JPS58103102A - Thin film thermistor - Google Patents

Thin film thermistor

Info

Publication number
JPS58103102A
JPS58103102A JP20273181A JP20273181A JPS58103102A JP S58103102 A JPS58103102 A JP S58103102A JP 20273181 A JP20273181 A JP 20273181A JP 20273181 A JP20273181 A JP 20273181A JP S58103102 A JPS58103102 A JP S58103102A
Authority
JP
Japan
Prior art keywords
thin film
film
thermistor
temperature
film thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20273181A
Other languages
Japanese (ja)
Other versions
JPS622685B2 (en
Inventor
彪 長井
一志 山本
郁夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20273181A priority Critical patent/JPS58103102A/en
Priority to US06/363,498 priority patent/US4424507A/en
Priority to EP82301808A priority patent/EP0063445B1/en
Priority to DE8282301808T priority patent/DE3268363D1/en
Publication of JPS58103102A publication Critical patent/JPS58103102A/en
Publication of JPS622685B2 publication Critical patent/JPS622685B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、11度を検出すべき対象物と機械的に接触し
て温度を検出するサーミスタ、たとえば鍋物調理をする
際鍋底を通して鍋内部の調理物の温° 度を検出するサ
ーミスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a thermistor that detects temperature by mechanically contacting an object to detect 11 degrees. This relates to a thermistor for detection.

2 .− 従来、この種温度検出は第1図に示す如く鍋底1に熱電
対2を機械的に接触せしめ、前記熱電対2の熱起電力を
検出することによってなされていた。この時熱電対2を
鍋底1に機械的に強固に接触せしめる為に熱電対2は支
持容器3に固定されていた。しかし熱起電力は通常率さ
な値しか得られないという欠点があった。たとえがアル
メル−クロメル熱電対は耐熱性(空気中600〜100
0℃)に優れまた安価であるが、〜4oμv/℃の起電
力しか発生しない。銅−コンスタンタン熱電対、白金−
白金Φロジウム熱電対もその熱起電力は(30〜eo)
μV/℃Lか得られないのみならず、耐熱性が小さい(
銅−コンスタンタン熱電対)。
2. - Conventionally, this type of temperature detection has been carried out by mechanically bringing a thermocouple 2 into contact with the pot bottom 1 and detecting the thermoelectromotive force of the thermocouple 2, as shown in FIG. At this time, the thermocouple 2 was fixed to the support container 3 in order to bring the thermocouple 2 into strong mechanical contact with the pot bottom 1. However, the thermoelectromotive force usually has the disadvantage that only a small value can be obtained. For example, an alumel-chromel thermocouple has a heat resistance (600 to 100 in air).
0°C) and is inexpensive, but only generates an electromotive force of ~4oμv/°C. Copper-constantan thermocouple, platinum-
The thermoelectromotive force of a platinum Φ rhodium thermocouple is (30~eo)
Not only is it not possible to obtain μV/℃L, but the heat resistance is low (
copper-constantan thermocouple).

高価である(白金−白金ロジウム熱電対)などの欠点が
あった。その他種々の熱電対が存在するが、いずれも上
記の如き欠点を有していた。上記の如く小さな熱起電力
を電気的に検出して、熱源の発熱量を制御する場合電気
的に大きな増巾をしなければならないので価格が高くな
る。複雑な電気回路が必要になるなどの欠点も派生した
It had drawbacks such as being expensive (platinum-platinum-rhodium thermocouple). Various other thermocouples exist, but all of them have the drawbacks mentioned above. When controlling the amount of heat generated by a heat source by electrically detecting a small thermoelectromotive force as described above, a large electrical amplification is required, which increases the price. There were also disadvantages such as the need for complex electrical circuits.

3ページ 他方上記熱電対に代ってサーミスタを用いて温度検出を
する場合、抵抗値の温度に対する変化率は(1〜7%/
℃)の大きな値を得られる。従って複雑な電気回路を必
要とせず、また低価格になるなどの長所を有する。この
場合サーミスタ素子はできるだけ小さくして、熱容量を
小さくしたものが選ばれる。これは小型化により熱応答
性を速くできるからである。この様な小型のサーミスタ
素子には、Fe、Ni、Co、Mnなどの複合酸化物焼
結体を感温抵抗体に用いたビード型サーミスタ素子、あ
るいは上記複合酸化物、Go、!3i、SiCなどの薄
膜を感温抵抗体に用いた薄膜サーミスタ素子がある。し
かしビート型サーミスタ素子は、通常、球形本しくは回
転楕円体に類似した形状を有するので、支持容器3にこ
のサーミスタ素子を固定しても熱抵抗が大きくなるとい
う欠点があった。
Page 3 On the other hand, when temperature is detected using a thermistor instead of the above thermocouple, the rate of change in resistance value with respect to temperature is (1 to 7%/
℃) can be obtained. Therefore, it does not require a complicated electric circuit and has the advantage of being low cost. In this case, the thermistor element is selected to be as small as possible and to have a low heat capacity. This is because miniaturization allows for faster thermal response. Such small-sized thermistor elements include bead-type thermistor elements using composite oxide sintered bodies such as Fe, Ni, Co, and Mn as temperature-sensitive resistors, or composite oxides such as those mentioned above, Go,! There is a thin film thermistor element using a thin film of 3i, SiC, etc. as a temperature sensitive resistor. However, since the beat-type thermistor element usually has a shape similar to a sphere or a spheroid, there is a drawback that even if the thermistor element is fixed to the support container 3, the thermal resistance becomes large.

すなわち、サーミスタ素子自身の熱容量は小さくても、
その複雑な形状のために支持容器3との接続部での熱抵
抗を小さくすることが困難であり。
In other words, even if the thermistor element itself has a small heat capacity,
Due to its complicated shape, it is difficult to reduce the thermal resistance at the connection with the support container 3.

この結果熱応答性が遅くなるという欠点があった。As a result, there was a drawback that the thermal response became slow.

4/、−ジ 他方、薄膜サーミスタテップは第2図に示す如く支持容
器3とロウ付接続できるので、高速応答性が得られると
いう利点があった。薄膜サーミスタチップは通常、アル
ミナなどの平板状セラミック絶縁基板4の一方の表面に
電極膜5および感温抵抗体膜6を形成して構成され、さ
らに電極膜6にリード線7が接続される。薄膜サーミス
タテップと支持容器3とのロウ付接続はゲタニウムTi
箔もしくはジルコニウムZr箔8を介してロウ材層9に
よりなされる。しかしこの場合電極膜6と感温抵抗体膜
6とは外部雰囲気に対して露出しているので、水滴など
の導電性の汚れに対して特性変化を生じるという欠点が
あった。
On the other hand, since the thin film thermistor step can be connected to the support container 3 by brazing as shown in FIG. 2, it has the advantage of providing high-speed response. A thin film thermistor chip is usually constructed by forming an electrode film 5 and a temperature sensitive resistor film 6 on one surface of a flat ceramic insulating substrate 4 made of alumina or the like, and further, a lead wire 7 is connected to the electrode film 6. The brazed connection between the thin film thermistor tip and the support container 3 is made of getanium Ti.
This is done by using a brazing material layer 9 via a foil or zirconium Zr foil 8. However, in this case, since the electrode film 6 and the temperature-sensitive resistor film 6 are exposed to the external atmosphere, there is a drawback that characteristics change due to conductive dirt such as water droplets.

本発明は電極膜6と感温抵抗体膜6とを含む絶縁基板の
全表面を保護することを目的とする。
The present invention aims to protect the entire surface of the insulating substrate including the electrode film 6 and the temperature sensitive resistor film 6.

本発明の要旨は平板状セラミック絶縁基板の一方の表面
に電極膜と感温抵抗膜とを形成して成る薄膜サーミスタ
テップと支持容器とをチタニウムTi箔もしくはジルコ
ニウムZr箔を介してロウ付接続し、前記薄膜サーミス
タチップの電極膜と6ページ 感温抵抗体膜が形成された前記平板状′セラミック絶縁
基板の全表面を、熱膨張係数が(40〜60)X 10
””/Cの硝子で被覆したことにある0このように本発
明の高速応答性薄膜サーミスタでは、電極膜と感温抵抗
体膜が形成された平板状セラミック絶縁基板の全表面を
電気的に絶縁性の硝子で被覆しているので、水滴などの
導電性の汚れから薄膜サーミスタテップを保護できる。
The gist of the present invention is to connect a thin film thermistor step, which is formed by forming an electrode film and a temperature-sensitive resistance film on one surface of a flat ceramic insulating substrate, to a support container by brazing via a titanium Ti foil or a zirconium Zr foil. , the entire surface of the flat ceramic insulating substrate on which the electrode film of the thin film thermistor chip and the temperature sensitive resistor film are formed has a coefficient of thermal expansion of (40 to 60) x 10.
0 As described above, in the fast-response thin-film thermistor of the present invention, the entire surface of the flat ceramic insulating substrate on which the electrode film and the temperature-sensitive resistor film are formed is electrically coated with glass of ""/C. Since it is coated with insulating glass, the thin film thermistor tip can be protected from conductive dirt such as water droplets.

このとき硝子の熱膨張係数は(40〜e o ) x 
1o−’/℃の範囲にあることが望ましい。これはこの
範囲内に熱膨張係数を選ぶことによ、シ硝子被覆膜はク
ラック、ピンホールのないち密な膜を形成できるが1.
この範囲外の場合、クラック、ピンホールが生じ易いか
らである。
At this time, the thermal expansion coefficient of glass is (40~e o ) x
It is desirable that the temperature is in the range of 1 o-'/°C. This is because by selecting a thermal expansion coefficient within this range, the glass coating film can form a dense film without cracks or pinholes.
This is because cracks and pinholes are likely to occur outside this range.

以下本発明の一実施例について第3図により説明する。An embodiment of the present invention will be described below with reference to FIG.

第3図において前述と同番号は同部材を示す。In FIG. 3, the same numbers as mentioned above indicate the same members.

7 ルミナ基板4 (1,8mWX 6.’6 m L
 X 0.6omt)の一方の表面にAu−1’を厚膜
電極6(10〜16μmt)とSiG感温抵抗体膜6(
2〜3#mt)とを6ヘージ 形成し薄膜サーミスタチップを構成した。このサーミス
タテップと支持容器3(材質S U 8−430゜0.
4wm t)とをTi箔(60μmt)8を介してロウ
材層9 (A g 7 Cu共晶合金)でロウ付接続し
た。
7 Lumina substrate 4 (1.8mWX 6.'6m L
A thick film electrode 6 (10 to 16 μm) and a SiG temperature sensitive resistor film 6 (
A thin film thermistor chip was constructed by forming 6 heges of 2 to 3 #mt). This thermistor tip and support container 3 (material S U 8-430°0.
4 wm t) were connected by brazing with a brazing material layer 9 (A g 7 Cu eutectic alloy) via a Ti foil (60 μm t) 8.

次に、AU−Pt電極膜6にリード線?(Pt線。Next, connect the AU-Pt electrode film 6 with a lead wire? (Pt line.

0.1φ)を溶接接続した。更に、ZnO−B2O3−
81o2を主成分とする硝子粉末(粒度360メツシユ
以下)トエチルセルロース、ジエチレン・グリコール・
モノ拳ノルマル・ブチル・エーテル・アセテートとの混
合流動体を別途作成し、この流動体を前記サーミスタテ
ップの全表面にわたり塗布した。こののち昇温速度約1
6℃/分、最高焼成温度66゛0℃、最高焼成温度での
保持時間約6分、降温速度約り6℃/分で前記硝子粉末
を焼成した。このようにして形成した硝子被覆膜1oは
0.2〜0.6mの厚さで、電極膜6と感温抵抗体膜6
の形成された絶縁基板4の全表面にわたり、クラック、
ピンホールが生じなかった。
0.1φ) were welded and connected. Furthermore, ZnO-B2O3-
Glass powder mainly composed of 81o2 (particle size 360 mesh or less), ethyl cellulose, diethylene glycol,
A mixed fluid with mono-fisted normal butyl ether acetate was separately prepared, and this fluid was applied over the entire surface of the thermistor tip. After this, the heating rate is about 1
The glass powder was fired at a temperature of 6°C/min, a maximum firing temperature of 660°C, a holding time of about 6 minutes at the maximum firing temperature, and a cooling rate of about 6°C/min. The glass coating film 1o formed in this way has a thickness of 0.2 to 0.6 m, and includes an electrode film 6 and a temperature-sensitive resistor film 6.
Cracks,
No pinholes were produced.

このサーミスタは空気中360℃、1000時間経過後
、また室温1,16分−空気中350’C,157ペー
ソ 分のヒートサイクルを3000サイクル印加後、沸とう
水中に8時間放置後、抵抗値変化率は±3%以下であり
、これ等試験後にもクラックは発生しなかった。また、
高湿度雰囲気中など結′露し易い状況下でも、抵抗値は
変化しなかった。
The resistance value of this thermistor changed after 1000 hours at 360°C in air, after 3000 heat cycles of 1.16 minutes at room temperature and 157 pesos at 350°C in air, and after being left in boiling water for 8 hours. The ratio was ±3% or less, and no cracks occurred even after these tests. Also,
The resistance value did not change even under conditions where condensation is likely to occur, such as in a high humidity atmosphere.

なお、本実施例では硝子材料としてZn0−B O81
02を主成分とするものを用いたが、  3 これは感温抵抗体膜6がSiC膜の場合、SiC膜の空
気中での短時間耐熱性が600〜750℃であり、他方
前記Zn0−B 0−8in2系硝子材料の 3 焼成温度が650〜740℃であるので、両者の熱的特
性が一致する点で優れているからである。
In addition, in this example, Zn0-B O81 was used as the glass material.
3 This is because when the temperature sensitive resistor film 6 is a SiC film, the short-term heat resistance of the SiC film in air is 600 to 750°C; This is because the firing temperature of the B 0-8in2 glass material is 650 to 740°C, which is excellent in that both have the same thermal properties.

従って感温抵抗体膜6の耐熱性によって、他の硝子材料
、*とえばPbo−g2o3−sto2系。
Therefore, depending on the heat resistance of the temperature-sensitive resistor film 6, other glass materials such as Pbo-g2o3-sto2 may be used.

At203−8iO2系であっても良いことは轟然であ
る。
It is obvious that the At203-8iO2 type may also be used.

以上の説明から明らかなように本発明の薄膜サーミスタ
によれば次の効果が得られる。
As is clear from the above description, the thin film thermistor of the present invention provides the following effects.

1 電極膜と感温抵抗体膜が形成された平板状セラミッ
ク絶縁基板の全表面にわたり硝子被覆膜が形成されるの
で、水滴などの導電性の汚れから薄膜サーミスタテップ
を保護できる02 硝子材料の塗布は前述のように硝子
材料と有機バインダーとの混合流動体を用いてなされる
が、このときその塗布量は混合流動体の粘度を一定に制
御することにより、はぼ一定量に維持できるので、硝子
被覆膜はほぼ均一に形成される。この結果、本薄膜サー
ミスタの熱容量もほぼ均一になるので、熱応答性の均一
化が図れる0 3 硝子被覆膜は電極膜とリード線との接続部にも形成
されるので、リード線の機械的強度を向上することがで
きる。
1. Since a glass coating film is formed over the entire surface of the flat ceramic insulating substrate on which the electrode film and temperature-sensitive resistor film are formed, the thin film thermistor tip can be protected from conductive dirt such as water droplets. 02. As mentioned above, coating is done using a mixed fluid of glass material and organic binder, but at this time, the amount of coating can be maintained at a constant level by controlling the viscosity of the mixed fluid. , the glass coating film is formed almost uniformly. As a result, the heat capacity of this thin film thermistor becomes almost uniform, so the thermal response can be made uniform. It is possible to improve the target strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱電対を用いた場合の温度検出構成を示す断面
図、第2図は従来の高速応答性薄膜サーミスタの構成を
示す断面図、第3図は本発明の高速応答性薄膜サーミス
タの構成を示す断面図である。 3・・・・・・支持容器、4・・・・・平板状セラミッ
ク9ページ 絶縁基板、6−・・・・・電極膜、6・・・・・・感温
抵抗体膜、7・−・・・・リード線、8・、・−・・・
Ti箔もしくはZr箔、9・・・・・・ロウ材層、10
・・・・・・硝子被覆膜O 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a cross-sectional view showing a temperature detection configuration using a thermocouple, FIG. 2 is a cross-sectional view showing the configuration of a conventional fast-response thin-film thermistor, and FIG. 3 is a cross-sectional view of the fast-response thin-film thermistor of the present invention. FIG. 3 is a sectional view showing the configuration. 3... Support container, 4... Flat ceramic insulating substrate, 6-... Electrode film, 6... Temperature sensitive resistor film, 7... ...Lead wire, 8...
Ti foil or Zr foil, 9... Brazing material layer, 10
...Glass coating O Agent's name: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】 1 平板状セラミック絶縁基板の一方の表面に電極膜と
感温抵抗体膜とを形成して成る薄膜サーミスタテップと
支持容器とをチタニウム箔もしくはジルコニウム箔を介
してロウ付接続し、前記薄膜サーミスタテップの電極膜
と感温抵抗体膜が形成された前記平板状セラミック絶縁
基板の全表面を、熱膨張係数が(40〜60 ) X 
10−’、々 の硝子で被覆した薄膜サーミスタ。 2 硝子被覆が酸化アニン、酸化硼素、酸化ケイ素を特
徴とする特許請求の範囲第1項記載の薄膜サーミスタ。
[Claims] 1. A thin film thermistor step formed by forming an electrode film and a temperature sensitive resistor film on one surface of a flat ceramic insulating substrate and a support container are connected by brazing via titanium foil or zirconium foil. The entire surface of the flat ceramic insulating substrate on which the electrode film and temperature-sensitive resistor film of the thin film thermistor step are formed has a coefficient of thermal expansion of (40 to 60)
10-', thin film thermistor coated with glass. 2. The thin film thermistor according to claim 1, wherein the glass coating is made of anine oxide, boron oxide, or silicon oxide.
JP20273181A 1981-04-10 1981-12-15 Thin film thermistor Granted JPS58103102A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20273181A JPS58103102A (en) 1981-12-15 1981-12-15 Thin film thermistor
US06/363,498 US4424507A (en) 1981-04-10 1982-03-30 Thin film thermistor
EP82301808A EP0063445B1 (en) 1981-04-10 1982-04-06 A thin film thermistor
DE8282301808T DE3268363D1 (en) 1981-04-10 1982-04-06 A thin film thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20273181A JPS58103102A (en) 1981-12-15 1981-12-15 Thin film thermistor

Publications (2)

Publication Number Publication Date
JPS58103102A true JPS58103102A (en) 1983-06-20
JPS622685B2 JPS622685B2 (en) 1987-01-21

Family

ID=16462222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20273181A Granted JPS58103102A (en) 1981-04-10 1981-12-15 Thin film thermistor

Country Status (1)

Country Link
JP (1) JPS58103102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287601A (en) * 1986-06-06 1987-12-14 松下電器産業株式会社 Thin film thermistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287601A (en) * 1986-06-06 1987-12-14 松下電器産業株式会社 Thin film thermistor

Also Published As

Publication number Publication date
JPS622685B2 (en) 1987-01-21

Similar Documents

Publication Publication Date Title
JP5719303B2 (en) Sensor element and method for manufacturing sensor element
US4001586A (en) Thick film sensor and infrared detector
JPH02213733A (en) Electrothermal sensor
JPH0810645B2 (en) Thin film thermistor
JPH02502753A (en) thermal radiation sensor
JP2003506705A (en) High temperature detector and manufacturing method thereof
JPS58103102A (en) Thin film thermistor
JPS62189701A (en) Sintered silicon carbide thermistor
JPH0342485B2 (en)
JPS5892201A (en) Thin film platinum temperature sensor
JPS5946401B2 (en) thermistor
JPS5831502A (en) Thin film thermistor
JPH075050A (en) Temperature sensor
JPS6057904A (en) Thin film thermistor
JPS5932042B2 (en) thermistor
JPS5884404A (en) Thin film thermistor
JPS61161701A (en) Thermistor
US2426494A (en) Heat detection device
JPH01270302A (en) Thin film thermistor
JPS60179619A (en) Thin film thermistor
JPS6157682B2 (en)
JPS6150361B2 (en)
JPS6155055B2 (en)
JPS63190301A (en) Thermistor
JPS5951502A (en) Thermistor