21上にレジストを形成した後、n型不純
物をイオン注入して、半導体基板21内の適当な領域に
-型拡散領域23を形成する。このイオン注入は、例
えば、n型不純物としてリンを用いて、加速電圧を50
〜800keV、ドーズ量を1×1012〜1×1015
-2として実施される。
After a resist is formed on the semiconductor substrate 21 on which the insulating film 25 and the gate electrode 26 are formed, an n-type impurity is ion-implanted to form an n -type diffusion region 23 in an appropriate region in the semiconductor substrate 21. I do. This ion implantation is performed, for example, by using phosphorus as an n-type impurity and increasing the acceleration voltage to 50.
Up to 800 keV and dose amount of 1 × 10 12 to 1 × 10 15 c
implemented as m- 2 .

【0051】レジストを除去した後、ゲート電極26を
マスクとしてn型不純物をイオン注入し、受光部22お
よび電荷排出部24を形成する。このとき、受光部22
は、その底面の少なくとも一部がn-型拡散領域23に
接するように形成される。また、好ましくは、受光部2
2はn-型拡散領域23と同等かまたはそれより大きい
寸法となるように調整され、n-型拡散領域23は受光
部22によって半導体基板21内に埋め込まれる。この
イオン注入は、例えば、n型不純物としてヒ素を用い
て、加速電圧を40keV、ドーズ量を5×1015cm
-2として実施される。
After the resist is removed, an n-type impurity is ion-implanted using the gate electrode 26 as a mask to form the light receiving section 22 and the charge discharging section 24. At this time, the light receiving unit 22
Is formed such that at least a part of its bottom surface is in contact with n type diffusion region 23. Preferably, the light receiving unit 2
2 the n - is adjusted so that diffusion region 23 equal to or greater than the size, n - -type diffusion region 23 is embedded in the semiconductor substrate 21 by the light-receiving unit 22. In this ion implantation, for example, arsenic is used as an n-type impurity, the acceleration voltage is 40 keV, and the dose is 5 × 10 15 cm.
Implemented as -2 .

【0052】更に、層間絶縁膜、金属配線、受光部の上
方に相当する部分に開口を有する金属遮光膜、表面保護
膜などが適宜形成され、固体撮像装置が得られる。
Further, an interlayer insulating film, a metal wiring, a metal light-shielding film having an opening in a portion above the light-receiving portion, a surface protective film, and the like are appropriately formed, and a solid-state imaging device is obtained.

【0053】なお、上記製造方法において使用される熱
酸化やCVD法などの成膜方法、エッチング方法など
は、基本的に常法に従って実施すればよい。
The film formation method such as thermal oxidation or CVD method and the etching method used in the above manufacturing method may be basically performed according to a conventional method.

【0054】(第3の実施形態)本実施形態に係る固体
撮像装置は、画素部と周辺回路(例えば、画素選択のた
めの走査回路、タイミング発生回路、ノイズキャンセル
回路など)とをCMOSプロセスを用いて集積化したC
MOS型固体撮像装置である。本固体撮像装置は、同一
半導体基板内にnMOSとpMOSとを有しており、そ
のため半導体基板には、pMOSを形成する領域にはn
型ウェルが、nMOSを形成する領域にはp型ウェルが
各々形成されている。
(Third Embodiment) A solid-state imaging device according to this embodiment includes a pixel portion and peripheral circuits (for example, a scanning circuit for selecting a pixel, a timing generation circuit, a noise cancellation circuit, etc.) formed by a CMOS process. C integrated using
This is a MOS type solid-state imaging device. The present solid-state imaging device has an nMOS and a pMOS in the same semiconductor substrate.
A p-type well is formed in a region where a type well and an nMOS are formed.

【0055】図3は、本実施形態に係る固体撮像装置の
画素部の構造を示す断面図である。各画素は、第1の実
施形態と同様に、受光部と、アンプ用、リセット用およ
び選択用の3個のトランジスタとを含んでいる。これら
各部材間の接続および各部材の機能は、第1の実施形態
で説明した通りである。
FIG. 3 is a sectional view showing the structure of the pixel portion of the solid-state imaging device according to this embodiment. Each pixel includes a light receiving section and three transistors for amplifier, reset, and selection, as in the first embodiment. The connection between these members and the function of each member are as described in the first embodiment.

【0056】以下、図3に断面図として示した、受光部
周辺の領域の構造について詳細に説明する。この領域の
半導体基板31には、nMOSであるリセット用トラン
ジスタを形成するためのp型ウェル33が形成されてい
る。この半導体基板31内に受光部32および電荷排出
部34が形成されており、受光部32と電荷排出部34
との間の半導体基板31上には絶縁膜35を介してリセ
ット用トランジスタのゲート電極36が形成されてい
る。
Hereinafter, the structure of the region around the light receiving portion, which is shown in a sectional view in FIG. 3, will be described in detail. In the semiconductor substrate 31 in this region, a p-type well 33 for forming an nMOS reset transistor is formed. The light receiving section 32 and the charge discharging section 34 are formed in the semiconductor substrate 31.
The gate electrode 36 of the reset transistor is formed on the semiconductor substrate 31 between the gate electrode and the semiconductor substrate 31 with an insulating film 35 interposed therebetween.

【0057】半導体基板31は、p型ウェルおよびn型
ウェルの形成が可能な範囲の不純物濃度を有するp型半
導体基板であれば、特に限定するものではない。好まし
くは不純物濃度が2×1015cm-3以下(比抵抗が5Ω
・cm以上)、更に好ましくは不純物濃度が1×1015
〜1.5×1015cm-3程度(比抵抗が10〜15Ω・
cm程度)のp-型半導体基板が使用できる。
The semiconductor substrate 31 is not particularly limited as long as it is a p-type semiconductor substrate having an impurity concentration in a range where a p-type well and an n-type well can be formed. Preferably, the impurity concentration is 2 × 10 15 cm −3 or less (specific resistance is 5Ω).
Cm or more), more preferably an impurity concentration of 1 × 10 15
~ 1.5 × 10 15 cm -3 (resistivity is 10-15Ω ·
cm) (p - type semiconductor substrate).

【0058】受光部32は、p-型半導体基板31内に
形成されたn型不純物拡散領域であり、半導体基板31
とのpn接合によりフォトダイオードを形成している。
受光部32の不純物濃度は、光電変換が可能であってア
ンプ回路と電気的に接続し得る範囲であれば特に限定さ
れるものではないが、好ましくは1×1020cm-3以上
である。また、受光部32の拡散深さは0.2〜0.4
μm程度が適当である。
The light receiving portion 32 is an n-type impurity diffusion region formed in the p type semiconductor substrate 31.
A photodiode is formed by a pn junction with the above.
The impurity concentration of the light receiving section 32 is not particularly limited as long as it can perform photoelectric conversion and can be electrically connected to an amplifier circuit, but is preferably 1 × 10 20 cm −3 or more. The diffusion depth of the light receiving section 32 is 0.2 to 0.4.
About μm is appropriate.

【0059】少なくともゲート電極36の下方に位置す
る領域を含む半導体基板31表層部には、前述したよう
にp型ウェル33が形成されている。p型ウェル33の
不純物濃度は、p-型半導体基板31の不純物濃度より
も高く、リセット用トランジスタなどのnMOSに要求
される閾値電圧を得られる範囲であれば特に限定するも
のではない。しかし、p型ウェル33の不純物濃度が低
過ぎると、半導体基板表面において受光部32との接合
部に形成される空乏層の幅が大きくなり、暗電流の増大
を招くおそれがある。よって、p型ウェル33の不純物
濃度は1×10 17cm-3以上、更には1.5×1017
3×1017cm-3程度とすることが好ましい。また、p
型ウェル33の拡散深さは、1.0μm程度が適当であ
る。
At least below the gate electrode 36
The surface layer of the semiconductor substrate 31 including the region
A p-type well 33 is formed. of the p-type well 33
The impurity concentration is p-From the impurity concentration of the semiconductor substrate 31
Required for nMOS such as reset transistors
Is particularly limited as long as the threshold voltage can be obtained.
Not. However, the impurity concentration of the p-type well 33 is low.
If too long, bonding with the light receiving portion 32 on the surface of the semiconductor substrate
The width of the depletion layer formed in the part increases, increasing the dark current
May be caused. Therefore, impurities in the p-type well 33
The concentration is 1 × 10 17cm-3Above, furthermore 1.5 × 1017~
3 × 1017cm-3It is preferable to set the degree. Also, p
The diffusion depth of the mold well 33 is suitably about 1.0 μm.
You.

【0060】p型ウェル33は、受光部32底面の少な
くとも一部に接する領域を避けるように形成されてい
る。つまり、受光部32底部の少なくとも一部は、p型
ウェル33よりも不純物濃度の低いp-型の領域と接し
ている。このように、受光部32との接合部における半
導体基板の不純物濃度を一部の領域において低く調整す
ることにより、受光部と基板との間のpn接合部におけ
る空乏層幅を増大させてフォトダイオードの電荷蓄積容
量の低減を図り、固体撮像装置の高感度化を実現するこ
とができる。また、p型ウェル33が形成されていない
基板領域(以下、「p-型領域」とする。)と受光部3
2との接合面積によって、フォトダイオードの電荷蓄積
容量を適宜調整し、標準感度の調整を図ることができ
る。
The p-type well 33 is formed so as to avoid a region in contact with at least a part of the bottom surface of the light receiving section 32. That is, at least a part of the bottom of the light receiving unit 32 is in contact with the p -type region having a lower impurity concentration than the p-type well 33. As described above, by adjusting the impurity concentration of the semiconductor substrate at the junction with the light receiving section 32 to be low in some regions, the width of the depletion layer at the pn junction between the light receiving section and the substrate is increased, and , The charge storage capacity of the solid-state imaging device can be improved. Further, the substrate region where the p-type well 33 is not formed (hereinafter, referred to as “p -type region”) and the light receiving unit 3
The standard sensitivity can be adjusted by appropriately adjusting the charge storage capacity of the photodiode depending on the junction area with the photodiode 2.

【0061】受光部32とp-型領域31との接合部に
おける単位面積当たりの接合容量は、受光部32とp型
ウェル33との接合部よりも小さくなる。換言すれば、
受光部32とp型領域31との接合部に形成される空乏
層幅は、受光部32とp型ウェル33との接合部よりも
大きくなる。受光部32とp-型領域31との接合部に
おける空乏層幅(図3のa)は1.0〜3.0μm程
度、更には1.5〜2.0μm程度であることが好まし
い。一方、受光部32とp型ウェル33との接合部にお
ける空乏層幅(図3のb)0.2〜0.5μm程度とす
るのが適当である。
The junction capacitance per unit area at the junction between the light receiving section 32 and the p -type region 31 is smaller than that at the junction between the light receiving section 32 and the p-type well 33. In other words,
The width of the depletion layer formed at the junction between the light receiving part 32 and the p-type region 31 is larger than the junction between the light receiving part 32 and the p-type well 33. The width of the depletion layer (a in FIG. 3) at the junction between the light receiving portion 32 and the p -type region 31 is preferably about 1.0 to 3.0 μm, and more preferably about 1.5 to 2.0 μm. On the other hand, it is appropriate that the depletion layer width (b in FIG. 3) at the junction between the light receiving section 32 and the p-type well 33 is about 0.2 to 0.5 μm.

【0062】受光部32とp-型領域31との接合面積
が大きい程、フォトダイオードの電荷蓄積容量を低減す
ることができる。しかし、半導体基板表面においては、
暗電流の増大を招くおそれがあるため、受光部32とp
-型領域31との接合が形成されないことが好ましい。
よって、p型ウェル33は、少なくとも半導体基板表面
の受光部32と接する領域を含むように形成されること
が好ましい。この場合、受光部32底面のp-型領域と
接する部分の幅fは、受光部32の形成幅dの10〜1
00%、更には40〜80%の寸法とすることが好まし
い。また、受光部32底面のp-型領域と接する部分の
面積は、受光部32底面の10〜100%、更には20
〜65%であることが好ましい。
The larger the junction area between the light receiving portion 32 and the p type region 31, the more the charge storage capacity of the photodiode can be reduced. However, on the surface of the semiconductor substrate,
Since the dark current may increase, the light receiving unit 32 and p
- It is preferable that the junction between the type region 31 is not formed.
Therefore, it is preferable that the p-type well 33 be formed so as to include at least a region in contact with the light receiving section 32 on the surface of the semiconductor substrate. In this case, the width f of the portion of the bottom surface of the light receiving section 32 that is in contact with the p -type region is 10 to 1 times the forming width d of the light receiving section 32.
The size is preferably set to 00%, more preferably 40 to 80%. The area of the bottom surface of the light receiving unit 32 that is in contact with the p type region is 10 to 100% of the bottom surface of the light receiving unit 32, and more preferably 20%.
Preferably it is ~ 65%.

【0063】次に、本実施形態に係る固体撮像装置の製
造方法の一例について説明する。
Next, an example of a method for manufacturing the solid-state imaging device according to the present embodiment will be described.

【0064】まず、p-型シリコン基板31にp型不純
物をイオン注入し、p型ウェル33を形成する。このイ
オン注入は、受光部32となる領域の少なくとも一部の
上方を避けるように実施される。このイオン注入は、例
えば、p型不純物としてホウ素を用いて、加速電圧を4
00keV、ドーズ量を4×1012cm-2、加えてホウ
素を加速電圧50keV、ドーズ量5×1012cm-2
して実施される。
First, a p-type impurity is ion-implanted into the p -type silicon substrate 31 to form a p-type well 33. The ion implantation is performed so as to avoid at least a part of a region to be the light receiving unit 32. In this ion implantation, for example, an acceleration voltage of 4
The operation is performed at 00 keV, a dose of 4 × 10 12 cm −2 , and boron at an acceleration voltage of 50 keV and a dose of 5 × 10 12 cm −2 .

【0065】次に、p型シリコン基板31上に熱酸化に
よって絶縁膜を形成した後、減圧CVD法によってポリ
シリコン膜を堆積し、エッチングによってその一部を除
去してゲート電極36を形成する。次いで、このゲート
電極36をマスクとしてn型不純物をイオン注入し、受
光部32および電荷排出部34を形成する。このとき、
受光部32は、その底面の少なくとも一部が、p型ウェ
ル33が形成されていない半導体基板内の領域(p-
領域31)に接するように形成される。また、好ましく
は、受光部32は、半導体基板表面においてはp型ウェ
ル33と接するように形成される。このイオン注入は、
例えば、n型不純物としてヒ素を用いて、加速電圧を4
0keV、ドーズ量を5×1015cm-2として実施され
る。
Next, after an insulating film is formed on the p-type silicon substrate 31 by thermal oxidation, a polysilicon film is deposited by a low pressure CVD method, and a part thereof is removed by etching to form a gate electrode 36. Next, n-type impurities are ion-implanted using the gate electrode 36 as a mask to form the light receiving section 32 and the charge discharging section 34. At this time,
The light receiving portion 32 is formed so that at least a part of the bottom surface thereof is in contact with a region (p -type region 31) in the semiconductor substrate where the p-type well 33 is not formed. Preferably, light receiving section 32 is formed so as to be in contact with p-type well 33 on the surface of the semiconductor substrate. This ion implantation
For example, by using arsenic as an n-type impurity,
The operation is performed at 0 keV and a dose of 5 × 10 15 cm −2 .

【0066】更に、層間絶縁膜、金属配線などが形成さ
れ、受光部および電荷排出部は、半導体基板の別の領域
に形成されたアンプ用トランジスタなどと、図3に示す
ように電気的に接続される。更に、受光部の上方に相当
する部分に開口を有する金属遮光膜、表面保護膜などが
適宜形成される。
Further, an interlayer insulating film, a metal wiring and the like are formed, and the light receiving portion and the charge discharging portion are electrically connected to an amplifier transistor and the like formed in another region of the semiconductor substrate as shown in FIG. Is done. Further, a metal light-shielding film, a surface protection film, and the like having an opening in a portion corresponding to an upper part of the light receiving unit are appropriately formed.

【0067】なお、上記製造方法において使用される熱
酸化やCVD法などの成膜方法、エッチング方法など
は、基本的に常法に従って実施すればよい。
The film forming method such as thermal oxidation or CVD method and the etching method used in the above manufacturing method may be basically performed according to a conventional method.

【0068】[0068]

【実施例】(実施例1)図1と同様の構造を有する固体
撮像装置を作製した。半導体基板として不純物濃度5×
1015cm-3(比抵抗3Ω・cm)のp型シリコン基板
を使用し、このp型シリコン基板上に熱酸化によってシ
リコン酸化膜を形成した。シリコン酸化膜上に減圧CV
D法によってポリシリコン膜を堆積した後、これをエッ
チングによりパターニングしてゲート電極を形成した。
次に、加速電圧を600keV、ドーズ量を2×1011
cm-2としてリンをイオン注入し、p-型拡散領域を形
成した。形成されたp-型拡散領域の不純物濃度は2×
1015cm-3であった。次に、ゲート電極をマスクとし
て、加速電圧を40keV、ドーズ量を5×1015cm
-2としてヒ素をイオン注入し、受光部および電荷排出部
を形成した。形成された受光部の面積は60μm2であ
り、不純物濃度は2×1020cm-3であった。上記受光
部および電荷排出部を、図1に示すように、半導体基板
の別の領域に形成したアンプ用トランジスタおよび選択
用トランジスタ、電源電圧と電気的に接続して固体撮像
装置を得た。
(Example 1) A solid-state imaging device having a structure similar to that of FIG. 1 was manufactured. Impurity concentration 5 × as semiconductor substrate
Using a p-type silicon substrate of 10 15 cm -3 (specific resistance 3 Ω · cm), a silicon oxide film was formed on the p-type silicon substrate by thermal oxidation. Decompression CV on silicon oxide film
After depositing a polysilicon film by the method D, the polysilicon film was patterned by etching to form a gate electrode.
Next, the acceleration voltage was set to 600 keV and the dose was set to 2 × 10 11
Phosphorus ions were implanted at a density of cm −2 to form a p type diffusion region. The impurity concentration of the formed p type diffusion region is 2 ×
It was 10 15 cm -3 . Next, using the gate electrode as a mask, the acceleration voltage is 40 keV and the dose is 5 × 10 15 cm.
As -2 , arsenic was ion-implanted to form a light receiving portion and a charge discharging portion. The area of the formed light receiving portion was 60 μm 2 , and the impurity concentration was 2 × 10 20 cm −3 . As shown in FIG. 1, the light receiving section and the charge discharging section were electrically connected to an amplifier transistor, a selection transistor, and a power supply voltage formed in another region of the semiconductor substrate to obtain a solid-state imaging device.

【0069】上記製造方法において、受光部とp-型拡
散領域との接合面積を受光部面積の30%(試料No.
1)および60%(試料No.2)に調整し、2種の固
体撮像装置を作製した。これら固体撮像装置について空
乏層幅を検討したところ、基板内部の受光部−p-型拡
散領域間(図1のa)で約1.6μm、基板表面の受光
部−基板間(図1のb)で約0.8μmであった。
In the above manufacturing method, the bonding area between the light receiving portion and the p type diffusion region is set to 30% of the light receiving portion area (sample No.
1) and 60% (sample No. 2) were adjusted to produce two types of solid-state imaging devices. When the depletion layer width of these solid-state imaging devices was examined, it was found that the distance between the light receiving section and the substrate (about 1.6 μm) between the light receiving section and the p -type diffusion region (a in FIG. ) Was about 0.8 μm.

【0070】また、各々の固体撮像装置について、フォ
トダイオード容量および入射光量10lux(色温度32
00K)に対する出力電圧を評価したところ、試料N
o.1においてはフォトダイオード容量16.8fF、
出力電圧100mVであり、試料No.2においてはフ
ォトダイオード容量9.6fF、出力電圧160mVで
あった。なお、出力電圧は、アンプ用トランジスタの容
量を2fF、電源電圧を5.0Vとして測定した。
For each solid-state imaging device, the photodiode capacity and the incident light amount of 10 lux (color temperature 32
00K), the sample N
o. 1, the photodiode capacity is 16.8 fF,
The output voltage was 100 mV. In No. 2, the photodiode capacitance was 9.6 fF and the output voltage was 160 mV. Note that the output voltage was measured with the capacitance of the amplifier transistor being 2 fF and the power supply voltage being 5.0 V.

【0071】(実施例2)p-型拡散領域に代えてn-
拡散領域を形成したこと以外は、実施例1と同様にし
て、図2と同様の構造を有する固体撮像装置を作製し
た。n-型拡散領域の形成は、加速電圧を600ke
V、ドーズ量を1×1012cm-2としたリンのイオン注
入によって実施した。また、形成されたn-型拡散領域
の不純物濃度は1×1016cm-3であった。
Example 2 A solid-state imaging device having the same structure as that of FIG. 2 was manufactured in the same manner as in Example 1 except that an n type diffusion region was formed instead of the p type diffusion region. . The formation of the n - type diffusion region is performed by increasing the acceleration voltage to 600 ke.
V was performed by ion implantation of phosphorus at a dose of 1 × 10 12 cm −2 . The impurity concentration of the formed n -type diffusion region was 1 × 10 16 cm −3 .

【0072】受光部とn-型拡散領域との接合面積を受
光部面積の30%(試料No.3)および60%(試料
No.4)に調整し、2種の固体撮像装置を作製した。
これら固体撮像装置について空乏層幅を検討したとこ
ろ、基板内部のn-型拡散領域−基板間(図2のa)で
約2.0μm、基板表面の受光部(n+型拡散領域)−
基板間(図2のb)で約0.8μmであった。
The junction area between the light receiving portion and the n -type diffusion region was adjusted to 30% (sample No. 3) and 60% (sample No. 4) of the light receiving portion area, and two types of solid-state imaging devices were manufactured. .
When the depletion layer width of these solid-state imaging devices was examined, it was found that the light receiving portion (n + type diffusion region) on the substrate surface was approximately 2.0 μm between the n type diffusion region and the substrate (a in FIG.
It was about 0.8 μm between the substrates (b in FIG. 2).

【0073】また、各々の固体撮像装置について、フォ
トダイオード容量および入射光量10lux(色温度32
00K)に対する出力電圧を評価したところ、試料N
o.3においてはフォトダイオード容量15fF、出力
電圧110mVであり、試料No.4においてはフォト
ダイオード容量9fF、出力電圧170mVであった。
なお、出力電圧は、アンプ用トランジスタの容量を2f
F、電源電圧を5.0Vとして測定した。
For each solid-state image pickup device, the photodiode capacity and the incident light amount 10 lux (color temperature 32
00K), the sample N
o. In Sample No. 3, the photodiode capacity was 15 fF and the output voltage was 110 mV. In No. 4, the photodiode capacity was 9 fF and the output voltage was 170 mV.
Note that the output voltage is determined by the capacitance of the amplifier transistor being 2f.
F, the power supply voltage was measured at 5.0 V.

【0074】(実施例3)図3と同様の構造を有する固
体撮像装置を作製した。半導体基板として不純物濃度
1.5×1015cm-3(比抵抗10Ω・cm)のp型シ
リコン基板を使用した。このp型シリコン基板に、加速
電圧400keV、ドーズ量4×1012cm -2としてホ
ウ素をイオン注入し、加えて加速電圧50keV、ドー
ズ量5×10 12cm-2としてホウ素をイオン注入して、
p型ウェルを形成した。p型ウェルの不純物濃度は2×
1017cm-3であった。図3に示すように、p型ウェル
は、後に形成される受光部底面の少なくとも一部を避け
るように形成した。次に、p型シリコン基板上に熱酸化
によってシリコン酸化膜を形成し、シリコン酸化膜上に
減圧CVD法によってポリシリコン膜を堆積した後、こ
れをエッチングによりパターニングしてゲート電極を形
成した。ゲート電極をマスクとして、加速電圧を40k
eV、ドーズ量を5×1015cm-2としてヒ素をイオン
注入し、受光部および電荷排出部を形成した。形成され
た受光部の面積は60μm2であり、不純物濃度は2×
1020cm-3であった。上記受光部および電荷排出部
を、図3に示すように、半導体基板の別の領域に形成し
たアンプ用トランジスタおよび選択用トランジスタ、電
源電圧と電気的に接続し固体撮像装置を得た。
(Embodiment 3) A solid structure having the same structure as that of FIG.
A body imaging device was manufactured. Impurity concentration as semiconductor substrate
1.5 × 10Fifteencm-3(Specific resistance 10Ω · cm)
A recon substrate was used. Acceleration on this p-type silicon substrate
400 keV voltage, dose 4 × 1012cm -2As e
Ion is ion-implanted, and the acceleration voltage is 50 keV,
5 × 10 12cm-2Implanted boron as
A p-type well was formed. The impurity concentration of the p-type well is 2 ×
1017cm-3Met. As shown in FIG.
Avoid at least part of the bottom surface of the light-receiving part formed later.
It was formed as follows. Next, thermal oxidation on the p-type silicon substrate
To form a silicon oxide film on the silicon oxide film
After depositing a polysilicon film by low pressure CVD,
This is patterned by etching to form the gate electrode.
Done. Using the gate electrode as a mask, an acceleration voltage of 40 k
eV, dose amount 5 × 10Fifteencm-2Arsenic ion as
Injection was performed to form a light receiving portion and a charge discharging portion. Formed
The area of the light receiving part is 60 μmTwoAnd the impurity concentration is 2 ×
1020cm-3Met. The light receiving unit and the charge discharging unit
Is formed in another region of the semiconductor substrate as shown in FIG.
Amplifier transistor and selection transistor,
It was electrically connected to the source voltage to obtain a solid-state imaging device.

【0075】上記製造方法において、受光部底面におい
てp型ウェルと接していない部分の面積、すなわち受光
部とp-型領域との接合面積を、受光部面積の60%
(試料No.5)および80%(試料No.6)に調整
し、2種の固体撮像装置を作製した。これら固体撮像装
置について、受光部−基板間に形成される空乏層幅を検
討したところ、基板内部の受光部−p-型領域間(図3
のa)で約1.2μm、基板表面の受光部−p型ウェル
間(図3のb)で約0.2μmであった。
In the above manufacturing method, the area of the portion of the bottom surface of the light receiving portion that is not in contact with the p-type well, that is, the junction area between the light receiving portion and the p -type region is 60% of the area of the light receiving portion.
(Sample No. 5) and 80% (Sample No. 6) were adjusted to produce two types of solid-state imaging devices. These solid-state imaging device, the light receiving unit - were studied depletion width formed between the substrates, the light receiving portion -p in the substrate - inter type region (Fig. 3
A) was about 1.2 μm, and between the light receiving portion and the p-type well on the substrate surface (b in FIG. 3) was about 0.2 μm.

【0076】また、各々の固体撮像装置について、フォ
トダイオード容量および入射光量10lux(色温度32
00K)に対する出力電圧を評価したところ、試料N
o.5においてはフォトダイオード容量20fF、出力
電圧95mVであり、試料No.6においてはフォトダ
イオード容量10fF、出力電圧155mVであった。
なお、出力電圧は、アンプ用トランジスタの容量を2f
F、電源電圧を5.0Vとして測定した。
For each solid-state imaging device, the photodiode capacity and the incident light amount of 10 lux (color temperature 32
00K), the sample N
o. In Sample No. 5, the photodiode capacity was 20 fF and the output voltage was 95 mV. In No. 6, the photodiode capacity was 10 fF and the output voltage was 155 mV.
Note that the output voltage is determined by the capacitance of the amplifier transistor being 2f.
F, the power supply voltage was measured at 5.0 V.

【0077】(比較例)p-型拡散領域を形成しないこ
と以外は実施例1と同様にして、図4と同様の構造を有
する固体撮像装置を得た。受光部−基板間に形成される
空乏層幅を検討したところ、基板内部および基板表面の
いずれにおいても約1.0μmであった。また、フォト
ダイオード容量および入射光量10lux(色温度320
0K)に対する出力電圧を評価したところ、フォトダイ
オード容量25fF、出力電圧70mVであった。な
お、出力電圧は、アンプ用トランジスタの容量を2f
F、電源電圧を5.0Vとして測定した。
(Comparative Example) A solid-state imaging device having a structure similar to that of FIG. 4 was obtained in the same manner as in Example 1 except that no p type diffusion region was formed. When the width of the depletion layer formed between the light receiving portion and the substrate was examined, it was about 1.0 μm both inside the substrate and on the substrate surface. The photodiode capacity and the incident light amount of 10 lux (color temperature 320
When the output voltage with respect to 0K) was evaluated, the photodiode capacitance was 25 fF and the output voltage was 70 mV. Note that the output voltage is determined by the capacitance of the amplifier transistor being 2f.
F, the power supply voltage was measured at 5.0 V.

【0078】[0078]

【発明の効果】以上説明したように、本発明の第1の固
体撮像装置によれば、第1導電型の半導体基板内に形成
された第2導電型の受光部と、前記受光部と電気的に接
続したアンプ回路とを含む画素が複数配置され、前記受
光部と前記半導体基板との接合部に形成される空乏層の
幅が、前記半導体基板表面に接する領域よりも、前記受
光部底面の少なくとも一部を含む前記半導体基板内の領
域で大きいため、高感度で且つ暗電流の抑制された固体
撮像装置とすることができる。
As described above, according to the first solid-state imaging device of the present invention, the light receiving unit of the second conductivity type formed in the semiconductor substrate of the first conductivity type, and the light receiving unit is electrically connected to the light receiving unit. A plurality of pixels including an amplifier circuit that is electrically connected, and a width of a depletion layer formed at a junction between the light receiving unit and the semiconductor substrate is smaller than that of a region in contact with the semiconductor substrate surface. Is large in a region in the semiconductor substrate including at least a portion of the solid-state imaging device, so that a solid-state imaging device with high sensitivity and suppressed dark current can be provided.

【0079】本発明の第2の固体撮像装置によれば、第
1導電型の半導体基板内に形成された第2導電型の受光
部と、前記受光部と電気的に接続したアンプ回路とを含
む画素が複数配置され、前記受光部底面の少なくとも一
部に接する前記半導体基板内の領域に、前記半導体基板
よりも不純物濃度の低い第1導電型の拡散領域、また
は、前記受光部よりも不純物濃度の低い第2導電型の拡
散領域を形成することにより、高感度の固体撮像装置と
することができる。
According to the second solid-state imaging device of the present invention, the light-receiving portion of the second conductivity type formed in the semiconductor substrate of the first conductivity type and the amplifier circuit electrically connected to the light-receiving portion are provided. A plurality of pixels including the first conductive type diffusion region having a lower impurity concentration than the semiconductor substrate, or a region having an impurity concentration lower than the semiconductor substrate, By forming the diffusion region of the second conductivity type having a low concentration, a high-sensitivity solid-state imaging device can be obtained.

【0080】また、本発明の第3の固体撮像装置によれ
ば、第1導電型の半導体基板内に形成された第2導電型
の受光部および電荷排出部と、前記受光部と前記電荷排
出部との間の前記半導体基板上に絶縁膜を介して形成さ
れたゲート電極と、前記受光部と電気的に接続したアン
プ回路とを含む画素が複数配置され、前記半導体基板内
に、前記ゲート電極の下方に位置する領域を含み、且
つ、前記受光部底面の少なくとも一部に接する領域を避
けるように、前記半導体基板よりも不純物濃度の高い第
1導電型の拡散領域を形成することにより、高感度の固
体撮像装置とすることができる。
Further, according to the third solid-state imaging device of the present invention, the light receiving unit and the charge discharging unit of the second conductivity type formed in the semiconductor substrate of the first conductivity type; A plurality of pixels including a gate electrode formed on the semiconductor substrate with an insulating film between the unit and an amplifier circuit electrically connected to the light receiving unit; and the gate in the semiconductor substrate. By including a region located below the electrode, and so as to avoid a region in contact with at least a part of the bottom surface of the light receiving unit, by forming a diffusion region of the first conductivity type having a higher impurity concentration than the semiconductor substrate, A high-sensitivity solid-state imaging device can be obtained.

【0081】本発明の第1の製造方法は、第1導電型の
半導体基板内に形成された第2導電型の受光部と、前記
受光部と電気的に接続したアンプ回路とを含む画素が複
数配置された固体撮像装置の製造方法であって、前記受
光部を形成する工程と、前記受光部底面の少なくとも一
部に接する前記半導体基板内の領域に、前記半導体基板
よりも不純物濃度の低い第1導電型の拡散領域、また
は、前記受光部よりも不純物濃度の低い第2導電型の拡
散領域を形成する工程とを含むことにより、高感度の固
体撮像装置を製造することができる。
A first manufacturing method according to the present invention is directed to a method for manufacturing a semiconductor device, comprising: a pixel including a light-receiving portion of a second conductivity type formed in a semiconductor substrate of a first conductivity type; and an amplifier circuit electrically connected to the light-receiving portion. A method for manufacturing a plurality of arranged solid-state imaging devices, wherein the step of forming the light receiving unit and a region in the semiconductor substrate that contacts at least a part of the bottom surface of the light receiving unit have a lower impurity concentration than the semiconductor substrate. Forming a diffusion region of the first conductivity type or a diffusion region of the second conductivity type having an impurity concentration lower than that of the light receiving unit, whereby a high-sensitivity solid-state imaging device can be manufactured.

【0082】また、本発明の第2の製造方法は、第1導
電型の半導体基板内に形成された第2導電型の受光部お
よび電荷排出部と、前記受光部と前記電荷排出部との間
の前記半導体基板上に絶縁膜を介して形成されたゲート
電極と、前記受光部と電気的に接続したアンプ回路とを
含む画素が複数配置された固体撮像装置の製造方法であ
って、前記ゲート電極を形成する工程と、前記受光部お
よび前記電荷排出部を形成する工程と、前記半導体基板
内に、前記ゲート電極の下方に位置する領域を含み、且
つ、前記受光部底面の少なくとも一部に接する領域を避
けるように、前記半導体基板よりも不純物濃度の高い第
1導電型の拡散領域を形成する工程とを含むことによ
り、高感度の固体撮像装置を製造することができる。
Further, the second manufacturing method of the present invention is characterized in that a light-receiving portion of the second conductivity type and a charge discharging portion formed in the semiconductor substrate of the first conductivity type, and the light-receiving portion and the charge discharging portion A method for manufacturing a solid-state imaging device in which a plurality of pixels including a gate electrode formed on a semiconductor substrate therebetween via an insulating film and an amplifier circuit electrically connected to the light receiving unit are arranged. A step of forming a gate electrode, a step of forming the light receiving portion and the charge discharging portion, and a region in the semiconductor substrate located below the gate electrode, and at least a part of a bottom surface of the light receiving portion Forming a diffusion region of the first conductivity type having a higher impurity concentration than the semiconductor substrate so as to avoid a region in contact with the semiconductor substrate, whereby a high-sensitivity solid-state imaging device can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態に係る固体撮像装置
の1画素の構造を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a structure of one pixel of a solid-state imaging device according to a first embodiment of the present invention.

【図2】 本発明の第2の実施形態に係る固体撮像装置
の1画素の構造を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a structure of one pixel of a solid-state imaging device according to a second embodiment of the present invention.

【図3】 本発明の第3の実施形態に係る固体撮像装置
の1画素の構造を示す断面図である。
FIG. 3 is a cross-sectional view illustrating a structure of one pixel of a solid-state imaging device according to a third embodiment of the present invention.

【図4】 従来の固体撮像装置の1画素の構造を示す断
面図である。
FIG. 4 is a cross-sectional view illustrating a structure of one pixel of a conventional solid-state imaging device.

【符号の説明】[Explanation of symbols]

11、21、41 p型半導体基板 31 p-型半導体基板 12、22、32、42 受光部 13 p-型拡散領域 23 n-型拡散領域 33 p型ウェル 14、24、34、44 電荷排出部 15、25、35、45 絶縁膜 16、26、36、46 ゲート電極 17、27、37、47 空乏層11, 21, 41 p-type semiconductor substrate 31 p - type semiconductor substrate 12, 22, 32, 42 light receiving portion 13 p - type diffusion region 23 n - type diffusion region 33 p-type well 14, 24, 34, 44 charge discharging portion 15, 25, 35, 45 Insulating film 16, 26, 36, 46 Gate electrode 17, 27, 37, 47 Depletion layer

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板内に形成された
第2導電型の受光部と、前記受光部と電気的に接続した
アンプ回路とを含む画素が複数配置された固体撮像装置
であって、前記受光部と前記半導体基板との接合部に形
成される空乏層の幅が、前記半導体基板表面に接する領
域よりも、前記受光部底面の少なくとも一部を含む前記
半導体基板内の領域で大きいことを特徴とする固体撮像
装置。
1. A solid-state imaging device in which a plurality of pixels including a light receiving unit of a second conductivity type formed in a semiconductor substrate of a first conductivity type and an amplifier circuit electrically connected to the light receiving unit are arranged. A width of a depletion layer formed at a junction between the light receiving unit and the semiconductor substrate is larger in a region in the semiconductor substrate including at least a part of a bottom surface of the light receiving unit than in a region in contact with a surface of the semiconductor substrate. A solid-state imaging device characterized by being large.
【請求項2】前記空乏層の幅が、前記受光部底面の少な
くとも一部を含む前記半導体基板内の領域で、前記半導
体表面に接する領域の1.5〜10倍となる請求項1に
記載の固体撮像装置。
2. The semiconductor device according to claim 1, wherein a width of the depletion layer is 1.5 to 10 times a region in the semiconductor substrate including at least a part of the bottom surface of the light receiving portion, in a region in contact with the semiconductor surface. Solid-state imaging device.
【請求項3】 第1導電型の半導体基板内に形成された
第2導電型の受光部と、前記受光部と電気的に接続した
アンプ回路とを含む画素が複数配置された固体撮像装置
であって、前記受光部底面の少なくとも一部に接する前
記半導体基板内の領域に、前記半導体基板よりも不純物
濃度の低い第1導電型の拡散領域、または、前記受光部
よりも不純物濃度の低い第2導電型の拡散領域が形成さ
れていることを特徴とする固体撮像装置。
3. A solid-state imaging device in which a plurality of pixels including a light receiving portion of a second conductivity type formed in a semiconductor substrate of a first conductivity type and an amplifier circuit electrically connected to the light receiving portion are arranged. A first conductive type diffusion region having an impurity concentration lower than that of the semiconductor substrate, or a first conductive type diffusion region having an impurity concentration lower than that of the semiconductor substrate, in a region in the semiconductor substrate contacting at least a part of a bottom surface of the light receiving portion. A solid-state imaging device comprising a diffusion region of two conductivity type.
【請求項4】 前記拡散領域が、前記受光部に接する前
記半導体基板表面の領域を避けるように形成されている
請求項3に記載の固体撮像装置。
4. The solid-state imaging device according to claim 3, wherein the diffusion region is formed so as to avoid a region on a surface of the semiconductor substrate that is in contact with the light receiving unit.
【請求項5】 前記拡散領域の形成幅が、前記受光部の
形成幅の10〜100%である請求項4に記載の固体撮
像装置。
5. The solid-state imaging device according to claim 4, wherein the width of the diffusion region is 10% to 100% of the width of the light receiving unit.
【請求項6】 第1導電型の半導体基板内に形成された
第2導電型の受光部および電荷排出部と、前記受光部と
前記電荷排出部との間の前記半導体基板上に絶縁膜を介
して形成されたゲート電極と、前記受光部と電気的に接
続したアンプ回路とを含む画素が複数配置された固体撮
像装置であって、前記半導体基板内に、前記ゲート電極
の下方に位置する領域を含み、且つ、前記受光部底面の
少なくとも一部に接する領域を避けるように、前記半導
体基板よりも不純物濃度の高い第1導電型の拡散領域が
形成されていることを特徴とする固体撮像装置。
6. A light receiving unit and a charge discharging unit of a second conductivity type formed in a semiconductor substrate of a first conductivity type, and an insulating film on the semiconductor substrate between the light receiving unit and the charge discharging unit. A solid-state imaging device in which a plurality of pixels including a gate electrode formed through a gate and an amplifier circuit electrically connected to the light receiving unit are arranged, wherein the solid-state imaging device is located in the semiconductor substrate below the gate electrode. A first conductivity type diffusion region having a higher impurity concentration than the semiconductor substrate is formed so as to include a region and avoid a region in contact with at least a part of the bottom surface of the light receiving unit. apparatus.
【請求項7】 前記拡散領域が、前記受光部に接する前
記半導体基板表面の領域を含むように形成されている請
求項6に記載の固体撮像装置。
7. The solid-state imaging device according to claim 6, wherein the diffusion region is formed to include a region on the surface of the semiconductor substrate that is in contact with the light receiving unit.
【請求項8】 前記拡散領域が、前記受光部底面に接す
る領域であって、前記受光部の形成幅の10〜100%
の幅を有する領域を避けるように形成されている請求項
7に記載の固体撮像装置。
8. The light-receiving portion is in contact with a bottom surface of the light-receiving portion, and the diffusion region is 10% to 100% of a formation width of the light-receiving portion.
The solid-state imaging device according to claim 7, wherein the solid-state imaging device is formed so as to avoid a region having a width.
【請求項9】 第1導電型の半導体基板内に形成された
第2導電型の受光部と、前記受光部と電気的に接続した
アンプ回路とを含む画素が複数配置された固体撮像装置
の製造方法であって、前記受光部を形成する工程と、前
記受光部底面の少なくとも一部に接する前記半導体基板
内の領域に、前記半導体基板よりも不純物濃度の低い第
1導電型の拡散領域、または、前記受光部よりも不純物
濃度の低い第2導電型の拡散領域を形成する工程とを含
むことを特徴とする固体撮像装置の製造方法。
9. A solid-state imaging device in which a plurality of pixels including a light receiving portion of a second conductivity type formed in a semiconductor substrate of a first conductivity type and an amplifier circuit electrically connected to the light receiving portion are arranged. A manufacturing method, wherein the step of forming the light receiving portion, and a first conductive type diffusion region having a lower impurity concentration than the semiconductor substrate, in a region in the semiconductor substrate contacting at least a part of a bottom surface of the light receiving portion; And forming a second conductivity type diffusion region having an impurity concentration lower than that of the light receiving portion.
【請求項10】 前記拡散領域を、前記受光部に接する
前記半導体基板表面の領域を避けるように形成する請求
項9に記載の固体撮像装置の製造方法。
10. The method of manufacturing a solid-state imaging device according to claim 9, wherein the diffusion region is formed so as to avoid a region on the surface of the semiconductor substrate that is in contact with the light receiving section.
【請求項11】 前記拡散領域の形成幅を、前記受光部
の形成幅の10〜100%とする請求項10に記載の固
体撮像装置の製造方法。
11. The method for manufacturing a solid-state imaging device according to claim 10, wherein a formation width of the diffusion region is set to 10% to 100% of a formation width of the light receiving unit.
【請求項12】 第1導電型の半導体基板内に形成され
た第2導電型の受光部および電荷排出部と、前記受光部
と前記電荷排出部との間の前記半導体基板上に絶縁膜を
介して形成されたゲート電極と、前記受光部と電気的に
接続したアンプ回路とを含む画素が複数配置された固体
撮像装置の製造方法であって、前記ゲート電極を形成す
る工程と、前記受光部および前記電荷排出部を形成する
工程と、前記半導体基板内に、前記ゲート電極の下方に
位置する領域を含み、且つ、前記受光部底面の少なくと
も一部に接する領域を避けるように、前記半導体基板よ
りも不純物濃度の高い第1導電型の拡散領域を形成する
工程とを含むことを特徴とする固体撮像装置の製造方
法。
12. A light receiving unit and a charge discharging unit of a second conductivity type formed in a semiconductor substrate of a first conductivity type, and an insulating film on the semiconductor substrate between the light receiving unit and the charge discharging unit. A method of manufacturing a solid-state imaging device in which a plurality of pixels including a gate electrode formed through a light source and an amplifier circuit electrically connected to the light receiving unit are arranged, wherein the step of forming the gate electrode includes the steps of: Forming a portion and the charge discharging portion, including, in the semiconductor substrate, a region located below the gate electrode, and avoiding a region in contact with at least a part of the bottom surface of the light receiving portion. Forming a diffusion region of the first conductivity type having a higher impurity concentration than the substrate.
【請求項13】 前記拡散領域を、前記受光部に接する
前記半導体基板表面の領域を含むように形成する請求項
12に記載の固体撮像装置の製造方法。
13. The method for manufacturing a solid-state imaging device according to claim 12, wherein the diffusion region is formed so as to include a region on the surface of the semiconductor substrate that is in contact with the light receiving section.
【請求項14】 前記拡散領域を、前記受光部底面に接
する領域であって、前記受光部の形成幅の10〜100
%の幅を有する領域を避けるように形成する請求項13
に記載の固体撮像装置。
14. The light-receiving portion, wherein the diffusion region is in contact with the bottom surface of the light-receiving portion and has a width of 10 to 100 times the width of the light-receiving portion.
14. The device according to claim 13, wherein the region is formed so as to avoid a region having a width of 0.1%.
3. The solid-state imaging device according to item 1.
JP25558298A 1998-09-09 1998-09-09 Solid-state imaging device and manufacturing method thereof Expired - Fee Related JP3621273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25558298A JP3621273B2 (en) 1998-09-09 1998-09-09 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25558298A JP3621273B2 (en) 1998-09-09 1998-09-09 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000091550A true JP2000091550A (en) 2000-03-31
JP3621273B2 JP3621273B2 (en) 2005-02-16

Family

ID=17280728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25558298A Expired - Fee Related JP3621273B2 (en) 1998-09-09 1998-09-09 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3621273B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397665B1 (en) * 2001-03-29 2003-09-17 (주) 픽셀플러스 Cmos active pixel for improving sensitivity
KR100449952B1 (en) * 2001-11-06 2004-09-30 주식회사 하이닉스반도체 Cmos image sensor and method of manufacturing the same
JP2005167187A (en) * 2003-11-13 2005-06-23 Seiko Epson Corp Solid-state image pickup device and its manufacturing method
US7034347B2 (en) 2003-03-06 2006-04-25 Matsushita Electric Industrial Co., Ltd. Charge detecting device
KR100748345B1 (en) * 2001-12-31 2007-08-09 매그나칩 반도체 유한회사 Image sensor with improved light sensitivityy and fabricating method of the same
JP2012044219A (en) * 2004-06-07 2012-03-01 Canon Inc Solid-state imaging device, and camera
JP2015002192A (en) * 2013-06-13 2015-01-05 キヤノン株式会社 Photoelectric conversion device and method for manufacturing photoelectric conversion device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397665B1 (en) * 2001-03-29 2003-09-17 (주) 픽셀플러스 Cmos active pixel for improving sensitivity
KR100449952B1 (en) * 2001-11-06 2004-09-30 주식회사 하이닉스반도체 Cmos image sensor and method of manufacturing the same
KR100748345B1 (en) * 2001-12-31 2007-08-09 매그나칩 반도체 유한회사 Image sensor with improved light sensitivityy and fabricating method of the same
US7034347B2 (en) 2003-03-06 2006-04-25 Matsushita Electric Industrial Co., Ltd. Charge detecting device
CN100382329C (en) * 2003-03-06 2008-04-16 松下电器产业株式会社 Electric charge detecting apparatus
JP2005167187A (en) * 2003-11-13 2005-06-23 Seiko Epson Corp Solid-state image pickup device and its manufacturing method
JP2012044219A (en) * 2004-06-07 2012-03-01 Canon Inc Solid-state imaging device, and camera
JP2015002192A (en) * 2013-06-13 2015-01-05 キヤノン株式会社 Photoelectric conversion device and method for manufacturing photoelectric conversion device
US9437764B2 (en) 2013-06-13 2016-09-06 Canon Kabushiki Kaisha Photoelectric conversion device and method for manufacturing photoelectric conversion device

Also Published As

Publication number Publication date
JP3621273B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JP6541080B2 (en) Solid-state imaging device
US7535037B2 (en) Solid state image sensor devices having non-planar transistors
US7710477B2 (en) CMOS image sensors having pixel arrays with uniform light sensitivity
US6180969B1 (en) CMOS image sensor with equivalent potential diode
JP3584196B2 (en) Light receiving element and photoelectric conversion device having the same
US7498650B2 (en) Backside illuminated CMOS image sensor with pinned photodiode
US7235831B2 (en) Light-receiving element and photoelectric conversion device
JP4270742B2 (en) Solid-state imaging device
US6552320B1 (en) Image sensor structure
US7855407B2 (en) CMOS image sensor and method for manufacturing the same
JP5361110B2 (en) Solid-state image sensor element having non-planar transistor and manufacturing method thereof
JP3719947B2 (en) Solid-state imaging device and manufacturing method thereof
KR20120067298A (en) Solid-state image sensor, method of manufacturing the same, and camera
JP2006173634A (en) Cmos image sensor equipped with pixel array
US8513721B2 (en) CMOS image sensor with non-contact structure
US9966399B2 (en) Pixel having a plurality of pinned photodiodes
JP2003234496A (en) Solid-state image pickup device and its manufacturing method
JP2921567B1 (en) Solid-state imaging device and method of manufacturing the same
JP2004312039A (en) Photoelectric conversion device
JP3621273B2 (en) Solid-state imaging device and manufacturing method thereof
JP2004207455A (en) Photodiode and image sensor
JP2001156280A (en) Photoelectric conversion device and its manufacturing method
KR100792334B1 (en) Image sensor and method of manufacturing the same
CN101110440B (en) Solid-state imaging device
KR20040058692A (en) CMOS image sensor with shield layer protecting surface of photo diode and method for fabricating thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees