JPS6023769B2 - 自硬化性フェノ−ル樹脂の製造方法 - Google Patents

自硬化性フェノ−ル樹脂の製造方法

Info

Publication number
JPS6023769B2
JPS6023769B2 JP12590380A JP12590380A JPS6023769B2 JP S6023769 B2 JPS6023769 B2 JP S6023769B2 JP 12590380 A JP12590380 A JP 12590380A JP 12590380 A JP12590380 A JP 12590380A JP S6023769 B2 JPS6023769 B2 JP S6023769B2
Authority
JP
Japan
Prior art keywords
resin
mol
group
reaction
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12590380A
Other languages
English (en)
Other versions
JPS5751712A (en
Inventor
茂 越部
正照 曽我部
基行 南條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP12590380A priority Critical patent/JPS6023769B2/ja
Publication of JPS5751712A publication Critical patent/JPS5751712A/ja
Publication of JPS6023769B2 publication Critical patent/JPS6023769B2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】 本発明は微粉砕可能な固形の目硬化性フェノール樹脂お
よびその製造法に係り、その特徴は従来より射出成形時
の優れた熱安定性と硬化性を有し、金型ぐもりの少ない
成形材料のための一段法フェノール樹脂を提供するにあ
り、その製造方法に於ては触媒として働きの異なる2種
類以上の二価金属塩を併用するところにある。
フェノール樹脂は大別すると、一段法樹脂と二段法樹脂
に分けることができる。
二段法樹脂はノボラック樹脂と呼ばれへキサメチレンテ
トラミン(以下「ヘキサミン」と略す。)を硬化剤とし
て用いることにより架橋させるため、硬化中にアンモニ
アガスを発生し、数々の問題を生ずる。例えばフェノー
ル樹脂成形材料では、成形品にインサートされた金属類
の腐蝕が問題となっている。長年へキサミン以外の硬化
剤も種種検討されて来たが実用に至らずこのような腐蝕
が問題となる用途には、一段法樹脂則ち目硬化性を有す
るレゾール樹脂が使用されている。一般的にレゾール樹
脂は液状及び固形状を問わず主としてメチロール基を硬
化性官能基としている。このメチロール基は硬化反応の
活性化エネルギーが約1肌cal/molと小さいこと
、また、比較的低温で反応が進行すること、さらには硬
化時に縮合水を発生すること等の欠点を有している。例
えばフェノール樹脂成形材料に適用した場合、比較的低
温で反応が進行する欠点は射出成形時のシリンダー内で
の熱安定性が悪い、成形材料が保管中にフローが変るな
どの問題点となり、縮合水は成形時に型ぐもりを起こす
問題となる。これらの問題を解決するためフェノール核
をジメチレンェーテル基で結合させたレゾール樹脂が提
案されている。例えば、侍公昭47一18871、侍公
昭47−7457、特開昭50一7179ふ特関階51
一斑385、特関昭51−74腿5、侍公昭54一15
797等がある。しかしこれらはいずれも成形材料用樹
脂としては工業的でなかったり実用的でなかったりする
。即ち、特公昭47一1総71や特公昭54一1579
7は液状ワニスに関するものであり、成形材料に適用す
るためには湿式泥練工程を追加する必要があり通常の乾
式混練に比べ工程が煩雑となるだけでなくコスト高とな
り工業的には不利となる。また、侍開昭51一般385
は酸触媒で、まず低分子ノボラックを生成せしめ酸中和
後2次ホルムァルデヒド及び二価金属塩を添加し固形状
目硬化性フェノール樹脂を得るものである。一般にただ
一種の二価金属塩だけで反応を行った場合メチロール化
とメチレン化をバランスよく進行させることは難しく固
形状フェノール樹脂は工業的には得られ難く、持公昭4
7−7457や袴公階54一i5797のように液状フ
ェノール樹脂になるのが普通である。そこで侍関昭51
−38385は固形状フェノール樹脂を得るために酸触
媒による反応工程を加えたものであり、特開昭50−7
1795ジメチレンェーナル基の比率40%未満を改良
したものと考えられる。しかしながらこの方法だとメチ
レン基の比率を大きくしているのでジメチレンェーテル
基の比率は当然ながら小さくなり、硬化性が悪くなる。
また、中和やホムアルデヒド及び触媒の2次添加を行っ
ているので製造工程が煩雑となる。しかも特開昭50−
7179う同51一粉紙4、同51一斑斑5はメチロー
ル基の比率が20〜25%と多くこのため射出成形時の
熱安定性の改良効果は小さい。袴開昭51一74085
は、塩基性触媒でまず低分子レゾールを生成せしめ中和
後弱酸性で縮合させる方法であるが、得られる樹脂は半
固形状であり非常に扱い難い。また、中和を非常に厳密
に行う必要があり製造が難しい。例えば、中和が過剰と
なりpHが低くなった場合危険な縮合反応を起こし反応
制御が不能となったり最悪の場合には爆発することもあ
りうる。特公昭47一7457などに見られる樹脂はメ
チロール基の比率が30〜60%と非常に大きく、この
結果は特開昭51−38385とも合致するが成形材料
に適用した場合シリンダー内熱安定性が不足し長時間成
形には通さない。本発明は前記の問題を全て解決したも
のであり、働きの異る2種類以上の二価金属塩を併用す
ることにより、ジメチレンェーテル結合の速やかな生成
を安全且つ容易に行わせ目硬化性フェノール樹脂を工業
的に製造するものである。
本発明の特徴とするところは、フリーフェノ−ル量が7
wt%以下、フリーフェノール除外数平均分子量が70
0〜1400、フェノール核結合官能基がメチレン基・
メチロール基及びジメチレンェー7ノレ基より構成され
各官能基の比率がそれぞれ20〜50モル%・10〜2
0モル%及び40〜60モル%である微粉砕可能な目硬
化性フェノール樹脂であり、また、その製造方法はフェ
ノール類PとホルムアルデヒドFとを、ホルムアルデヒ
ドのフェノール類に対するモル比(以下F/Pと記す。
)1.0〜3.0の範囲で、二価金属塩の中から選ばれ
た付加反応に効果的な触媒Aと縮合反応に効果的な触媒
Bとを併用してメチロール化及びジメチレンェーテル化
をバランス良く進行させるように反応させ上述の樹脂を
製造することである。使用する触媒は、触媒Aとして第
二族元素又は遷移元素と蟻酸・酢酸・プロピオン酸等の
有機モノカルボン酸との組み合せの塩一種又は二種以上
を用い、触媒Bとしては第二族元素又は遷移元素とホウ
酸・塩酸・硝酸等の無機酸との組み合せの塩一種又は二
種以上を用いるのが望ましい。
ここでいう第二族元素及び遷移元素とは周期律表でいう
ところのマグネシウム・カルシウム・バリウム等のアル
カリ士類とマンガン・鉄・ニッケル・亜鉛・パラジウム
等の原子番号21から30まで及び39から48までの
第一、第二遷移元素をいう。また、触媒Aと触媒Bとの
併用比がモル比でA/B=0.1〜9であり触媒Aと触
媒Bとの合計量が仕込フェノール類1モルに対し、0.
001〜0.05モルであることが望ましい。触媒併用
比が0.1未満では、硬化性官能基が極端に減少し目硬
化性が乏しくなる。また、9を超えるとゲル化の危険を
有し工業的でない。さらに触媒量が0.001未満だと
収率が極端に低下する。また、0.05わ超えるとコス
トが高くなるだけでなく樹脂中の塩量が無視できなくな
り電気特性で劣る等の悪影響を与える。触媒併用比がA
/B=0.1〜9触媒合計量が(A+B)/フェノール
類=0.001〜0.05の範囲で触媒を使用すること
により、フェノール核へのメチロール化及びメチロール
基同士の縮合(ジメチレンェーテル化)が円滑に進み、
ジメチレンェーテル結合の多い固形目硬化性を工業的に
得ることが可能となる。使用するホルムアルデヒドとし
ては濃度が50%以上であることが望ましい。
濃度が50%禾満だと水の影響で縮合反応が阻害され水
分の減少する反応後半で縮合反応が急激に進むため、反
応制御特に液状から固形状になるまでの反応制御が難し
く工業的でない。本発明は、前述の発明と比較すると、
鰭公昭47一18871、特公昭54一15797そし
て特閥昭51一74085に比べ工業的に扱い易い固形
化を可能ならしめたものであり、また、特関昭51一斑
斑5に比べるとジメチレンェーテル基の比率(特開昭5
1一38385,25〜30モル%)がはるかに大きく
樹脂の熱安定性が格段優れるし、ましてや、袴公昭47
−7457や特開昭53−22590のメチロール基の
多い樹脂とは比較にならぬ程熱安定性で優れるものであ
る。
さらに特開昭51一38紙5や特開昭51一74085
に比べ操作が簡単であるという利点を持つ。このように
本発明は極めて有用なる多くの特徴を有するものであり
、産業上の利用価値が極めて高い。本発明によって得ら
れる樹脂はフリーフェノール量が7Wt%以下、フリー
フェノール除外数平均分子量が700〜1400、フェ
ノール核結合官能基がメチレン基・メチロール基及びジ
メチレンェーナル基より構成され各官能基の比率がそれ
ぞれ20〜50モル%・10〜20モル%及び40〜6
0モル%というものである。成形材料用としてはフリー
フェノール除外数平均分子量(以下Mnと記す。)が9
00〜1100が好ましい。本発明の樹脂は活性化ェネ
ルキー)・ 30Kcal/molと通常のノボラック・ヘキサミン
硬化の値約20Kcal/molよりも大きく、射出成
形に適する。
さらに、硬化機構がラジカル反応経由で硬化時に発生す
る揮発分が少し、ので成形品特性も向上する等の特徴も
有する。また、ホルムアルデヒドガスの発生も従来レゾ
ールより少く衛生上の問題もない。これら樹脂を成形材
料に適用した場合、シリンダー内熱安定性が抜群に向上
するだけでなく優れた速硬化性も得られる。
また、揮発分が少いため成形品のふくれや金型ぐもり等
の問題も解決でき理想的な成形材料が得られるようにな
った。次に、本発明の樹脂及び製造方法について、以下
実施例及び比較例で説明する。実施例 1 フェノール2820夕と80%パラホルムアルデヒド1
粥8夕(F/P=1.5)を酢酸マンガン12夕と塩化
亜鉛5夕の存在下3時間還流反応を行った後(内溢は1
20q0から10500まで変化)11500まで昇温
ごせ同温度で2時間熟成させバット上に取り出した(還
流以後は脱水状態で反応)。
フリーフェ/ール4%,Mn950,メチレン基・メチ
ロール基及びジメチレンェーテル基の比率がそれぞれ4
0モル%・12モル%・48モル%の樹脂が3412タ
得られた。この樹脂の熱坂上でのゲルタィムは表一1の
ようであり、メチロール型レゾールに比べ低温では熱的
に安定であり高温では逆となる。また、この樹脂に木粉
・ステアIJン酸等を混ぜた後、3分間‘12000の
熱ロールで涙練し成形材料を得た。この成形材料を小型
成形機を用い成形性評価を行った結果を表−1に示す。
メチロール型レゾール材に比べ熱安定性が抜群に良く又
硬化性も良い。実施例 2フェノール2820夕と88
%パラホルムアルデヒド1534夕(F/P=1.5)
を酢酸バリウム25夕と硝酸亜鉛10夕の存在下4時間
120qoで脱水熟成反応を行った後105ooに降温
せしめ1時間経過後バット上に取り出した。フリーフェ
ノール5%,Mn850,メチレン基・メチロール基及
びジメチレンェーテル基の比率がそれぞれ47%・13
%・40%の樹脂が3304タ得られた。
実施例1同様に行った熱板ゲルタィム測定結果及び成形
材料評価結果を表一1に示す。実施例 3 フェノール2820夕と80%パラホルムアルデヒド1
500夕及び40%ホルマリン1500夕(F/P=2
.0)を酪酸カルシウム13夕と塩化マグネシウム20
夕の存在下3時間還流反応を行った後水分が5%になる
まで減圧下で脱水を行った。
そして常圧下2時間かけて徐々に12000まで昇温せ
しめさらに、2時間熟成させバット上に取り出した。フ
リーフェノール3.7%、Mnl00い メチレン・メ
チロール及びジメチレンェーテル基の比率がそれぞれ4
2モル%・17モル%・41モル%の樹脂が3469タ
得られた。実施例−1同様に行った熱板ゲルタィム測定
結果及び成形材料評価結果を表一1に示す。実施例はい
ずれもメチロール型レゾール比較例1に比べ低温での熱
安定性及び高温での硬化性に優れ、成形材料用レジンと
して望ましい造性る有する。
比較例 1 フェノール2820夕と43%ホルマリン3140夕を
水酸化カルシウム25夕の存在下30分間環流反応を行
った。
この後減圧脱水条件で熟成反応を徐々に進め内温が85
00になった時点でバット上に取り出した。フリーフェ
ノール6.2%,Mn700,メチレン・メチロール及
びジメチレンェーテル基の比率がそれぞれ34モ%,6
3モル%,3モル%の樹脂が3186タ得られた。
実施例1同様に行った熱板ゲルタィム測定結果及び成形
材料評価結果を表一1に示す。熱的に不安定であり、射
出用成形材料としては連続成形できず不適また、保存性
も悪く実用的でない。比較例 2 フェノール940夕,42%ホルマリン1.24夕、第
2リン酸ナトリウム47夕を還流冷却器を備えた反応器
に仕込み、還流化に2.5時間反応せしめ、次いで減圧
下で未反応フェノールおよび反応物中の含有水分を除去
しながら、900Cまで3時間かけて徐々に上昇し95
q0に達したときに直ちに反応容器より取り出し急冷し
固形状の樹脂を1071タ得た。
この樹脂のフリーフェノールは8.1%、Mn800、
メチレン基・メチロール基及びジメチレンェーテル基の
比率がそれぞれ42モル%,38モル%,20モル%で
あった。
ジメチレンェーテル基の比率は比較例1よりも大きいが
本特許の比率に比べるとかなり小さい。この樹脂を実施
例1同様に熱板ゲルタィム評価及び成形性評価を行った
。表−1の結果で明らかなように実施例の樹脂に比べ熱
的に不安定で射出用成形材料としての適性で劣る。比較
例 3 フェノール3760夕,80%パラホルムアルデヒド1
350夕、綾酸7.5夕を加え100〜105℃で3時
間還流反応させ、ついで水酸化カルシウム12.8夕を
加え中和させ、さらに80%パラホルムアルデヒド16
50夕・酢酸亜鉛56.4夕を加え100〜10y0で
2時間還流反応させた。
反応終了後、常任濃縮を行い120qoまで昇温させ同
温度で熟成した。この熟成中に16000熱坂上でのゲ
ル化時間を測定し30の砂となった点から105〜11
0oo,600〜65仇舵日夕なる条件で減圧濃縮を行
いゲル化時間が9の秒となった時点で終点とした。フリ
ーフェノール6.1%,Mnl150,メチレン・メチ
ロール及びジメチレンェーテル基の比率がそれぞれ50
モル%,30モル%,20モル%の樹脂が4327タ得
られた。
実施例1同様に評価したところ、この樹脂は実施例の樹
脂に比べ低温でのゲルタィムが短く・成形時のシリンダ
ー内熱安定性も短い。比較例 4 フェノール28209と37%ホルマリン3649夕(
F/P=1.5)を酢酸マンガン35夕の存在下4時間
還流反応を行った。
この後減圧下、水分が5.1%になるまで脱水しさらに
120ooまで昇温し同温度で熟成した。熟成1時間4
粉ご後、樹脂の160℃熱板上でのゲル化時間は297
秒となった(樹脂は半固形状)での降温工程に入った。
この降温中に激しい発泡反応を起こし樹脂はゲル化した
。表一1 樹脂の性状比較測定方法 1 フェノール核を結合する官能基の定量試料樹脂を常
法に従いアセチル化して、アセチル化樹脂を得る。
これを核磁気共鳴(NNR)測定し、メチレン基に結合
しているプロトン数・メチロール基炭素に結合している
プロトン数及びジメチレンェーテル基炭素に結合してい
るプロトン数を定量し次式に従って各官能基の比率を計
算する。
PM=メチレン基に結合しているプロトン数PML=メ
チロール基炭素に結合しているプoトン数PDM=ジメ
チレンェーテル基炭素に結合しているプロトン数pH=
上記以外の官能基に結合しているブロトン数T=PM+
PML≦十PPM/Z+2pH/Mnc:官能基の炭素
数メチレン基の比率=(PM/T)×100メチロール
基の比率=(PML/T)×100ジメチレンェーテル
基の比率=(PDN/2T)×loo 尚、本発明の樹脂において、上記3つの官能基以外のも
のは1%以下なので、計算に含めてもほとんど影2 シ
リンダー内熱安定性 使用成形機 ミニスーパーM32 成形温度 175q0 シリンダー温度 先端90do、末端5000評価
射出待ち時間を延長してゆき、射出に規定時間以上要す
るようになった時の待ち時間で表わす。
3 成形材料の保存性 成形材料を40ooの条件下で保管し流動性が初期の半
分になるまでの時間で表わす。

Claims (1)

    【特許請求の範囲】
  1. 1 フエノール類1モルとパラホルムアルデヒドをホル
    ムアルデヒド換算で1.0〜3.0モルを、第二族元素
    又は遷移元素と有機カルボン酸との組合せからなる二価
    金属塩の一種又は二以上である付加反応に効果的な触媒
    と、第二族元素又は遷移元素と無機酸との組合せからな
    る二価金属塩の一種又は二種以上である縮合反応に効果
    的な触媒とを併用して反応させることを特徴とする自硬
    化性フエノール樹脂の製造方法。
JP12590380A 1980-09-12 1980-09-12 自硬化性フェノ−ル樹脂の製造方法 Expired JPS6023769B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12590380A JPS6023769B2 (ja) 1980-09-12 1980-09-12 自硬化性フェノ−ル樹脂の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12590380A JPS6023769B2 (ja) 1980-09-12 1980-09-12 自硬化性フェノ−ル樹脂の製造方法

Publications (2)

Publication Number Publication Date
JPS5751712A JPS5751712A (en) 1982-03-26
JPS6023769B2 true JPS6023769B2 (ja) 1985-06-10

Family

ID=14921754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12590380A Expired JPS6023769B2 (ja) 1980-09-12 1980-09-12 自硬化性フェノ−ル樹脂の製造方法

Country Status (1)

Country Link
JP (1) JPS6023769B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230021301A (ko) * 2021-08-05 2023-02-14 금호타이어 주식회사 돌끼임 방지 및 트레드 손상을 방지하는 공기입 타이어

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988154B2 (ja) * 2003-10-21 2012-08-01 三星電子株式会社 レゾールを含有する樹脂溶液、これを使用して形成された硬化樹脂膜およびこれを使用して硬化樹脂膜を形成する方法
JP6590193B2 (ja) * 2015-08-18 2019-10-16 Dic株式会社 レゾール型フェノール樹脂、レゾール型フェノール樹脂組成物、その硬化物、およびレゾール型フェノール樹脂の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230021301A (ko) * 2021-08-05 2023-02-14 금호타이어 주식회사 돌끼임 방지 및 트레드 손상을 방지하는 공기입 타이어

Also Published As

Publication number Publication date
JPS5751712A (en) 1982-03-26

Similar Documents

Publication Publication Date Title
US5032642A (en) Phenolic resin compositions
US4134442A (en) Furan-phenolic resins for collapsible foundry molds
JPH0476947B2 (ja)
US3404198A (en) Phenol-formaldehyde-urea resin and method of preparation
US4255554A (en) Process for preparing phenol-formaldehyde-furfuryl alcohol terpolymers
JPS6023769B2 (ja) 自硬化性フェノ−ル樹脂の製造方法
US4297473A (en) Quick-curing phenolic resin and process for preparing same
US4299947A (en) Process for producing quick-curing phenolic resin
JPS5978745A (ja) 鋳物用レジンコーテツドサンド
JP3879971B2 (ja) レゾール型フェノール樹脂の製造方法
US4397967A (en) Fast curing novolac resin and shell molding composition and methods for producing the same
JPH032169B2 (ja)
JPH0735427B2 (ja) 速硬化性ノボラツク型フエノ−ル樹脂およびその製造方法
JPH06184405A (ja) フェノール樹脂組成物
JPH09124756A (ja) ノボラック型フェノール樹脂及びその製造方法
JPH0670114B2 (ja) 自硬化性フエノ−ル樹脂の製造方法
JPS5948049B2 (ja) 速硬化性フエノ−ル樹脂の製造方法
JPH04149221A (ja) 自硬化性固形フェノール樹脂の製造法
JP3972712B2 (ja) 酸硬化型レゾール樹脂組成物
GB2079298A (en) Quick-curing phenolic resin
JPH04222809A (ja) ハイパラノボラック樹脂の製造方法
JPH0337817B2 (ja)
JPS58104918A (ja) 固形のトリアジン類変性フエノ−ル樹脂
JPS6123929B2 (ja)
JPH0493311A (ja) 低臭気シェルモールド用ノボラック型フェノール樹脂組成物