JPS5831502A - Thin film thermistor - Google Patents

Thin film thermistor

Info

Publication number
JPS5831502A
JPS5831502A JP12995481A JP12995481A JPS5831502A JP S5831502 A JPS5831502 A JP S5831502A JP 12995481 A JP12995481 A JP 12995481A JP 12995481 A JP12995481 A JP 12995481A JP S5831502 A JPS5831502 A JP S5831502A
Authority
JP
Japan
Prior art keywords
film
support container
thermistor
thin film
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12995481A
Other languages
Japanese (ja)
Inventor
彪 長井
一志 山本
郁夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12995481A priority Critical patent/JPS5831502A/en
Publication of JPS5831502A publication Critical patent/JPS5831502A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、温度を検出すべき対象物と機械的に接触して
温度を検出するサーミスタ、たとえば鍋物調理をする際
鍋底を通して鍋内部の調理物の温度を検出するサーミス
タに関するものである。
Detailed Description of the Invention The present invention relates to a thermistor that detects temperature by mechanically contacting an object whose temperature is to be detected, such as a thermistor that detects the temperature of food inside a pot through the bottom of the pot when cooking food in a pot. It is related to.

従来、この1温度検出は第1図に示す如く鍋底1に熱電
対2を機械的に接触させ、前記熱電対2の熱起電力を検
出することによってなされていた。
Conventionally, this temperature detection has been carried out by mechanically bringing a thermocouple 2 into contact with the pot bottom 1 and detecting the thermoelectromotive force of the thermocouple 2, as shown in FIG.

この時熱電対2を鍋底1に機械的に強固に接触させる為
に熱電対2は支持容器3に固定されていた。
At this time, the thermocouple 2 was fixed to the support container 3 in order to bring the thermocouple 2 into strong mechanical contact with the pot bottom 1.

しかし熱起電力は通常小さな値しか得られないという欠
点があった。たとえばアルメル−クロメル熱電対は耐熱
性(空気中6oo〜10oO℃)に優れまた安価である
が、−40μv/℃の起電力しか発生しない。銅−コン
スタンタン熱電対、白金−白金・ロジウム熱電対もその
熱起電力は(30〜eo)μV/’Cしか得られないの
みならず、耐熱性が小さい(銅−コンスタンタン熱電対
)、高価である(白金−白金ロジウム熱電対)などの欠
点があった。その他種々の熱電対が存在するが、いずれ
も上記の如き欠点を有していた。上記の如□く小さな熱
起電力を電気的に検出して、熱源の発熱量を制御する場
合電気的に大きな増巾をしなければならないので価格が
高くなる、複雑な電気回路が必要になるなどの欠点も3
良生した。
However, the thermoelectromotive force usually has the drawback that only a small value can be obtained. For example, an alumel-chromel thermocouple has excellent heat resistance (60 to 100°C in air) and is inexpensive, but it generates an electromotive force of only -40 μv/°C. Copper-constantan thermocouples and platinum-platinum/rhodium thermocouples not only provide a thermoelectromotive force of only (30 to eo) μV/'C, but also have low heat resistance (copper-constantan thermocouples) and are expensive. There were drawbacks such as (platinum-platinum-rhodium thermocouple). Various other thermocouples exist, but all of them have the drawbacks mentioned above. As mentioned above, when controlling the amount of heat generated by a heat source by electrically detecting a small thermoelectromotive force, a large electrical amplification is required, which increases the price and requires a complicated electrical circuit. There are also 3 drawbacks such as
He lived a good life.

他方上記熱電対に代ってサーミスタを用いて温度検出を
する場合、抵抗値の温度に対する変化率は(,1〜7%
/℃)の大きな値を得られる。従って複雑な電気回路を
必要とせず、また低価格になるなどの長所を有する。こ
の場合サーミスタ素子はできるだけ小さくして、熱容量
を小さくしたものが選ばれる。これは小型化により熱応
答性を速くできるからである。この様な小型のサーミス
ター  素子には、Fe、Ni、Go、Mn などの複
合酸化物焼結体を感温抵抗体に用いたビード型サーミス
タ素子、あるいは上記複合酸化物、Go、 Si、 S
iCなどの薄膜を感温抵抗体に用いた薄膜サーミスタ素
子がある。しかしビード型サーミスタ素子は、通常。
On the other hand, when temperature is detected using a thermistor instead of the above thermocouple, the rate of change in resistance value with respect to temperature is (1 to 7%).
/°C) can be obtained. Therefore, it does not require a complicated electric circuit and has the advantage of being low cost. In this case, the thermistor element is selected to be as small as possible and to have a low heat capacity. This is because miniaturization allows for faster thermal response. Such small-sized thermistor elements include bead-type thermistor elements using composite oxide sintered bodies such as Fe, Ni, Go, and Mn as the temperature-sensitive resistor, or composite oxides such as those mentioned above, Go, Si, and S.
There is a thin film thermistor element that uses a thin film such as iC as a temperature sensitive resistor. However, bead-type thermistor elements are usually used.

球形もしくは回転楕円体に類似した形状を有するので、
支持容器3にこのサーミスタ素子を固定しても熱抵抗が
大きくなるという欠点があった。すなわち、サー・ミス
タ素子自身の熱容量は小さくても、その複雑な形状のた
めに支持容器3との接続部での熱抵抗を小さくすること
が困難であり、この結果熱応答性が遅くなるという欠点
があった。
Because it has a shape similar to a sphere or a spheroid,
Even if this thermistor element was fixed to the support container 3, there was a drawback that the thermal resistance became large. In other words, even though the thermal capacity of the thermistor element itself is small, it is difficult to reduce the thermal resistance at the connection part with the support container 3 due to its complicated shape, and as a result, the thermal response becomes slow. There were drawbacks.

他方、薄膜サーミスタ素子は第2図に示す如く支持容器
3とロウ付接続できるので、高速応答性が得られるとい
う利点があった。しかしこの場合次のような欠点も同時
に生じていた。すなわち、よび前述した薄膜感温抵抗体
膜6を形成し、更にリード線7を電極膜6に接続して構
成されるが、このままでは薄膜サーミスタ素子を支持容
器3面にW 、 Mo などのメタライズ膜8を形成し
て、支持容器3とロウ材層9を介してロウ付接続されて
いた。しかし、W、Mo などの金属は、高融点を有し
、また酸化され易いので、メタライズ膜8は通常、弓な
どを含む還元性雰囲気中で1400以上の高温下で形成
される。このため、製造工程が複雑で、特別な設備を必
要とするのみならず高価格になるという欠点があった。
On the other hand, since the thin film thermistor element can be connected to the support container 3 by brazing as shown in FIG. 2, it has the advantage of providing high-speed response. However, in this case, the following drawbacks also occurred. That is, the above-mentioned thin film temperature sensitive resistor film 6 is formed, and the lead wire 7 is further connected to the electrode film 6. A film 8 was formed and the support container 3 was connected to the support container 3 via a brazing material layer 9 by brazing. However, since metals such as W and Mo have high melting points and are easily oxidized, the metallized film 8 is usually formed at a high temperature of 1400 °C or higher in a reducing atmosphere containing a bow or the like. Therefore, the manufacturing process is complicated and requires special equipment, as well as being expensive.

また電極膜6は耐熱性の優れた厚膜電極膜がよく用いら
れるが、厚膜電極膜は還元性雰囲気下では劣化し易く、
また耐熱性も空気中で1ooo℃以下であるので、厚膜
電極膜はメタライズ膜の形成工程に適合せず、また逆に
、メタライズ膜も厚膜電極膜の形成工程(通常、空気中
で600〜1ooo℃の高温下で焼成する)に適合しな
い。従って、第2図に示した構成では、電極膜6にもメ
タライズ膜を用いなければならない。このため、高価格
になるのみならず、電極膜6にリード線7を接続する際
、メタライズ膜は高融点であるので、通常よく用いられ
る溶接接続が困難になるという欠点もあった。
Further, as the electrode film 6, a thick film electrode film with excellent heat resistance is often used, but a thick film electrode film easily deteriorates in a reducing atmosphere.
In addition, the heat resistance is 100°C or less in air, so thick film electrode films are not suitable for the process of forming metallized films, and conversely, metallized films are also It is not suitable for firing at high temperatures of ~100°C). Therefore, in the configuration shown in FIG. 2, a metallized film must also be used for the electrode film 6. This not only increases the price, but also has the disadvantage that when connecting the lead wire 7 to the electrode film 6, it is difficult to perform the commonly used welding connection since the metallized film has a high melting point.

本発明はこれら従来の欠点を解消した薄膜サーミスタを
提供するものである。
The present invention provides a thin film thermistor that overcomes these conventional drawbacks.

本発明の要旨は一実施例である第3図に示す通り、平板
状セラミック絶縁基板4の一方の表面に電極膜6と感温
抵抗体膜6とを形成して成る薄膜サーミスタチップと支
持容器3とを接続して構成され □るサーミスタにおい
て、前記セラミック絶縁基板4の他の表面にチタニウム
膜10またはジルコニウム膜10を形成し、このチタニ
ウム膜10またはジルコニウム膜1oと支持容器3とを
ロウ付接続する点にある。ロウ付接続はロウ材層9を介
してなされる。
The gist of the present invention is to show a thin film thermistor chip and a support container formed by forming an electrode film 6 and a temperature sensitive resistor film 6 on one surface of a flat ceramic insulating substrate 4, as shown in FIG. 3 which is an embodiment. 3, a titanium film 10 or a zirconium film 10 is formed on the other surface of the ceramic insulating substrate 4, and the titanium film 10 or zirconium film 1o and the support container 3 are brazed together. At the point of connection. The soldered connection is made via the brazing material layer 9.

セラミック絶縁基板4には、アルミナ、ムライト、ステ
アタイトなどがよく用いられる。通常、この種セラミッ
ク絶縁基板4とロウ材9とは、互いに濡れ合わない、す
なわち化学的な結合力は両者の間で殆んど存在しない。
Alumina, mullite, steatite, etc. are often used for the ceramic insulating substrate 4. Normally, this type of ceramic insulating substrate 4 and the brazing material 9 do not wet each other, that is, there is almost no chemical bonding force between them.

このためセラミック絶縁基板4のロウ付接続は困難であ
った。しかし、本発明のサーミスタチップは他の表面に
チタニウム膜10またはジルコニウム膜1oを形成して
いるので、ロウ材9と濡れ合う結果、支持容器3にロウ
材できる。チタニウム膜1oまたはジルコニウム膜1o
は真空蒸着法、スパッタリング法により容易に形成でき
る。真空蒸着法の場合、1o−5torr 、以下の真
空中でチタニウムまたはジルコニウムを蒸発させて、こ
れ等の膜を形成するが、このときサーミスタチップは高
々3oO℃程度に加熱されるだけなので、電極膜5とし
て厚膜電極膜を使用できる。スパッタリング法の場合も
、1o−1torr〜10  torrの真空中で処理
される以外真空蒸着とほぼ同様なので、厚膜電極膜を使
用できる。すなわち、本発明の構成は厚膜電極膜の形成
工程に適合できる。このため、低価格になるのみならず
、電極膜6へのリード線7の溶接接続も容易にできる。
For this reason, it has been difficult to connect the ceramic insulating substrate 4 with brazing. However, since the thermistor chip of the present invention has the titanium film 10 or the zirconium film 1o formed on the other surface, the brazing material 9 is wetted with the brazing material 9, so that the brazing material is formed in the support container 3. Titanium film 1o or zirconium film 1o
can be easily formed by a vacuum evaporation method or a sputtering method. In the case of the vacuum evaporation method, titanium or zirconium is evaporated in a vacuum of 10-5 torr or less to form these films, but at this time the thermistor chip is only heated to about 300°C, so the electrode film is As 5, a thick film electrode film can be used. The sputtering method is almost the same as vacuum deposition except that it is processed in a vacuum of 10-1 to 10 torr, so a thick electrode film can be used. That is, the structure of the present invention can be adapted to the process of forming a thick film electrode film. Therefore, not only is the cost low, but also the lead wire 7 can be easily connected to the electrode film 6 by welding.

なお、チタニウム膜10またはジルコニウム膜10の代
りに、他の金属膜を形成することも考えられるが、セラ
ミック絶縁基板4との付着力が強固であること、ロウ材
9の融点より高い融点を有することおよびロウ付時にこ
の金属膜が大部分ロウ材e中に拡散しないことなどを考
慮するとチタニウム膜10またはジルコニウム膜10が
よい。
Note that it is possible to form another metal film instead of the titanium film 10 or the zirconium film 10, but it must have strong adhesion to the ceramic insulating substrate 4 and have a melting point higher than the melting point of the brazing material 9. Considering the fact that most of this metal film does not diffuse into the brazing material e during brazing, the titanium film 10 or the zirconium film 10 is preferable.

すなわち、金、銀、銅、白金などはセラミック絶縁基板
4との付着力が弱く、かつロウ付時に殆んど全量がロウ
材9中に拡散してしまう欠点がある。
That is, gold, silver, copper, platinum, and the like have a drawback that their adhesion to the ceramic insulating substrate 4 is weak, and almost all of them diffuse into the brazing material 9 during brazing.

またタングステン、モリブデンなどは上記付着力が弱い
という欠点がある。またアルミニウム、亜鉛、スズなど
は融点が低いという欠点がある。他方、チタニウム、ジ
ルコニウムは前述の条件を全て満足する点で最適である
Furthermore, tungsten, molybdenum, and the like have the drawback of weak adhesion. Also, aluminum, zinc, tin, etc. have a drawback of having a low melting point. On the other hand, titanium and zirconium are optimal in that they satisfy all of the above conditions.

支持容器3の材質はjバール合金、チタニウム。The material of the support container 3 is J-var alloy and titanium.

タンタル、白金、ステンレス鋼、鉄−ニッケル合金など
の群から選ばれることが望ましい。これはセラミック絶
縁基板4の熱膨張係数が(SO〜90)X 10 ””
 7/ ℃であるので、支持容器3のそれも類似の値で
あることが望ましいからである。
Preferably, it is selected from the group of tantalum, platinum, stainless steel, iron-nickel alloy, etc. This means that the thermal expansion coefficient of the ceramic insulating substrate 4 is (SO~90)
7/°C, it is desirable that the support container 3 has a similar value.

ロウ材9は銅ロウ、銀ロウでもよいが、銀−銅共晶銀ロ
ウが優れている。これは、この銀ロウ材は箔状に加工す
るのが容易であり、工業的にも多く箔状で利用されてい
るので、本発明のサーミスタを形成するとき、支持容器
3とセラミック絶縁基板4との間に箔状ロウ材を設置し
て真空中で〜80o℃に加熱することにより容易にロウ
付接続できるからである。
The solder material 9 may be copper solder or silver solder, but silver-copper eutectic silver solder is better. This is because this silver brazing material is easy to process into a foil shape and is often used industrially in a foil shape. This is because brazing connection can be easily achieved by placing a foil brazing material between the two and heating it to ~80°C in a vacuum.

実施例 アルミナ基板4の一方の表面にAu −P を電極膜6
とStC感温抵抗体膜6を形成したのちチタニウム膜1
oを真空蒸着法で形成した。こののちステンレス鋼より
成る支持容器3に、銀−銅共晶銀ロウ材9を介してロウ
付接続をした。次に白金線7をAu−Pt電極膜6に溶
接接続した。このようにして形成したサーミスタの90
%応答時間を測定した。eo%応答時間は、最初T1℃
に保たれた第1図鍋底の温度が突然T2℃に変化したと
き1薄膜サーミスタチツプの温度がT1+o、e(T2
−T1) ℃になるに要する時間で、T1−室温、T2
=〜10゜℃で測定した。この結果、eo%応答時間は
3〜5 secで、第2図構成の場合とほぼ同じ高速応
答性を示した。またアルミナ基板4の支持容器3に対す
る接着強度は1oO〜6ooy/−であり、充分実用に
耐える強度を示した。更に、空気中360℃−室温水中
の熱衝撃試験を10ooサイクル行って゛も、ロウ付接
続部の機械的劣化は観察されずまた熱応答性も殆んど変
化しなかった。
Example An electrode film 6 of Au-P is formed on one surface of the alumina substrate 4.
After forming a StC temperature sensitive resistor film 6, a titanium film 1 is formed.
o was formed by vacuum evaporation. Thereafter, a brazing connection was made to a support container 3 made of stainless steel via a silver-copper eutectic silver brazing material 9. Next, the platinum wire 7 was connected to the Au-Pt electrode film 6 by welding. 90 of the thermistor formed in this way
% response time was measured. eo% response time is initially T1℃
When the temperature of the bottom of the pot in Figure 1, which was maintained at
- T1) The time required to reach °C, T1 - room temperature, T2
= ~10°C. As a result, the eo% response time was 3 to 5 seconds, showing almost the same high-speed response as the configuration shown in FIG. Further, the adhesive strength of the alumina substrate 4 to the support container 3 was 1 to 6 ooy/-, indicating a strength sufficient for practical use. Furthermore, even when a thermal shock test was conducted in air at 360° C. and in room temperature water for 10 cycles, no mechanical deterioration of the brazed joint was observed, and there was almost no change in thermal response.

3図は本発明の一実施例の薄膜サーミスタの構成を示す
断面図である。
FIG. 3 is a sectional view showing the structure of a thin film thermistor according to an embodiment of the present invention.

3・・・・・・・支持容器、4・・・・・・セラミック
絶縁基板、6・・・・・・電極膜、6・・・・・・感温
抵抗体膜、7・・・・・・リード線、9・・・・・・ロ
ウ材層、10・・・・・・チタニウム膜またはジルコニ
ウム膜。
3... Support container, 4... Ceramic insulating substrate, 6... Electrode film, 6... Temperature sensitive resistor film, 7... ... Lead wire, 9 ... Brazing material layer, 10 ... Titanium film or zirconium film.

Claims (1)

【特許請求の範囲】 (1)平板状セラミック絶縁基板の一方の表面に電極膜
と感温抵抗体膜とを形成して成る薄膜サーミスタチップ
と支持容器とを接続して構成され、前記セラミック絶縁
基板の他の表面にチタニウム膜またはジルコニウム膜を
形成し、このチタニウム膜またはジルコニウム膜と支持
容器とをロウ付接続した薄膜サーミスタ。 (?)支持容器の材質がコバール合金、チタニウム。 り/タル、白金、ステンレス鋼、鉄−ニッケル合金の群
から選ばれた1種である特許請求の範囲第1項記載の薄
膜サーミスタ。゛ (3)  ロウ材が銀−鋼共晶銀ロウである特許請求の
範囲第1項記載の薄膜サーミスタ。
[Scope of Claims] (1) A thin-film thermistor chip formed by forming an electrode film and a temperature-sensitive resistor film on one surface of a flat ceramic insulating substrate and a support container are connected, and the ceramic insulating A thin film thermistor in which a titanium film or zirconium film is formed on the other surface of the substrate, and the titanium film or zirconium film is connected to a support container by brazing. (?) The material of the support container is Kovar alloy and titanium. The thin film thermistor according to claim 1, which is one selected from the group consisting of metal/tal, platinum, stainless steel, and iron-nickel alloy. (3) The thin film thermistor according to claim 1, wherein the solder material is a silver-steel eutectic silver solder.
JP12995481A 1981-08-19 1981-08-19 Thin film thermistor Pending JPS5831502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12995481A JPS5831502A (en) 1981-08-19 1981-08-19 Thin film thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12995481A JPS5831502A (en) 1981-08-19 1981-08-19 Thin film thermistor

Publications (1)

Publication Number Publication Date
JPS5831502A true JPS5831502A (en) 1983-02-24

Family

ID=15022537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12995481A Pending JPS5831502A (en) 1981-08-19 1981-08-19 Thin film thermistor

Country Status (1)

Country Link
JP (1) JPS5831502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172667A (en) * 1987-12-28 1989-07-07 Nissan Motor Co Ltd Oil pressure control device for transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172667A (en) * 1987-12-28 1989-07-07 Nissan Motor Co Ltd Oil pressure control device for transmission

Similar Documents

Publication Publication Date Title
TW535172B (en) Thermistor and method of manufacture
KR20090008352A (en) Ceramic heater and method of securing a thermocouple thereto
US4001586A (en) Thick film sensor and infrared detector
US4424507A (en) Thin film thermistor
JP2017523415A (en) SENSOR ELEMENT, SENSOR DEVICE, AND METHOD FOR MANUFACTURING SENSOR ELEMENT AND SENSOR DEVICE
JPH02213733A (en) Electrothermal sensor
JPS6143402A (en) Method of producing thermistor
JP2003506705A (en) High temperature detector and manufacturing method thereof
JPS5831502A (en) Thin film thermistor
JPS6155055B2 (en)
JPS60179619A (en) Thin film thermistor
JPS5951503A (en) Thermistor
JPS6219954Y2 (en)
JPS6157682B2 (en)
JPS6057904A (en) Thin film thermistor
JPH0342485B2 (en)
JPS5946401B2 (en) thermistor
JPS5932041B2 (en) thin film thermistor
JPS6150361B2 (en)
JPS5932042B2 (en) thermistor
JPS5924521B2 (en) thin film thermistor
JPS58103102A (en) Thin film thermistor
JPS5951502A (en) Thermistor
JPS60170901A (en) Thermistor
JPS622683B2 (en)