JPS60179619A - Thin film thermistor - Google Patents
Thin film thermistorInfo
- Publication number
- JPS60179619A JPS60179619A JP3663084A JP3663084A JPS60179619A JP S60179619 A JPS60179619 A JP S60179619A JP 3663084 A JP3663084 A JP 3663084A JP 3663084 A JP3663084 A JP 3663084A JP S60179619 A JPS60179619 A JP S60179619A
- Authority
- JP
- Japan
- Prior art keywords
- film
- electrode film
- insulating substrate
- support container
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/22—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
- G01K7/223—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
【発明の詳細な説明】
U,業」二の利用分野
本発明は、温度を検出すべき対象物と機械的に接触して
温度を検出するサーミスタ、たとえは鍋物調理をする際
、鍋底を通して鍋内部の調理物の温度を検出するサーミ
スタに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermistor that detects temperature by mechanically contacting an object whose temperature is to be detected. This relates to a thermistor that detects the temperature of the food inside.
従来例の構成とその問題点
従来、この種、温度検出は第1図に示すことく鍋底1に
熱電対2を機械的に接触させ、前記熱電対2の熱起電力
を検出することによってなされていた。このとき熱電対
2を鍋底1iこ機械的に強固に接触させるために熱電対
2は支持容器3に固定されていた。しかし熱起電力は通
常小さな値しか得られないという欠点があった。たとえ
は、アルメル−クロメル熱電対は而」熱性に佛・れ(空
気中500〜10000C)また安価であるが、〜40
μV/’C の起電力しか発生しない。銅−コンスタン
タン熱電対、白金−白金・ロジウム熱電対もその熱起電
力は30〜60μV,/”C Lか得られないのみなら
す、前者は耐熱性が小さく、後者は高価となるなどの欠
点があった。また、上記のごとく小さな熱起電力を電気
的に検出する場合、電気的に大きな増巾をしなければな
らないので1価格が高くなる、複雑な電気回路が必要に
なるなどの問題もある。Conventional Structure and Problems Conventionally, this type of temperature detection has been carried out by mechanically contacting a thermocouple 2 with the bottom 1 of the pot, as shown in FIG. 1, and detecting the thermoelectromotive force of the thermocouple 2. was. At this time, the thermocouple 2 was fixed to the support container 3 in order to bring the thermocouple 2 into strong mechanical contact with the pot bottom 1i. However, the thermoelectromotive force usually has the drawback that only a small value can be obtained. For example, an alumel-chromel thermocouple is very thermal (500 to 10,000 C in air) and is inexpensive, but
Only an electromotive force of μV/'C is generated. Copper-constantan thermocouples and platinum-platinum/rhodium thermocouples also have thermoelectromotive force of 30 to 60 μV, which means that it is not possible to obtain CL.The former has shortcomings such as low heat resistance and the latter is expensive. In addition, when detecting a small thermoelectromotive force electrically as described above, a large electrical amplification is required, resulting in problems such as higher costs and the need for a complicated electrical circuit. be.
他方、上記熱電対に代ってサーミスタを用いて温度検出
をする場合、抵抗値の温度に対する変化率は1〜7%/
Cの大きな値を得られる。したがって、複雑な電気回路
を必要とせず、また低価格になるなどの長所を有する。On the other hand, when temperature is detected using a thermistor instead of the above-mentioned thermocouple, the rate of change in resistance value with respect to temperature is 1 to 7%/
A large value of C can be obtained. Therefore, it has advantages such as not requiring a complicated electric circuit and being inexpensive.
この場合、サーミスタ素子は、小型化により熱応答性を
向上するためには、できるだけ小さなもの、熱容量の小
さなものか選ばれる。このような小型のサーミスタ素子
には、Fe、Ni、Co、Mnなどの複合酸化物焼結体
を感温抵抗体に用いたビード型サーミスタ素子、あるい
は上記複合酸化物、Ge、Si、SiCなどの薄膜を感
温抵抗体に用いた薄膜サーミスタ素子などがある。しか
し、ビード型サーミスタ素子は通常、球形もしくは回転
楕円体に類似した複雑な形状を有するので、支持容器3
との接触部での熱抵抗を小さくすることが困難であり、
サーミスタ素子自身の熱容量が小さくとも、熱応答性が
遅くなるという欠点があった。In this case, the thermistor element is selected to be as small as possible and to have a small heat capacity in order to improve thermal response through miniaturization. Such small thermistor elements include bead-type thermistor elements that use composite oxide sintered bodies such as Fe, Ni, Co, and Mn as the temperature-sensitive resistor, or composite oxides such as those mentioned above, Ge, Si, SiC, etc. There are thin film thermistor elements that use the thin film of However, since bead-type thermistor elements usually have a complex shape similar to a sphere or a spheroid, the support container 3
It is difficult to reduce the thermal resistance at the contact point with
Even if the thermistor element itself has a small heat capacity, it has the disadvantage of slow thermal response.
他方、薄膜サーミスタ素子は第2図に示す様に支持容器
3とロウ付接着できるので、高速応答性が得られるとい
う利点があった。しかし、この場合次のような欠点も同
時に生じていた。すなわち、一般的な薄膜サーミスタ素
子は、通常、アルミナなどの平板状絶縁基板4の一方の
表面に電極膜5および前述の薄膜感温抵抗体6を形成し
、更にリード線7を電極膜5に接続して構成されるが、
このままでは薄膜サーミスタ素子を支持容器3(通常、
Fe−Cr合金などの耐熱金属で構成される)にロウ材
できないので、絶縁基板4の他の表面にW、Moなどの
メタライズ膜8を形成して、支持容器3とロウ材層9を
介してロウ付接着されていた。しかし、W 、 M o
などの金属は高融点を有し、また酸化され易いので、メ
タライズ膜8は通常、H2などを含む還元性雰囲気中で
1400℃以上の高温下で形成される。このため、製造
工程が複雑で、特別な設備を必要とするのみならず高価
格4こなるという欠点があった。また電極膜5は、耐熱
性に優れた厚膜電極膜がよく用いられるが、厚膜電極膜
は還元性雰囲気下では劣化し易く、また耐熱性も空気中
で1000℃以下であるので、厚膜電極膜はメタライズ
膜の形成工程に適合しない。On the other hand, since the thin film thermistor element can be bonded to the support container 3 by brazing as shown in FIG. 2, it has the advantage of providing high-speed response. However, in this case, the following drawbacks also occurred. That is, a typical thin film thermistor element usually has an electrode film 5 and the aforementioned thin film temperature sensitive resistor 6 formed on one surface of a flat insulating substrate 4 made of alumina or the like, and furthermore, a lead wire 7 is connected to the electrode film 5. It is configured by connecting,
If this continues, the thin film thermistor element will be attached to the support container 3 (usually
(composed of heat-resistant metal such as Fe-Cr alloy) cannot be soldered, so a metallized film 8 of W, Mo, etc. is formed on the other surface of the insulating substrate 4, and a metallized film 8 of W, Mo, etc. is formed on the other surface of the insulating substrate 4, and the brazing material is It was glued with solder. However, W, M o
Since metals such as metals have high melting points and are easily oxidized, the metallized film 8 is usually formed at a high temperature of 1400° C. or higher in a reducing atmosphere containing H2 or the like. For this reason, the manufacturing process is complicated and requires special equipment, as well as being expensive. Further, as the electrode film 5, a thick film electrode film with excellent heat resistance is often used, but a thick film electrode film easily deteriorates in a reducing atmosphere, and its heat resistance is 1000°C or less in air. Membrane electrode films are not compatible with the process of forming metallized films.
また、逆にメタライズ膜も厚膜電極膜の形成工程(通常
、空気中で600〜1000°Cの高温下で焼成する)
に適合しない。従って、第2図に示した構成では、電極
膜5にもメタライズ膜を用いなければならない。このた
め高価格になるのみならず、電極膜5にリード線7を接
続するとき、メタライズ膜は高融点であるので、通常よ
く用いられる溶接接続が困難になる欠点もあった。Conversely, the metallized film is also used in the process of forming a thick film electrode film (usually fired in air at a high temperature of 600 to 1000°C).
does not fit. Therefore, in the configuration shown in FIG. 2, a metallized film must also be used for the electrode film 5. This not only increases the price, but also has the drawback that when connecting the lead wire 7 to the electrode film 5, it is difficult to connect the lead wire 7 to the electrode film 5 by welding, which is commonly used, since the metallized film has a high melting point.
発明の目的
本発明はこれら従来の欠点を解消し、するもので、高速
応答性で、かつ信頼性の高い薄膜サーミスタを提供する
ことを目的とする。OBJECTS OF THE INVENTION The present invention eliminates these conventional drawbacks, and an object thereof is to provide a thin film thermistor with high-speed response and high reliability.
発明の構成
本発明の薄膜サーミスタは、平板状セラミック絶縁基板
と、この絶縁基板の一方の表面に形成された電極膜およ
び感温抵抗体膜と、ロウ材層と、表面にTi膜またはZ
r膜の形成された支持容器とから成り、この絶縁基板の
他の表面とこの支持容器とがロウ材層によりロウ付接着
されて構成される。Structure of the Invention The thin film thermistor of the present invention comprises a flat ceramic insulating substrate, an electrode film and a temperature-sensitive resistor film formed on one surface of the insulating substrate, a brazing material layer, and a Ti film or Z on the surface.
The support container has an R film formed thereon, and the other surface of the insulating substrate and the support container are brazed and bonded using a brazing material layer.
通常、セラミック絶縁基板とロウ材とは互いに濡れ合わ
ず、化学的な結合力は両者の間にほとんど存在しないた
めセラミック絶縁基板のロウ付接着は困難であるが、上
記構成の薄膜サーミスタでは、支持容器の表面にT1膜
またはZr膜を形成しているので、絶縁基板と支持容器
との間にロウ材部を配置して加熱したとき、Ti原子が
絶縁基板表面に吸着・拡散する結果、絶縁基板は支持容
器にロウ付接着される。Normally, the ceramic insulating substrate and the brazing material do not wet each other, and there is almost no chemical bonding force between them, so it is difficult to bond the ceramic insulating substrate with brazing. Since the T1 film or Zr film is formed on the surface of the container, when the brazing material is placed between the insulating substrate and the support container and heated, Ti atoms are adsorbed and diffused on the surface of the insulating substrate, resulting in the insulation The substrate is brazed and bonded to the support container.
実施例の説明
本発明の一実施例を第3図に示す。平板状セラミ・ツク
絶縁基板としてアルミナ基板4を用い、アルミナ基板4
の一方の表面にAu−Pt厚膜電極膜5とS i C感
温抵抗体スパッタ膜6とを形成した。DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention is shown in FIG. An alumina substrate 4 is used as a flat ceramic insulating substrate.
An Au--Pt thick film electrode film 5 and a SiC temperature-sensitive resistor sputtered film 6 were formed on one surface of the substrate.
他方、Fe−Cr合金で作られた支持容器3′を準備し
、この支持容器3の表面にTi膜10(またはZr膜1
0)を形成した。T1膜10は真空蒸着法あるいはスパ
ッタ法により容易に形成される。On the other hand, a support container 3' made of Fe-Cr alloy is prepared, and a Ti film 10 (or Zr film 1
0) was formed. The T1 film 10 is easily formed by vacuum evaporation or sputtering.
こののちアルミナ基板4の他の表面と支持容器3との間
に共晶銀ロウ箔を配置し、真空中で約820℃に加熱し
たところ、アルミナ基板4と支持容器3とはロウ材層9
によりロウ付接続された。ロウ付接着後、アルミナ基板
4のロウ材された表面近傍を分析したところAg 、C
u、Alの各原子とともにTi原子も検出された。この
ことから前述した真空中加熱の間に、支持容器3の表面
に最初存在していたTi原子(Ti膜10)がアルミナ
基板4に移動し、そこで吸着・拡散する結果、アルミナ
基板4と支持容器3とがロウ材層9によりロウ付接着さ
れたと考えられる。Thereafter, a eutectic silver solder foil was placed between the other surface of the alumina substrate 4 and the support container 3, and heated to about 820° C. in vacuum.
Connected with solder. After soldering and adhesion, analysis of the vicinity of the soldered surface of the alumina substrate 4 revealed that Ag, C
Ti atoms were also detected along with u and Al atoms. Therefore, during the heating in vacuum mentioned above, the Ti atoms (Ti film 10) that were initially present on the surface of the support container 3 move to the alumina substrate 4, where they are adsorbed and diffused, and as a result, the alumina substrate 4 and the support It is considered that the container 3 was bonded to the container 3 by brazing using the brazing material layer 9.
以上の説明から明らかなように、Au−Pt厚膜電極膜
5およびS i C感温抵抗体スパッタ膜6とは、ロウ
付接着時に真空中で約820℃に加熱されるだけなので
、それら膜が劣化することはない。したがって電極膜5
として、厚膜のものを用いることができる。As is clear from the above explanation, the Au-Pt thick film electrode film 5 and the SiC temperature-sensitive resistor sputtered film 6 are only heated to about 820° C. in vacuum during brazing bonding, so these films are will not deteriorate. Therefore, the electrode film 5
As such, a thick film can be used.
このようにして形成した薄膜サーミスタの90%熱応答
性時間を測定した。この時間は、最初T1°Cに保たれ
た鍋底の温度が突然T2℃に変化したとき、簿膜サーミ
スタの温度がTI+0.9(T2−T1 )’Cに到達
するに必要な時間として定義される。T1=室温、T2
:100℃の条件下において、90%熱応答時間は3〜
5秒で、高速熱応答性が得られた。またアルミナ基板4
の支持容器3に対する接着強度は100〜500g/m
m2 であり、充分実用に耐える強度を示した。The 90% thermal response time of the thin film thermistor thus formed was measured. This time is defined as the time required for the temperature of the membrane thermistor to reach TI+0.9(T2-T1)'C when the temperature at the bottom of the pot, which was initially maintained at T1°C, suddenly changes to T2°C. Ru. T1=room temperature, T2
: Under the condition of 100℃, 90% thermal response time is 3~
Fast thermal response was obtained in 5 seconds. Also, alumina substrate 4
The adhesive strength to the support container 3 is 100 to 500 g/m
m2, and showed sufficient strength for practical use.
支持容器3の材質は、Fe−Ni−Co合金、Fe−C
r合金、Fe−Ni合金、Tiの群から選ばれた一種で
あることが望ましい。これは、アルミナ基板4の熱膨張
係数が約80×10−7/℃であるので、ロウ付接着後
の残留熱歪をできるだけ小さくするために支持容器3の
熱膨張係数は(50〜110 )X 10−7/’Cで
あることが望ましいからである。The material of the support container 3 is Fe-Ni-Co alloy, Fe-C
It is preferable to use one selected from the group consisting of r alloy, Fe-Ni alloy, and Ti. This is because the thermal expansion coefficient of the alumina substrate 4 is approximately 80 x 10-7/°C, so in order to minimize the residual thermal distortion after soldering and bonding, the thermal expansion coefficient of the support container 3 is (50 to 110). This is because it is desirable that X 10-7/'C.
また、ロウ材は銀−銅共晶銀ロウが望ましい。Further, the solder material is preferably silver-copper eutectic silver solder.
これは、この共晶銀ロウは箔状に加工するのが容易であ
り、工業的にも箔状で多く利用されていることによる。This is because this eutectic silver solder is easy to process into a foil shape and is often used industrially in a foil shape.
アルミナ基板4の他の表面と支持容器3との間に箔状銀
ロウを配置して、真空中で加熱することにより両者は容
易にロウ付接着される。A foil-like silver solder is placed between the other surface of the alumina substrate 4 and the support container 3, and the two are easily soldered and bonded by heating in vacuum.
また感温抵抗体膜はSiCスパッタ膜であることが望ま
しい。これは、SiCスパッタ膜は耐熱性に優れるとと
もに各種調理に必要な広い温度領域(30〜300°C
)にわたる温度検出に適した特性を有することによる。Further, it is desirable that the temperature sensitive resistor film is a SiC sputtered film. This is because the SiC sputtered film has excellent heat resistance and a wide temperature range (30 to 300°C) required for various types of cooking.
) by having characteristics suitable for temperature detection over
なお、Ti膜10の代りにZr膜を用いても同様の結果
か得られる。Note that similar results can be obtained even if a Zr film is used instead of the Ti film 10.
発明の効果
本発明の薄膜サーミスタによれば、従来と同程度の高速
応答性を保持しつつ次の効果が得られる。Effects of the Invention According to the thin film thermistor of the present invention, the following effects can be obtained while maintaining high-speed response comparable to that of the conventional one.
支持容器の表面にTi膜またはZr膜を形成することに
よりセラミック絶縁基板と支授容器とがロウ付接着され
る、すなわち、メタライズ膜は全く用いられていないの
で、厚膜の電極膜が使用できる。この厚膜の電極膜はメ
タライズ電極膜に比べ融点が低いので、リード線の溶接
接続が容易であり、かつ溶接の信頼性も高い。また、メ
タライズ電極膜は還元雰囲気中1400℃以上の焼成に
より形成されるのに対し、厚膜の電極膜は、空気中60
0〜1000℃の焼成により形成される。By forming a Ti film or a Zr film on the surface of the support container, the ceramic insulating substrate and the support container are bonded by brazing.In other words, no metallized film is used, so a thick electrode film can be used. . Since this thick electrode film has a lower melting point than a metallized electrode film, lead wires can be easily welded and welded with high reliability. In addition, metallized electrode films are formed by firing at temperatures of 1400°C or higher in a reducing atmosphere, whereas thick electrode films are formed by firing at temperatures of 60°C or higher in air.
It is formed by firing at 0 to 1000°C.
したがって、特殊な設備を用いることなく容易に電極膜
を形成することができ、製造コスト低減の効果を奏する
。Therefore, the electrode film can be easily formed without using special equipment, and the manufacturing cost can be reduced.
第1図、第2図は従来の構成を示す断面図、第3図は本
発明の一実施例の薄膜サーミスタの構成を示す断面図で
ある。
3・・・・・支持容器、4・・・・・・平板状セラミッ
ク絶縁基板、5・・・・・・電極膜、6・・・・・感温
抵抗体膜、7・・・・・・リード線、9・・・・・・ロ
ウ材層、10・・・−・・Ti膜またはZr膜。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第3図FIGS. 1 and 2 are cross-sectional views showing the conventional structure, and FIG. 3 is a cross-sectional view showing the structure of a thin film thermistor according to an embodiment of the present invention. 3... Support container, 4... Flat ceramic insulating substrate, 5... Electrode film, 6... Temperature sensitive resistor film, 7... - Lead wire, 9... Brazing material layer, 10... Ti film or Zr film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3
Claims (1)
方の表面に形成された電極膜および感温抵抗体膜と、ロ
ウ利潤と、表面にチタニウム膜またはジルコニウム膜の
形成された支持容器とから成り、前記絶縁基板の他の表
面と前記支持容器とかロウ利層によりロウ付接着された
薄膜サーミスタ。 (′2J 支持容器の利層か鉄−ニッケルーコバルト合
金、1ツノ、−クロム合金、鉄−ニソヶル合金、チタニ
ウノ、の11′Iから選はれた一種である特許請求の範
囲第1項記載の薄膜サーミスタ。 (3)ロウ伺か銀−銅共品銀ロウである特許請求の範囲 (4)感温抵抗体膜が炭化硅素スパッタ膜である特許請
求の範囲第1項記載の薄膜サーミスタ。[Claims] (1) A flat ceramic insulating substrate, an electrode film and a temperature-sensitive resistor film formed on one surface of the insulating substrate, a wax film, and a titanium film or zirconium film formed on the surface. and a support container which is bonded to the other surface of the insulating substrate and the support container by a soldering layer. ('2J) Claim 1 states that the layer of the support container is a type selected from 11'I of iron-nickel-cobalt alloy, chromium alloy, iron-nisogal alloy, and titanium alloy. (3) The thin film thermistor according to claim 1, wherein the temperature sensitive resistor film is a silicon carbide sputtered film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3663084A JPS60179619A (en) | 1984-02-28 | 1984-02-28 | Thin film thermistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3663084A JPS60179619A (en) | 1984-02-28 | 1984-02-28 | Thin film thermistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60179619A true JPS60179619A (en) | 1985-09-13 |
Family
ID=12475150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3663084A Pending JPS60179619A (en) | 1984-02-28 | 1984-02-28 | Thin film thermistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60179619A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62145803A (en) * | 1985-12-20 | 1987-06-29 | 松下電器産業株式会社 | Manufacture of thin film thermistor |
-
1984
- 1984-02-28 JP JP3663084A patent/JPS60179619A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62145803A (en) * | 1985-12-20 | 1987-06-29 | 松下電器産業株式会社 | Manufacture of thin film thermistor |
JPH0553042B2 (en) * | 1985-12-20 | 1993-08-09 | Matsushita Electric Ind Co Ltd |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW535172B (en) | Thermistor and method of manufacture | |
JPH0749277A (en) | Pressure sensor and manufacture thereof | |
JPS60179619A (en) | Thin film thermistor | |
JPS6157682B2 (en) | ||
JPS5831502A (en) | Thin film thermistor | |
JPS6155055B2 (en) | ||
JPH0996571A (en) | Heat receiving body of temperature sensor | |
JPS61245502A (en) | Thin film thermistor | |
JPH06337229A (en) | Temperature detection element and applied element thereof | |
JPS5946401B2 (en) | thermistor | |
JPS622683B2 (en) | ||
JPS6219954Y2 (en) | ||
JPS5932041B2 (en) | thin film thermistor | |
JPS5924521B2 (en) | thin film thermistor | |
JPS5932042B2 (en) | thermistor | |
JPS6150361B2 (en) | ||
JP2727541B2 (en) | Manufacturing method of thin film thermistor | |
JPH01270302A (en) | Thin film thermistor | |
JPS6057904A (en) | Thin film thermistor | |
JPS62219502A (en) | Thin film thermistor | |
JPS62145803A (en) | Manufacture of thin film thermistor | |
JPH0342485B2 (en) | ||
JPS5831501A (en) | Thin film thermistor | |
JPS61161701A (en) | Thermistor | |
JPS58103102A (en) | Thin film thermistor |