JPS6021802A - 均一な細孔を有する金属酸化物、その製造方法およびその金属酸化物からなる触媒用担体 - Google Patents

均一な細孔を有する金属酸化物、その製造方法およびその金属酸化物からなる触媒用担体

Info

Publication number
JPS6021802A
JPS6021802A JP58130118A JP13011883A JPS6021802A JP S6021802 A JPS6021802 A JP S6021802A JP 58130118 A JP58130118 A JP 58130118A JP 13011883 A JP13011883 A JP 13011883A JP S6021802 A JPS6021802 A JP S6021802A
Authority
JP
Japan
Prior art keywords
metal
acid
organic
angstroms
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58130118A
Other languages
English (en)
Inventor
「湧」井 正浩
Masahiro Wakui
Tadahiko Handa
半田 忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP58130118A priority Critical patent/JPS6021802A/ja
Priority to ZA845293A priority patent/ZA845293B/xx
Priority to EP84108224A priority patent/EP0131925A3/en
Priority to US06/630,562 priority patent/US4622311A/en
Priority to CA000458980A priority patent/CA1240972A/en
Publication of JPS6021802A publication Critical patent/JPS6021802A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • C01F7/141Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by neutralisation with an acidic agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels
    • C01B33/166Preparation of silica xerogels by acidification of silicate in the presence of an inert organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本発明は、均一な細孔を有する特定な金属酸化物、その
製造方法およびその金属酸化物からなる触媒用担体、詳
しくは、現在存在する結晶性アルミノシリケートで最大
径を有するY−型ゼオライドに比べて少し大きな位置に
細孔を有し、すなわちその直径がlθ〜100オングス
トローム(6)付近ノミクロポア領域に非常に狭い範囲
で集中的に分布した各種金属酸化物、その製造方法およ
びその金属酸化物からなる触媒用担体に関するものであ
る。
吸着剤、イオン交換剤、触媒など数オングストロームか
ら数千オングストロームの細孔を持つ多数の工業材料が
広い分野で利用され、注目されている。一般に、たとえ
ばアルミナやシリカゲルなどの金属酸化物は触媒の担体
の他、水分の吸着、有機性ガスや無機化合物の吸着など
、その利用範囲がきわめて広いため重要な無機材料であ
る。まだ一般に、混合酸化物は、それらを構成する単独
の酸化物には見られない顕著な酸性質を示すので、触媒
の担体などとしてその利用範囲が広いため、これも重要
な無機材料である。触媒用担体は多くの場合、触媒を活
性高く担持し得るものが選ばれるのが通常であって、担
体の有する種々の物理的性質のうち、開口細孔がきわめ
て重要な因子であることは広く認められている。すなわ
ち触媒反応において担体の細孔径が活性、選択性、寿命
に重大な影響をおよぼすことは周知の事実である。不均
一系反応では、拡散、接触面積、その他の因子に関連し
てマクロポア(開口細孔径が100オングヌトローム以
上のものを称す)の大きさもまた触媒の選択性、活性お
よび寿命に対し重要な因子となっていることが判明して
きているが、一方、活性および選択性については、ミク
ロポア(開口細孔径が100オングストローム以下のも
のを称す)がより重要な因子であることが広く知られて
いる。
とくに4オングストロームから11オンダストロームの
範囲にある種々の結晶性アルミノシリケートは、通常“
分子ふるい と称せられるように、こ〃 れらは均一な細孔を有することで特徴づけられ、メタノ
ールからの炭化水素の合成、脂肪族炭化水素のクラッキ
ング、芳香環のアルキル化など、いわゆる形状選択的触
媒として知られる。また均一な細孔径を有す多孔性材料
は、工業技術的に興味ある諸性質との間に深い相関関係
などが期待される。しかしながら無定形のもので結晶性
アルミノシリケートのように、はぼ均一な細孔を有する
金属酸化物の調製に関する報告はいまだ見当らない。
本発明者らは、はぼ均一な細孔を有し、かつその細孔径
の分布の幅が非常に狭く、壕だ通常の結晶性アルミノシ
リケートで最大径を有すY−型ゼオライド(細孔径11
オングストローム)に比べて、やや大きな細孔を有する
無定形の金属酸化物の製造方法につき種々検討した結果
、特定の方法にょシ水可溶性の塩基性金、属酸塩と酸ハ
ロゲン化物などの有機化合物と反応させることにょシ、
はぼ均一な孔径の細孔を有す金属酸化物を製造しうろこ
と、およびこの方法によれば得られる金属酸化物の細孔
径を任意に調節し得ることを見出し、本発明を完成した
まだ本発明者らは、特定の方法により、水可溶性のアル
カリ金属あるいはアンモニウムなどの金属酸塩(1)に
有機ハロゲン化物などの有機化合物(2)と金属硝酸塩
などの酸性金属塩(3)を同時に加える方法(A)、お
よびアルカリ金属あるいはアンモニウムなどの金属酸塩
に有機化合物を最初に加え、固体が析出する前に、続い
て酸性金属塩を加える方法CB)による共沈法、あるい
はアルカリ金属またはアンモニウムなどの金属酸塩に有
機化合物を加えて反応させ、金属酸塩のヒドロゲルを沈
殿させたあと、これに他の金属ヒドロゲルを沈着する沈
着法(C)により、はぼ均一な孔径の細孔を有す金属酸
化物を製造しうろこと、およびこれらの方法によれば得
られる金属酸化物の細孔径を任意に調節し得ることを見
出し、本発明を完成した。
このように重要な細孔を規制する従来の方法は、触媒ま
たは触媒用担体、あるいはそれらの混合物のゲル化時の
pHや濃度を調整したシ、アルミナ水和物に酸類を加え
る゛酸処理あるいはアルミナ水和物のような無機物をア
ルコール洗浄する方法、たとえばベーマイトゲルを種々
のアルコールで洗浄した効果が報告されている(石油学
会誌、18 、(2)、147− (1971))。ま
だゲル化時に水溶性または水分散性有機高分子物質ある
いは揮発性の塩、硫黄などを添加するものである( J
、cata工、1.547(1962))。たとえばポ
リエチレングリコール、ポリ ビニルアルコ −ル、メ
チルセル口 −ス、 ポ リ エチレンオキシトガどの
水溶性高分子物質の添加によって得られる触媒または触
媒用担体の細孔径は20〜100,000オングヌトロ
ームに至り、きわめて広汎な範囲に分布している。した
がってこれらの方法では前記文献にも述べられているよ
うに、その径の大きさが広く分布していて、その径が特
定の範囲に集中している細孔径を形成することは困難で
ある。
つぎに本発明をさらに詳細に説明すると、本発明におい
ては原料としてNa、に、Liなどのアルカリ金属塩や
アンモニウム塩などの各種金属酸塩が使用される。たと
えばアルミナは(a)アルミン酸塩と(ト))酸ハロゲ
ン化物などの有機化合物とを原料として製造される。ア
ルミン酸塩としては、Na。
K、Liなどのアルカリ金属塩やアンモニウム塩などが
あシ、可溶性であれば任意のものが用いられる。
本発明において好ましく用いられるアルミン酸塩は、ア
ルミン酸ナトリウムである。シリカゲルは珪酸塩まだは
珪酸塩と珪酸との混合物が使用され、珪酸塩としては、
Na、、に、Li、などのアルカリ金属塩やアンモニウ
ム塩などかアシ、本発明において好ましく用いられる珪
酸塩は、珪酸と珪酸塩との混合物からなる水ガラスであ
る。この・珪酸塩は水溶液の形で用いられるが、この場
合、水ガラスの珪酸塩濃度はSiO2として1〜50重
量%、好ましくは25〜35重量%である。通常、水ガ
ラス2号および3号が用いられる。またタングステン、
バナジウム、モリブデンなどのアルカリ金属塩あるいは
アンモニウム塩などが用いられる。
本発明で用いる有機化合物は分子中に少なくとも有機基
と反応基を有するものである。この場合、反応基は金属
酸塩の縮合反応に際して金属酸塩と反応する反応基とし
て作用するものが好ましい。
本発明で用いる有機化合物はつぎの一般式であられされ
る。
Xn−R−X′n 式中、Rは有機基、Xは反応基、X′は反応基または水
素である。nは1〜3の整数である。前記有機基Rとは
、活性基を有するかまたは有しないアルキル基、アルケ
ニル基、シクロアルキル基、シクロアルケニル”基、ア
リール基、芳香環基、複素環基が挙げられ、これらの基
はその分子鎖中にエステル結合、エーテル結合、ヌルフ
ィト結合、スルホキシド結合、スルホン結合、アミド結
合、アミノ結合、ウレタン結合などの有機性結合を含む
ことができる。またこの有機基の中に含まれる炭素数は
、所望の細孔径に従って選ばれ、通常1〜30個である
。有機基Rに結合してもよい活性基としては、たとえば
ビニル基、アIJ/し基、水酸基(アルコール性、フェ
ノール性)、アミノ基、メルカプト基、カルボキシル基
、アミド基、イミノ基、ヌルホン基、カル−ボニル基、
シアノ基などがあシ、金属酸塩のゲル化反応においてと
くに支障を与えない限り1、任意の有機性活性基が結合
してもよいが、本発明において好ましい有機基は、活性
基を含まないアルキル基または芳香環基などが選ばれる
反応基としてのXおよびX′としては、酸ハロゲン基の
他、ハロゲン化スルホニp基、イソシアネート基、エポ
キシ基、エステル基および塩素、臭素、ヨウ素などのハ
ロゲン原子などがある。Xとして酸ハロゲン基、X′と
して水素のモノカルボン酸ハロゲン化物あるいはXおよ
びX′が酸ハロゲン基であるジカルボン酸ハロゲン化物
が、触媒用担体を目的とする際にはとくに好ましい。こ
こで酸ハロゲン化物のハロゲン基として、塩素、臭素、
ヨウ素などが用いられる。Xがエステル基あるいはハロ
ゲン原子、X′が水素、甘たXおよびX′がエステル基
あるいはハロゲン原子は、これらの反応基の反応性が低
いだめ、温和な反応条件下では効果がないか、まだは効
果が少ないため、必要に応じ界面活性剤の添加を必要と
する。上記のような有機化合物を加える場合は、テトラ
ヒドロフラン、メタノールやエタノールなどのアルコ−
/1/類、ジメチルホルムアミド、ジメチルアセトアミ
ド、ジメチIレスルホキシド、アセトンやメチルエチル
ケ1゛ンなどのケトン類、アセトニトリル、塩化メチレ
ン、二塩化エタン、クロロホルムおよびベンゼン、トル
エン、キシレンなどの芳香族化合物などの溶媒に溶解し
て添加することが必要である。
本発明で好ましく適用し得る有機化合物を例示すると、
たとえばマロン酸、コハク酸、および1゜3−プロパン
、1,4−ブタン、1,5−ペンタン、1.6−ヘキサ
ン、1.7−へブタン、1,8−オクタン、1,9−ノ
ナン、■、10−デカン、1.11−ウンデカン、1.
12−ドデカンなどのジカルボン酸およびヌルホン酸の
塩化物、臭化物、さらに塩化アセチル、およびプロピオ
ン酸、酪酸およびペンタン、ヘキサン、ヘプタン、オク
タン、ノナン、デカン、ウンデカン、ドデカンなどのカ
ルボン酸およびスルホン酸の塩化物、臭化物、さらに分
子量500〜1.000の末端および両末端に反応基と
して酸塩化基、塩化ヌルホニル基、イソシアネート、エ
ボギシ基などを含む炭化水素オリゴマー、たとtばゲタ
ジエンオリゴマーおよびその他のオリゴマーが用いられ
る。
本発明により均一な細孔を有す金属酸化物を製造するに
は、金属酸塩の水溶液に前記1〜だ有機化合物をテトラ
ヒドロフランなどの有機溶媒に溶解させたものを0〜3
00°C1好ましくは0〜80°Cで激しく攪拌しなが
ら添加する。その後、鉱酸水溶液で、そのpHを6〜9
に調整する。反応の際、圧力はO〜l OQ kq/c
dAで通常は常圧で行なう。得られた固体は濃アンモニ
ア水、塩化アンモニウム水溶液および蒸留水で使用した
ハロゲン化合物のハロゲンが検出されなくなるまで十分
水洗する。つぎに固体をアセトン、メタノ−ノンやエタ
ノール、テトラヒドロフランなどの有機溶媒で抽出する
と、反応の際、加水分解された有機化合物がカルボン酸
化合物、ヌルホン酸化合物として95%以上の回収率で
回収される。さらに固体は110〜120’Cで4〜5
時間乾燥した後、任意の温度で焼成して金属酸化物を与
える。まだ場合により、lN−塩酸などで酸処理を行な
9だ後、任意の温度で焼成する。有機溶媒による抽出を
省いて直接、乾燥、焼成してもよいが、使用目的により
純粋なものを調製する場合は抽出する方が好ましい。
本発明における有機化合物の使用割合は、金属酸塩10
0部に対し少なくとも0.1〜500部、好ましくは0
.5〜100部の範囲である。本発明で金属酸塩と有機
化合物とを反応させた後、pHを6〜9に調整するのに
用いる酸性水溶液としては、塩酸、硝酸、硫酸などの鉱
酸やギ酸、酢酸などの有機酸の水溶液が用いられ、その
酸濃度はとくに制約されないが、一般には3〜10重量
%である。
本発明によれば、従来の製造方法では実現できなかった
細孔径が10−100 オングストローム付近のミクロ
ポア範囲にあシ、また細孔分布が非常に狭い範囲で集中
的に分布した金属酸化物を調製することができる。さら
に使用する有機化合物の分子鎖長を変化させることによ
り、また酸処理および焼成温度を変化させることにより
、その細孔径をミクロボアの範囲で任意に規制しうるの
である。本発明により製造した金属酸化物を触媒用担体
として用いる場合は、前記の非常に狭い範囲を1〜30
オングヌトローム、好−5,しくld1〜15オングス
トロームとすΣのが望ましい。本発明により調製しだγ
−アルミナの酸ハロゲン化物の分子鎖長、および焼成温
度による細孔径の変化を第1図に示す。
第1図は横軸に、用いた直鎖状カルボン酸ジクロリドの
炭素数を、縦軸に平均細孔半径の値をとつたグラフで、
図中Aは焼成温度550°Cの場合、Bは焼成温度45
0°Cの場合のγ−アルミナのデータを示す。Cは焼成
温度550°Cの場合、Dは焼成温度450°Cの場合
のシリカゲルのデータを示す。
以上の比較的低級の有機化合物を用いる場合は、細孔径
が50オングヌトローム以下の範囲に集中的に分布した
無機酸化物が得られるが、さらに50オングストロ一ム
以上の範囲に集中的に細孔が分布した酸化物を調製する
には、使用する化合物として末端あるいは両端反応基、
たとえばカルボキシル基を有すオリゴマーの酸塩化物な
どが用いられる。
また金属混合酸化物を製造する場合は、出発原料として
の前記(1)の金属酸塩として、Na、K。
Llなどのアルカリ金属塩やアンモニウム塩などの各種
金属酸塩が使用される。たとえばシリカ・アルミナある
いはシリカ・チタニアなど混合酸化物の一成分に前記説
明による(1)の金属酸塩としてシリカを含む場合、珪
酸および珪酸と珪酸塩との混合物が使用され、珪酸塩と
しては、Na、に、Lj−などのアルカリ金属塩やアン
モニウム塩などかあり、本発明において好ましく用いら
れる珪酸塩は、珪酸と珪酸塩との混合物からなる水ガラ
スであり、通常水ガラス2号および3号が用いられる。
またシリカ・アルミナあるいはアルミナ−ボリアなど混
合酸化物の一成分に前記説明による(1)の金属酸塩と
してアルミナを含む場合、アルミン酸塩としては、Na
、に、Liなとのアルカリ金属塩やアンモニウム塩など
があり、可溶性であれば任意のものが用いられる。本発
明において好ましく用いられるアルミン酸塩は、アルミ
ン酸すトリウ′ムである。
丑だタングステン、バナジウム、モリブデンなどを混合
酸化物の一成分として、前記説明による(1)の金属酸
塩として含む場合、アルカリ金属塩あるいはアンモニウ
ム塩などが用いられる。またもう一方の成分である前記
説明による(2)の金属塩としては、硝酸塩、塩化物、
硫酸塩などの相当する金属塩のいずれかが好適に用いら
れる。
本発明により均一な細孔を有す混合酸化物を製造する方
法として、前記説明による(8)法あるいは但)法によ
る共沈法では、たとえば(A)法はアルカリ金属などの
金属酸塩の水溶液に前記した有機化合物をテトラヒドロ
フランなどの有機溶媒に溶解させた溶液および硝酸塩な
どの金属塩を水に溶解させた水溶液を0〜300°C1
好ましくは0〜80°Cで、激しく攪拌し々から同時に
添加する。反応の際、圧力は0〜100kg/cylA
で通常は常圧で行なう。
得られた固体は塩化アンモニウム水溶液でアルカリを十
分取り除き、さらに洗浄水中にハロゲンが検出されなく
なるまで十分に水洗する。つぎに固体をアセトン、メタ
ノールやエタノール、テトラヒドロフランなどの有機溶
媒で抽出すると、反応の際、加水分解された有機化合物
がカルボン酸、スルホン酸化合物として95%以上の回
収率で回収される。さらに固体は110〜120°Cで
乾燥した後、任意の温度で焼成して混合酸化物を与える
。また有機溶媒による抽出をせず、該有機化合物を焼成
することにより焼失してもよい。(ハ)法による場合は
、アルカリ金属などの金属酸塩の水溶液に、前記した有
機化合物を有機溶媒に溶解させた溶液を添加した後、固
体が析出する前に、ついで硝酸塩などの金属塩を水に溶
解させた溶液を激しく攪拌しながら添加する。得られた
固体の処理は(9)法と同様にして行なう。(C)法に
よる沈着法では、金属塩の水溶液に前記有機化合物を有
機溶媒に溶解させたものをO〜soo’c 、好ましく
は0〜80°Cで激しく攪拌しながら添加する。その後
、鉱酸水溶液でそのpHを6〜9に調整する。反応の際
圧力は0〜100 k’i10MAで通常は常圧で行な
う。得られた固体は、濃アンモニア水、塩化アンモニウ
ム水溶液および蒸留水で十分に洗浄する。つぎに固体を
アセトン、メタノールやエタノールなどの有4a 溶媒
で抽出しだ後、生成したヒドロゲルを他の成分である硝
酸塩などの金属塩の水溶液に浸漬し、沈殿剤としてアン
モニア水などを用いて金属ヒドロゲルを沈着させる方法
により、得られた固体を110〜120°Cで乾燥した
後、任意の温度で焼成して混合酸化物を得る。
本発明における有機化合物の使用割合は、金属酸塩10
0部に対し、少なくとも0.1〜500部、好ましくは
0.5〜100部の範囲である。(C)法において金属
酸塩と有機化合物とを反応後、pE(を6〜9に調整す
るのに用いる酸性水溶液としては、塩酸、硝酸、硫酸な
どの鉱酸やギ酸、酢酸などの有機酸の水溶液が用いられ
、その酸濃度はとくに制約されないが一般には3〜IO
重量%である。
本発明によれば従来の製造法では実現できなかったその
細孔径がlθ〜100オングストローム付近のミクロポ
ア範囲にあり、またその細孔分布が非常に狭い範囲で集
中的に分布した金属混合酸化物を調製することができる
。本発明により製造した金属混合酸化物を触媒用担体と
して用いる場合は、前記の非常に狭い範囲を1〜30オ
ングストローム・好ましくは1−15オングストローム
とするのが望ましい。さらに使用する有機化合物の分子
鎖長を変化させることにより、たとえば比較的低分子量
の有機化合物を用いる場合は、細孔径が10〜50オン
グストロームの範囲にあり、その細孔が非常に狭い範囲
で集中的に分布した混合酸化物が得られる。さらに50
オングストロ一ム以上のミクロポアの範囲に、非常に狭
い範囲で細孔が集中的に分布した金属混合酸化物を調製
するには、使用する有機化合物として末端あるいは両末
端カルボキシp基を有すブタジェンオリゴマーなどの分
子量500−1.000の各種オリゴマーが用いられ、
これらの酸塩化物として、これを調製の際に上記説明と
同様の方法により作用させることにより細孔径を任意に
規制しうるのである。得られた混合酸化物は、その金属
の組み合せにより、酸性性を発現し、エチレン、プロピ
レンなどの低級オレフィンアルいハフエノールなどのア
ルキル化に活性ヲ有す。
つぎに本発明の実施例について説明する。
実施例1 市販アルミン酸ナトリウム100gを水700m1に溶
解した。これを激しく攪拌し、20°C以下に冷却した
。一方、1,6−ヘキサンジカルボン酸ジクロリド20
 gをテトラヒドロフラン50m/に溶解し、先のアル
ミン酸ナトリウム水溶液に激しく攪拌しながら滴下する
と、次第に白色沈殿が析出した。
さらに1時間、40〜60°Cの温度で攪拌を続けた後
、5%硝酸水溶液を加えてpHを6〜9付近に調整した
。その後、さらに8〜4時間攪拌を続けた。つぎにしば
らく冷却して静置したのち析出した固体をろ過し、上澄
水溶液中に塩素イオンの存在が認められなくなるまで十
分に、アンモニア水、10%塩化アンモニウム水溶液、
続いて蒸留水で洗浄した。ついでろ取した固体をアセト
ンで抽出し、加水分解してアルミナ水和物と同時に析出
した1、6−ヘキサンジカルボン酸(C−6)を回収し
た。
つぎに固体を110°Cで4時間乾燥した後、その一部
を通常の電気炉を用い空気中450°Cで5時間焼成し
た。また一部を550°Cで5時間焼成した。これらの
アルミナはX線回折によると、C1=1.99A。
1.89 Aの回折線がと一アルミナの特徴的な回折線
を与えた。また場合により、有機化合物の抽出後、固体
をIN−塩酸水溶液などで80°013時間加熱処理を
行ない、続いて固体を通常の電気炉を用い450〜60
0°Cで5時間焼成した・。得られたr−アルミナの表
面積は窒素の吸着によるBET法で、また細孔容積、細
孔分布は窒素の脱着により測定した。第2図に本発明に
よると一アルミナの細孔分布を示す。
第2図は横軸に細孔径の値、縦軸に微分細孔容積の値を
とったグラフを示す。第2図にょシ、本発明により調製
したγ−アルミナの細孔分布がいかに狭い範囲に集中的
に分布しているかを明確に読みとることができる。
調製の際に用いる有機化合物をコハク酸(C−2)、1
,4−ブタンジカルボン酸(C74)、■。
8−オクタンジカルボン酸(C−8)、1.10−デカ
ンジカルボン酸(C−10)、1.12−ドデカンジカ
ルボン酸(C−12)などの酸塩化物および塩化アセチ
7v(A’l)、オルソ(0−1)、メタ(0−2)お
よびパラフタロイルクロリド(0−3)、および両末端
カルボキシ基を有す炭化水素オリゴマー(分子量1,0
00 ) (0−4) ナト(D化合物に変えた以外は
上記と全く同様にして調製して得たr−アルミナの表面
積、細孔分布、細孔容積などの物理的特性の一部を第1
表に示す。表中、細孔分布の頂点を示す細孔径は細孔分
布の幅が非常に狭い範囲に集中しているために、これら
の値は大いに意味があると考えられる。
(以下余白) 実施例2 市販水ガラス8号品、有機化合物としてl、4−ブタン
ジカルポン酸ジクロリドを用いた以外は実施例1と同様
の方法で調製したシリカゲルを110゜Cで8時間乾燥
した後、固体の一部を450°Cで4時間、また一部を
550°Cで4時間焼成し試料とした。また固体の一部
を実施例1と同様にIN−塩酸水溶液などで60°Cで
、3時間加熱し、酸処理を行ない、続いて固体を通常の
電気炉を用い450゜Cで4時間焼成して試料とした。
得られたシリカゲルは実施例1と同様の方法により細孔
分布を測定し、結果を第8図に示す。
第8図は横軸に細孔径の値、縦軸に細孔容積の値を襲っ
たグラフを示す。第3図によシ本発明により調製したシ
リカゲルの細孔分布がいかに狭い範囲に集中的に分布し
ているかを明確に読みとることができる。
調製の際に用いる有機化合物をコ/Xり酸、1,6−ヘ
キサンジカルボン酸、1.8−オクタンジカルボン酸、
l、10−デカンジカルボン酸、1.12−ドデカンジ
カルボン酸などの酸塩化物および塩化アセチル、オルソ
、メタおよびパラフタロイルクロリド(記号は実施例1
に同じ)などの化合物に変えた以外は上記と全く同様に
して調製して得だシリカゲルの表面積、細孔分布、細孔
容積などの物理的特性を第2表に示す。なお第1表およ
び第2表に記載の細孔径、表面積、細孔容積を示す数値
は絶対的な数値を示すものではない。
(以下余白) 特開昭eo−21802(8) 実施例3 市販水ガラス3号品100gを水600m1に溶解した
。これを激しく攪、袢し、温度を40°Cとしだ。一方
、]、]6−ヘキサンジカルボン酸ジクロリド20をテ
トラヒドロフラン50m/に溶解した溶液および塩化ア
ルミニウム30gを水200m1に溶解した溶液を、同
時に先の水ガラス溶液に激しく攪拌しながら滴下すると
、次第に白色の沈殿が析出した。
さらにこの温度を保って4〜5時間攪拌を続けた。
つぎにしばらく冷却して静置したのち、析出した固体を
ろ過し、上澄水溶液中に塩素イオンの存在が認められな
くなるまで、十分にアンモニア水、10%塩化アンモニ
ウム水溶液、続いて蒸留水で洗浄した。つぎにろ取した
固体をアセl−ンで抽出し、加水分解してシリカ・アル
ミナヒドロゲルと同時に析出しだ1,6−ヘキサンジカ
ルボン酸を回収した。ついで固体を110°Cで4時間
乾燥した後、固体を通常の電気炉を用い空気中450〜
600°Cで5時間焼成した。得られたシリカ・アルミ
ナの表面径は12.9オングストローム、および細孔分
布の頂点を示す細孔直径は14.8オングヌトロームで
あった。ここで表面積は窒素の吸着によるBET法で、
また細孔容積、細孔分布は窒素の脱着により測定した。
実施例4 市販水ガラス3号品100gを水800πtに溶解した
。これを激しく攪拌し温度を40°Cとした。一方、1
、8−オクタンジカルボン酸ジクロリド20gをテトラ
ヒドロフラン40m1に溶解した溶液を、先の水ガラヌ
水溶液に激しく攪拌しながら滴下した。この段階で固体
が析出する前に、塩化アルミニウム30gを水200x
Jに溶解した溶液を先の溶液に激しく攪拌しながら添加
した。次第に白色沈殿が析出しだ。この固体は実施例3
と同様の方法で後処理し、最後に通常の電気炉を用い、
空気中450〜600°Cで5時間焼成した。得られた
シリカ・アルよび細孔分布の頂点を示す細孔直径は14
.0オングストロームであった。第4図に実施例4の方
法で’4られたシリカ・アルミナの細孔分布を示す。
第4図は、横軸に細孔径の値、縦軸に微分細孔容積の値
をとったグラフを示す。第4図から本発明によシ調製し
たシリカ・アルミナの細孔分布がいかに狭い範囲に集中
的に分布しているかを明確に読みとることができる。
実施例5 市販水ガラス3号品100 gを水800m1に溶解し
た。これを激しく攪拌し20°C以下に冷却した。一方
、1.4−ブタンジカルボン酸ジクロリド20gをテト
ラヒドロフラン50肩tに溶解した溶液を、先の水ガラ
ス水溶液に激しく攪拌しながら滴下した。さらに1時間
40〜60°Cの温度で攪拌を続けた後、5%硝酸水溶
液を加えてpHを6〜9付近に調整した。
その後さらに、この温度を保って3〜4時間攪拌を続け
た。つぎにしばらく冷却して静置した後析出した固体を
ろ過し水洗した。つぎにろ取した固体をアセトンで抽居
した後、この固体に塩化アルミニウム30gを水14に
溶解した溶液中に浸漬し、攪拌を数時間性なった後、沈
殿剤としてアンモニア水ヲ加えてシリカヒドロゲルにア
ルミナヒドロゲルを沈着させた。得られた固体をろ過し
、10%塩化アンモニウム水溶液および蒸留水で十分に
洗浄した。続いて110’Cで4時間乾燥した後、空気
中450〜600°Cで5時間焼成した。得られたシリ
カ・アルミナの表面積は990m>g、細孔容積は0.
24”/g、平均細孔半径は11.9オングストローム
および細孔分布の頂点を示す細孔直径は14.5オング
ヌトロームであった。
【図面の簡単な説明】
第1図は本発明によシ得られる金属酸化物の細孔径の変
化を示すグラフ、第2図は本発明により得られるt−ア
ルミナの細孔分布を示すグラフ、第3図は本発明により
得られるシリカゲルの細孔分布を示すグラフ、第4図は
本発明により得られる金属混合酸化物の細孔分布を示す
グラフである。 特許出願人 大同酸素株式会社 第2図 え]考り直什Cオンブχトロ弘) 細I経(477升し→

Claims (1)

  1. 【特許請求の範囲】 1 細孔径が、実質的に10〜100 オングストロー
    ムのミクロボア範囲に非常に狭い範囲で集中的に分布す
    ることを特徴とする均一な細孔を有する金属酸化物。 2 塩基性金属酸塩と一般式Xn −R−X’n (式
    中、Rは有機基、Xは反応基、X′は反応基まだは水素
    、nは1〜3の整数を表わす。)で表わされる有機化合
    物とを反応させ、ついで生成した固体を有機溶媒で抽出
    した後、この固体から有機化合物を除去するか、または
    焼成することにより焼失せしめて、細孔径が、実質的に
    10〜100オングストロームのミクロボア範囲に非常
    に狭い範囲で集中的に分布する金属酸化物を得ることを
    特徴とする均一な細孔を有する金属酸化物の製造方法。 3 塩基性金属酸塩、一般式Xn−R−X’n (式中
    、Rは有機基、Xは反応基、X′は反応基または水素、
    ldl〜3の整数を表わす。)で表わされる有機化合物
    、金属塩を反応させ、ついで生成した固体を有機溶媒で
    抽出した後、この固体から有機化合物を除去するか、ま
    たは焼成することにより焼失せしめて、細孔径が、実質
    的K 10−100オングストロームのミクロポア範囲
    に非常に狭い範囲で集中的に分布する金属混合酸化物を
    得ることを特徴とする均一な細孔を有する金属酸化物の
    製造方法。 4 細孔径が、実質的にlθ〜100オングストローム
    のミクロポア範囲に非常に狭い範囲で集中的に分布する
    金属酸化物からなることを特徴とする均一な細孔を有す
    る金属酸化物からなる触媒用担体。 5 金属酸化物が金属混合酸化物である特許請求の範囲
    第1項記載の均一な細孔を有する金属酸化物。 6 金属酸化物が金属混合酸化物である特許請求の範囲
    第4項記載の均一な細孔を有する金属酸化物からなる触
    媒用担体。 7 非常に狭い範囲が1〜30オングストロームである
    特許請求の範囲第1項まだは第5項記載の均一な細孔を
    有する金属酸化物。 8 非常に狭い範囲が1〜30オングストロームである
    特許請求の範囲第2項または第3項記載の均一な細孔を
    有する金属酸化物の製造方法。 9 非常に狭い範囲が1〜30オングストロームである
    特許請求の範囲第4項または第6項記載の均一な細孔を
    有する金属酸化物からなる触媒用担体。
JP58130118A 1983-07-15 1983-07-15 均一な細孔を有する金属酸化物、その製造方法およびその金属酸化物からなる触媒用担体 Pending JPS6021802A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58130118A JPS6021802A (ja) 1983-07-15 1983-07-15 均一な細孔を有する金属酸化物、その製造方法およびその金属酸化物からなる触媒用担体
ZA845293A ZA845293B (en) 1983-07-15 1984-07-10 Metal oxide having uniform pore sizes,the process for producing said metal oxide,and catalyst carrier comprising the said metal oxide
EP84108224A EP0131925A3 (en) 1983-07-15 1984-07-12 Metal oxide having uniform pore sizes, the process for producing said metal oxide, and catalyst carrier comprising the said metal oxide
US06/630,562 US4622311A (en) 1983-07-15 1984-07-13 Metal oxide having uniform pore sizes, the process for producing said metal oxide, and catalyst carrier comprising the said metal oxide
CA000458980A CA1240972A (en) 1983-07-15 1984-07-16 Metal oxide having uniform pore sizes, the process for producing said metal oxide, and catalyst carrier comprising the said metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58130118A JPS6021802A (ja) 1983-07-15 1983-07-15 均一な細孔を有する金属酸化物、その製造方法およびその金属酸化物からなる触媒用担体

Publications (1)

Publication Number Publication Date
JPS6021802A true JPS6021802A (ja) 1985-02-04

Family

ID=15026375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58130118A Pending JPS6021802A (ja) 1983-07-15 1983-07-15 均一な細孔を有する金属酸化物、その製造方法およびその金属酸化物からなる触媒用担体

Country Status (5)

Country Link
US (1) US4622311A (ja)
EP (1) EP0131925A3 (ja)
JP (1) JPS6021802A (ja)
CA (1) CA1240972A (ja)
ZA (1) ZA845293B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160212A (ja) * 1997-08-12 1999-03-02 Fukuoka Pref Gov 金属酸化物構造体およびその製造方法
WO2003011762A1 (fr) * 2001-07-27 2003-02-13 Chiyoda Corporation Oxyde d'un metal du groupe 4 poreux et procede de preparation de ce dernier
US20150122202A1 (en) * 2013-11-06 2015-05-07 Alstom Technology Ltd Method for managing a shut down of a boiler

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846962A (en) * 1987-02-12 1989-07-11 Exxon Research And Engineering Company Removal of basic nitrogen compounds from extracted oils by use of acidic polar adsorbents and the regeneration of said adsorbents
FR2629071B1 (fr) * 1988-03-22 1991-03-15 Produits Refractaires Oxyde de zirconium reactif et sa preparation
IT1217525B (it) * 1988-05-06 1990-03-22 Enichem Sintesi Procedimento per la preparazione di cumene
JP3047110B2 (ja) * 1990-06-15 2000-05-29 株式会社東北テクノアーチ 金属酸化物微粒子の製造方法
IT1251939B (it) * 1991-10-17 1995-05-27 Donegani Guido Ist Procedimento per la preparazione di materiali a base di ossidi inorganici con granulometria monodispersa e materiali cosi ottenuti.
BR9203110A (pt) * 1992-08-12 1994-03-01 Petroleo Brasileiro Sa Composicao catalitica passivadora para o craqueamento de hidrocarbonetos,alumina e processo de craqueamento catalitico fluido
US5451388A (en) * 1994-01-21 1995-09-19 Engelhard Corporation Catalytic method and device for controlling VOC. CO and halogenated organic emissions
DE4407326A1 (de) * 1994-03-04 1995-09-21 Basf Ag Mesoporöse Molekularsiebe
FR2718060B1 (fr) * 1994-04-01 1996-05-31 Inst Francais Du Petrole Catalyseur pour la conversion de charges hydrocarbonées, à base de métal noble et silice-alumine.
US5879539A (en) * 1994-04-01 1999-03-09 Institut Francais Du Petrole Precious metal and silica-alumina based catalyst and hydroisomerisation treatment process for heavy feeds
DE4422715A1 (de) * 1994-06-29 1996-01-04 Engelhard Process Chem Gmbh Amorphe, mikroporöse oxidische Feststoffe, Verfahren zur Herstellung derselben und deren Verwendung
US5578283A (en) * 1994-12-30 1996-11-26 Engelhard Corporation Catalytic oxidation catalyst and method for controlling VOC, CO and halogenated organic emissions
US5840271A (en) * 1996-02-09 1998-11-24 Intevep, S.A. Synthetic material with high void volume associated with mesoporous tortuous channels having a narrow size distribution
US6106802A (en) * 1997-01-31 2000-08-22 Intevep, S.A. Stable synthetic material and method for preparing same
US20050274646A1 (en) * 2004-06-14 2005-12-15 Conocophillips Company Catalyst for hydroprocessing of Fischer-Tropsch products
CN102906013B (zh) * 2010-03-22 2016-05-25 布莱阿姆青年大学 制备孔结构受控的高多孔性稳定金属氧化物的方法
US9079164B2 (en) 2012-03-26 2015-07-14 Brigham Young University Single reaction synthesis of texturized catalysts
US9114378B2 (en) 2012-03-26 2015-08-25 Brigham Young University Iron and cobalt based fischer-tropsch pre-catalysts and catalysts
US9289750B2 (en) 2013-03-09 2016-03-22 Brigham Young University Method of making highly porous, stable aluminum oxides doped with silicon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848511A (ja) * 1971-10-25 1973-07-10
JPS528024A (en) * 1975-03-25 1977-01-21 Osaka Patsukingu Seizoushiyo K Manufacturing of porous silica gel plastics
JPS5229498A (en) * 1975-07-25 1977-03-05 Ceskoslovenska Akademie Ved Method of making completely spherical silica gel particle having controlled particle diameter and controlled pore diameter
JPS5252876A (en) * 1975-10-22 1977-04-28 Atomic Energy Authority Uk Method of manufacturing porous gel of inorganic materials
JPS56120508A (en) * 1980-02-19 1981-09-21 Chiyoda Chem Eng & Constr Co Ltd Manufacture of porous inorganic oxide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2526907A (en) * 1948-09-29 1950-10-24 Universal Oil Prod Co Coprecipitation of silica-alumina
US2592775A (en) * 1948-09-29 1952-04-15 Universal Oil Prod Co Preparation of catalyst containing silica and alumina or magnesia or both
US3094384A (en) * 1958-09-29 1963-06-18 Standard Oil Co Method of controlling properties of porous metal oxides
US3908002A (en) * 1972-05-30 1975-09-23 Shell Oil Co Production of alpha alumina
US4069139A (en) * 1975-12-29 1978-01-17 Exxon Research & Engineering Co. Hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst
US4038177A (en) * 1976-07-19 1977-07-26 Exxon Research And Engineering Company Oil hydrodesulfurization with alumina composite catalyst utilizing aluminate and dicarboxylic acid in its preparation
EP0010114B1 (en) * 1977-07-11 1983-11-30 British Gas Corporation Steam reforming catalysts and their preparation
US4278566A (en) * 1979-03-19 1981-07-14 Standard Oil Company (Indiana) Hydrotreating process
US4414137A (en) * 1982-03-09 1983-11-08 Union Oil Company Of California Catalytically active amorphous silica

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848511A (ja) * 1971-10-25 1973-07-10
JPS528024A (en) * 1975-03-25 1977-01-21 Osaka Patsukingu Seizoushiyo K Manufacturing of porous silica gel plastics
JPS5229498A (en) * 1975-07-25 1977-03-05 Ceskoslovenska Akademie Ved Method of making completely spherical silica gel particle having controlled particle diameter and controlled pore diameter
JPS5252876A (en) * 1975-10-22 1977-04-28 Atomic Energy Authority Uk Method of manufacturing porous gel of inorganic materials
JPS56120508A (en) * 1980-02-19 1981-09-21 Chiyoda Chem Eng & Constr Co Ltd Manufacture of porous inorganic oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160212A (ja) * 1997-08-12 1999-03-02 Fukuoka Pref Gov 金属酸化物構造体およびその製造方法
WO2003011762A1 (fr) * 2001-07-27 2003-02-13 Chiyoda Corporation Oxyde d'un metal du groupe 4 poreux et procede de preparation de ce dernier
US7943115B2 (en) 2001-07-27 2011-05-17 Chiyoda Corporation Porous 4 group metal oxide and method for preparation thereof
US20150122202A1 (en) * 2013-11-06 2015-05-07 Alstom Technology Ltd Method for managing a shut down of a boiler
US10775039B2 (en) 2013-11-06 2020-09-15 General Electric Technology Gmbh Method for managing a shut down of a boiler

Also Published As

Publication number Publication date
CA1240972A (en) 1988-08-23
EP0131925A2 (en) 1985-01-23
ZA845293B (en) 1985-07-31
EP0131925A3 (en) 1988-09-21
US4622311A (en) 1986-11-11

Similar Documents

Publication Publication Date Title
JPS6021802A (ja) 均一な細孔を有する金属酸化物、その製造方法およびその金属酸化物からなる触媒用担体
JP4472109B2 (ja) カルボン酸水添用触媒
US5783607A (en) Process for converting synthesis gas in the presence of a catalyst based on cobalt and titanium
JPH04227061A (ja) 担持触媒およびその製造方法
JPH0474141A (ja) シクロオレフィンの製造法
JPH03205313A (ja) 新規なフォージャサイト型アルミノシリケート及びその製造方法並びに重質油水素化分解触媒
JP4682157B2 (ja) 高活性粉末触媒を用いる高度立体障害アミノ−エーテルアルコールおよびジアミノポリアルケニルエーテルの改良合成
EP0517891B1 (fr) Zeolithe de type mfi et son procede de preparation
JP6721601B2 (ja) 炭化水素合成触媒、その調製方法及びその使用
JP4148775B2 (ja) 二モードの細孔半径分布を有する触媒
CN110844919B (zh) NaY分子筛的制备方法及其制备的NaY分子筛
TWI301078B (en) Ethylene oxide catalyst carrier preparation
JPH0370691B2 (ja)
JP3897830B2 (ja) シクロオレフインの製造方法
RU2449002C2 (ru) Способ получения углеводорода путем восстановления монооксида углерода
JPS6148979B2 (ja)
JP3860625B2 (ja) 水素の酸化触媒、水素の選択的酸化方法、及び炭化水素の脱水素方法
CN114433200A (zh) Scr催化剂及其制备方法
JP2023515786A (ja) 水素化触媒およびその前駆体ならびに石油化学樹脂の水素化におけるそれらの使用
JPH0528279B2 (ja)
JPH11500956A (ja) 触媒組成物および炭化水素変換法におけるその使用
CN115475621B (zh) 一种沉淀铁催化剂及其制备和应用
JP4291590B2 (ja) フィッシャー・トロプシュ合成用触媒および炭化水素の製造法
JP3823433B2 (ja) 水素の酸化触媒、水素の選択的酸化方法、及び炭化水素の脱水素方法
KR100419288B1 (ko) 경질유의 탈방향족화용 촉매의 제조방법