JPS6155055B2 - - Google Patents

Info

Publication number
JPS6155055B2
JPS6155055B2 JP13642983A JP13642983A JPS6155055B2 JP S6155055 B2 JPS6155055 B2 JP S6155055B2 JP 13642983 A JP13642983 A JP 13642983A JP 13642983 A JP13642983 A JP 13642983A JP S6155055 B2 JPS6155055 B2 JP S6155055B2
Authority
JP
Japan
Prior art keywords
brazing material
thermistor
material layer
heat
electrode film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13642983A
Other languages
Japanese (ja)
Other versions
JPS5951323A (en
Inventor
Kazushi Yamamoto
Takeshi Nagai
Ikuo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13642983A priority Critical patent/JPS5951323A/en
Publication of JPS5951323A publication Critical patent/JPS5951323A/en
Publication of JPS6155055B2 publication Critical patent/JPS6155055B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/223Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鍋物調理をする際鍋底を通して鍋内部
の調理物の温度検出をするサーミスタに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thermistor that detects the temperature of food inside a pot through the bottom of the pot when cooking food in a pot.

従来例の構成とその問題点 従来この種温度検出は第1図に示す如く鍋底1
に熱電対2を機械的に接触せしめ、前記熱電対2
の熱起電力を検出することによつてなされてい
た。この時熱電対2を鍋底1に機械的に強固に接
触せしめる為に熱電対2は支持容器3に固定され
ていた。しかし熱起電力は通常小さな値しか得ら
れないという欠点があつた。たとえばアルメルー
クロメル熱電対は耐熱性(空気中500〜1000℃)
に優れまた安価であるが、〜40μV/℃の起電力
しか発生しない。銅―コンスタン熱電対・白金―
白金・ロジウム熱電対もその熱起電力は(30〜
60)μV/℃しか得られないのみならず、耐熱性
が小さい(銅―コンスタン熱電対)・高価である
(白金―白金・ロジウム熱電対)などの欠点があ
つた。その他種々熱電対が存在するが、いずれも
上記の如き欠点を有していた。上記の如く小さな
熱起電力を電気的に検出して、熱源の発熱量を制
御する場合電気的に大きな増巾をしなければなら
ないので価格が高くなる。複雑な電気回路が必要
になるどの欠点も派生した。
Configuration of conventional example and its problems Conventionally, this type of temperature detection was performed using the bottom of the pot 1 as shown in
The thermocouple 2 is brought into mechanical contact with the thermocouple 2.
This was done by detecting the thermoelectromotive force of At this time, the thermocouple 2 was fixed to the support container 3 in order to bring the thermocouple 2 into strong mechanical contact with the pot bottom 1. However, the drawback is that thermoelectromotive force usually only has a small value. For example, Almeru Cromel thermocouples are heat resistant (500-1000℃ in air)
Although it is excellent in performance and inexpensive, it only generates an electromotive force of ~40 μV/°C. Copper - Constant thermocouple/platinum -
The thermoelectromotive force of platinum/rhodium thermocouples is (30~
60) In addition to being able to obtain only μV/°C, it also had drawbacks such as low heat resistance (copper-Constan thermocouple) and high price (platinum-platinum/rhodium thermocouple). There are various other thermocouples, but all of them have the drawbacks mentioned above. When controlling the amount of heat generated by a heat source by electrically detecting a small thermoelectromotive force as described above, a large electrical amplification is required, which increases the price. Any drawbacks derived that require complex electrical circuits.

他方上記熱電対に代つてサーミスタを用いて温
度検出をする場合、抵抗値の温度に対する変化率
は(1〜7%/℃)の大きな値を得られる。従つ
て複雑な電気回路を必要とせず、また低価格にな
るなどの長所を有する。この場合サーミスタ素子
はできるだけ小さくして、熱容量を小さくしたも
のが選ばれる。これは小型化により熱応答性を速
くできるからである。この様な小型のサーミスタ
素子、たとえば薄膜サーミスタチツプから内部リ
ード線を取り出す場合、通常耐熱、耐食性の細い
金属線、たとえば50〜200μφの金線、白金など
が選ばれる。この内部リード線は細いのでその取
扱いが困難であること、価格が高いことなど理由
により、この内部リード線に更に外部リード線を
接続して、この外部リード線を通じてサーミスタ
素子の抵抗値が、従つて温度が検出される。外部
リード線には内部リード線との接続の容易性、信
頼性あるいは耐熱性、耐食性などを考慮してステ
ンレス線、ニツケル線、鉄―クロム線などが選ば
れる。しかしこの場合内部リード線とサーミスタ
素子との接続強度は垂直方向の引張強度にして数
十〜数百gと小さいので、使用時に僅かの応力が
印加されたり、あるいは極端な場合内部リード線
と外部リード線の自重により数100〜数1000時間
後、前記接続部から断線し易いという欠点があつ
た。
On the other hand, when temperature is detected using a thermistor instead of the thermocouple, the rate of change in resistance value with respect to temperature can be as large as (1 to 7%/°C). Therefore, it has advantages such as not requiring a complicated electric circuit and being inexpensive. In this case, the thermistor element is selected to be as small as possible and to have a low heat capacity. This is because miniaturization allows for faster thermal response. When taking out an internal lead wire from such a small thermistor element, such as a thin film thermistor chip, a heat-resistant and corrosion-resistant thin metal wire, such as a gold wire or platinum wire with a diameter of 50 to 200 .mu.φ, is usually selected. Because this internal lead wire is thin and difficult to handle, and is expensive, an external lead wire is further connected to this internal lead wire, and the resistance value of the thermistor element is changed through this external lead wire. temperature is detected. For the external lead wire, stainless steel wire, nickel wire, iron-chrome wire, etc. are selected in consideration of ease of connection with the internal lead wire, reliability, heat resistance, corrosion resistance, etc. However, in this case, the connection strength between the internal lead wire and the thermistor element is small, tens to hundreds of grams in terms of tensile strength in the vertical direction, so a slight stress may be applied during use, or in extreme cases, the connection strength between the internal lead wire and the external There was a drawback in that the lead wire was easily disconnected from the connection part after several hundred to several thousand hours due to its own weight.

発明の目的 本発明はこの種従来の欠点を解消すると共に薄
膜サーミスタチツプを支持容器に機械的、熱的に
強固に接続する構造を提供するものである。
OBJECTS OF THE INVENTION The present invention overcomes the drawbacks of the prior art and provides a structure that provides a strong mechanical and thermal connection of a thin film thermistor chip to a support container.

発明の構成 本発明は少なくとも平板状絶縁性基板の一方の
表面にろう付できる電極膜と感温抵抗体膜とを形
成し、他方の表面にろう付できる接続層を設けて
なるサーミスタチツプと支持容器とを前記接続層
とろう材層Aを介して接続し、更に前記電極膜上
にろう材層Bを介して耐熱性金属板を接続する構
成である。
Structure of the Invention The present invention provides a thermistor chip and a support in which a brazing electrode film and a temperature-sensitive resistor film are formed on at least one surface of a flat insulating substrate, and a brazing connection layer is provided on the other surface. The structure is such that the connection layer is connected to the container via the brazing material layer A, and a heat-resistant metal plate is further connected to the electrode film via the brazing material layer B.

実施例の説明 本発明による一実施例のサーミスタの断面図を
第2図に示す。
DESCRIPTION OF EMBODIMENTS A cross-sectional view of a thermistor according to an embodiment of the present invention is shown in FIG.

3は支持容器、4は平板状絶縁基板、5はろう
付できる電極膜、6は感温抵抗体膜、7はろう材
層A、8は接続層、9はろう材層B、10は耐熱
性金属板である。
3 is a support container, 4 is a flat insulating substrate, 5 is an electrode film that can be soldered, 6 is a temperature-sensitive resistor film, 7 is a brazing material layer A, 8 is a connection layer, 9 is a brazing material layer B, and 10 is a heat-resistant material. It is a metal plate.

サーミスタチツプは平板形絶縁性基板4の一方
の表面に前述の電極膜5と感温抵抗体膜6とを形
成し、他方の表面に前述の接続層8を設けて構成
される。平板状絶縁性基板4には、アルミナ、ス
テアタイト、ムライト、ベリリアなどのセラミツ
クあるいは石英、硼珪酸硝子などの硝子が選ばれ
る。ろう付できる電極膜5にはAg,Ag―Pd,
Au,Au―Pd,Au―Pt,Ptなどの厚膜電極、
Au,Ag,Cu,Ni,Crなどの単層あるいは積層
蒸着電極、W,Mo,Ti,Ni,Mnなどの一種ある
いは二種以上の金属粉をメタライズしたメタライ
ズ電極などがあるが、これ等のなかでメタライズ
電極膜が最つとも優れている。これはろう付時に
メタライズ電極膜の材料がろう材中に拡散せず、
またろう材に対して良好な濡れ状態を示すのに反
して厚膜あるいは蒸着電極膜の材料はろう材中に
よく拡散し、ろう付困難であるという理由によ
る。またろう付できる接続層8は前述の電極膜5
と同一でよい。支持容器3とサーミスタチツプと
は接続層8とろう材層Aとを介して接続され、ま
た電極膜5上にろう材層B9を介して耐熱性金属
板10を接続する。ろう材には、Ag―Cu共晶ろ
う(m.p.779℃),Agろう(m.p.960℃),Au―Ni
合金ろう(m.p.950℃),Au―Cu合金ろう(m.
p.990℃),Cuろう(m.p.1083℃),更にはAg―
Cu合金ろう(m.p.600〜770℃)などが用いられ
る。また耐熱性金属板10は絶縁性基板4、特に
セラミツク基板、との熱膨張係数の相異に基づく
熱的歪みを極力小さく押えるために(30〜110)×
10-7/℃(25〜700℃)のもの、たとえばコバー
ル合金,Fe―Ni合金,ステンレス鋼,Ti,Ta,
W,Mo,Zr,Ptなどが適する。但しW,Mo,
Taなどは酸化性雰囲中の耐熱性は小さいので、
酸化防止の為の保護膜を必要とする。
The thermistor chip is constructed by forming the above-mentioned electrode film 5 and temperature-sensitive resistor film 6 on one surface of a flat insulating substrate 4, and providing the above-mentioned connection layer 8 on the other surface. For the flat insulating substrate 4, ceramic such as alumina, steatite, mullite, beryllia, or glass such as quartz or borosilicate glass is selected. The electrode film 5 that can be brazed includes Ag, Ag-Pd,
Thick film electrodes such as Au, Au-Pd, Au-Pt, Pt, etc.
There are single-layer or laminated vapor-deposited electrodes made of Au, Ag, Cu, Ni, Cr, etc., metalized electrodes made of one or more metal powders such as W, Mo, Ti, Ni, Mn, etc. Among them, the metallized electrode film is the most excellent. This is because the material of the metallized electrode film does not diffuse into the brazing material during brazing.
Another reason is that while the material of the thick film or vapor-deposited electrode film exhibits a good wettability with the brazing material, it diffuses well into the brazing material, making it difficult to braze. The connection layer 8 that can be brazed is the electrode film 5 described above.
It can be the same as The support container 3 and the thermistor chip are connected through a connection layer 8 and a brazing material layer A, and a heat-resistant metal plate 10 is connected onto the electrode film 5 through a brazing material layer B9. The filler metals include Ag-Cu eutectic solder (mp779℃), Ag solder (mp960℃), Au-Ni
Alloy solder (mp950℃), Au-Cu alloy solder (m.
p.990℃), Cu wax (mp1083℃), and even Ag―
Cu alloy solder (mp600-770℃) etc. are used. In addition, the heat-resistant metal plate 10 is (30 to 110) ×
10 -7 /℃ (25 to 700℃), such as Kovar alloy, Fe-Ni alloy, stainless steel, Ti, Ta,
W, Mo, Zr, Pt, etc. are suitable. However, W, Mo,
Ta and other materials have low heat resistance in an oxidizing atmosphere, so
Requires a protective film to prevent oxidation.

本発明のサーミスタは以上の如く電極膜5上に
耐熱性金属板10がろう付接続されているので、
内部リード線を取り出す場合、前述の如く細い金
属線を用いる必要がなく、実用的大きさの耐熱性
金属線、たとえば0.2〜0.5φのステンレス線,Fe
―Cr線,Ni―Cr線などを用いることができる。
これは耐熱性金属板10に前述の如き耐熱性金属
線を接続する際、適切なる材料の選択により充分
な機械的強度(1Kg以上)を有する溶接接続を極
めて容易に実現できるからである。
Since the thermistor of the present invention has the heat-resistant metal plate 10 connected to the electrode film 5 by brazing as described above,
When taking out the internal lead wire, there is no need to use a thin metal wire as mentioned above, and you can use a heat-resistant metal wire of a practical size, such as a stainless steel wire of 0.2 to 0.5φ, Fe
-Cr wire, Ni-Cr wire, etc. can be used.
This is because when connecting the above-mentioned heat-resistant metal wire to the heat-resistant metal plate 10, a welded connection with sufficient mechanical strength (1 kg or more) can be extremely easily realized by selecting an appropriate material.

またサーミスタチツプは支持容器3にろう付接
続されるので機械的、熱的に強固に接続される。
このときろう材層A7とろう材層B9の融点を相
互に相異させることにより以下に示す如き利点が
生じる。すなわちろう材層A7の融点をろう材層
B9の融点より低く選ぶことにより、耐熱性金属
板10を電極膜5上にろう付接続する処理を先行
して行うことができる。これはこの処理の後にろ
う材層A7を形成しても、ろう材層A7の融点が
ろう材層B9のそれより低いので、ろう材層B9
に何等影響を及ぼすことなく処理できるからであ
る。この結果耐熱性金属板10の接続を多数個同
時処理できるのみならず個々の接続の検査も容易
にできる。また内部リード線を接続したのちろう
材層A7を形成することもできる。これは電極膜
5の面積が微少な場合特に有効である。すなわち
支持容器3にサーミスタチツプを接続した後に内
部リード線を接続する場合、支持容器3が接続作
業を行い難くするからである。
Furthermore, since the thermistor chip is connected to the support container 3 by brazing, it is mechanically and thermally firmly connected.
At this time, by making the melting points of the brazing material layer A7 and the brazing material layer B9 different from each other, the following advantages arise. That is, by selecting the melting point of the brazing material layer A7 to be lower than the melting point of the brazing material layer B9, the process of brazing the heat-resistant metal plate 10 onto the electrode film 5 can be performed in advance. This is because even if the brazing material layer A7 is formed after this treatment, the melting point of the brazing material layer A7 is lower than that of the brazing material layer B9, so the brazing material layer B9
This is because it can be processed without any effect on the As a result, not only can a large number of connections of the heat-resistant metal plates 10 be processed simultaneously, but also inspection of individual connections can be easily performed. Alternatively, the brazing material layer A7 can be formed after the internal lead wires are connected. This is particularly effective when the area of the electrode film 5 is small. That is, when connecting the internal lead wires after connecting the thermistor chip to the support container 3, the support container 3 makes it difficult to perform the connection work.

次に本発明の代表的実施例を示す。 Next, typical examples of the present invention will be shown.

純度95%のアルミナ基板4の一方の表面にWメ
タライズ電極膜5とSiC感温抵抗体膜6を形成
し、他方の表面にWメタライズ接続層8を設けて
成るサーミスタチツプとステンレス鋼(sus―
430)支持容器3とを前記接続層8とAg―Cu共
晶ろう材層A7を介して接続し、更に前記電極膜
5上にAu―Cu合金ろう材層B9を介してステン
レス鋼(sus―430)耐熱性金属板10を接続し
た。これを空気中600℃の雰囲気中に1000〜2000
時間放置試験し、また室温15分→空気中600℃、
15分を1サイクルとして1000〜3000サイクルのヒ
ートサイクル試験を行つた結果、サーミスタチツ
プの剥離、割れなど異常は認められなかつた。
A thermistor chip consisting of a W metalized electrode film 5 and a SiC temperature-sensitive resistor film 6 formed on one surface of an alumina substrate 4 with a purity of 95%, and a W metalized connection layer 8 provided on the other surface, and a stainless steel (sus-
430) The support container 3 is connected to the connection layer 8 through the Ag--Cu eutectic brazing material layer A7, and the stainless steel (sus- 430) The heat-resistant metal plate 10 was connected. 1000 to 2000 in an atmosphere of 600℃ in the air.
Time standing test, room temperature 15 minutes → 600℃ in air,
As a result of conducting a heat cycle test of 1,000 to 3,000 cycles with each cycle being 15 minutes, no abnormalities such as peeling or cracking of the thermistor chip were observed.

発明の効果 本発明のサーミスタは少なくとも平板状絶縁性
基板の一方の表面にろう付できる電極膜と感温抵
抗体膜とを形成し、他方の表面にろう付できる接
続層を設けてなるサーミスタチツプと支持容器と
を前記接続層と第1のろう材層を介して接続し、
更に前記電極膜上に第2のろう材層を介して耐熱
性金属板を接続した構成であるので、従来の欠点
を解消すると共に薄膜サーミスタチツプを支持容
器に機械的、熱的に強固に接続することができ
る。
Effects of the Invention The thermistor of the present invention is a thermistor chip in which a solderable electrode film and a temperature-sensitive resistor film are formed on at least one surface of a flat insulating substrate, and a brazeable connection layer is provided on the other surface. and a support container via the connection layer and a first brazing material layer,
Furthermore, since the structure is such that a heat-resistant metal plate is connected to the electrode film via the second brazing material layer, the drawbacks of the conventional technology are overcome, and the thin film thermistor chip is mechanically and thermally firmly connected to the support container. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱電対の正面図、第2図は本発
明の一実施例におけるサーミスタの断面図であ
る。 3……支持容器、4……平板状絶縁性基板、5
……電極膜、6……感温抵抗体、7……ろう材層
A、8……接続層、9……ろう材層B、10……
耐熱性金属板。
FIG. 1 is a front view of a conventional thermocouple, and FIG. 2 is a sectional view of a thermistor according to an embodiment of the present invention. 3... Support container, 4... Flat insulating substrate, 5
... Electrode film, 6 ... Temperature sensitive resistor, 7 ... Brazing material layer A, 8 ... Connection layer, 9 ... Brazing material layer B, 10 ...
Heat-resistant metal plate.

Claims (1)

【特許請求の範囲】 1 少なくとも平板状絶縁性基板の一方の表面に
ろう付できる電極膜と感温抵抗体膜とを形成し、
他方の表面にろう付できる接続層を設けてなるサ
ーミスタチツプと支持容器とを前記接続層と第1
のろう材層を介して接続し、更に前記電極膜上に
第2のろう材層を介して耐熱性金属板を接続した
サーミスタ。 2 ろう付できる電極膜とろう付できる接続層と
がW,Mo,Ti,Ni,Mnから選ばれた少くとも一
種ないしは以上の金属粉をメタライズした膜であ
る特許請求の範囲第1項記載のサーミスタ。 3 耐熱性金属板がコバール合金、Fe―Ni合
金,ステンレス鋼,Ti,Ta,W,Mo,Zr,Ptか
ら選ばれた特許請求の範囲第1項記載のサーミス
タ。 4 第1のろう材層の融点を第2のろう材層の融
点より低く選んだ特許請求の範囲第1項記載のサ
ーミスタ。
[Claims] 1. An electrode film and a temperature-sensitive resistor film that can be brazed are formed on at least one surface of a flat insulating substrate,
A thermistor chip having a brazing connection layer on the other surface and a support container are connected to the connection layer and the first
A thermistor in which a heat-resistant metal plate is further connected on the electrode film through a second brazing material layer. 2. The brazeable electrode film and the brazeable connection layer are films made by metallizing at least one metal powder selected from W, Mo, Ti, Ni, and Mn. thermistor. 3. The thermistor according to claim 1, wherein the heat-resistant metal plate is selected from Kovar alloy, Fe--Ni alloy, stainless steel, Ti, Ta, W, Mo, Zr, and Pt. 4. The thermistor according to claim 1, wherein the melting point of the first brazing material layer is selected to be lower than the melting point of the second brazing material layer.
JP13642983A 1983-07-25 1983-07-25 Thermistor Granted JPS5951323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13642983A JPS5951323A (en) 1983-07-25 1983-07-25 Thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13642983A JPS5951323A (en) 1983-07-25 1983-07-25 Thermistor

Publications (2)

Publication Number Publication Date
JPS5951323A JPS5951323A (en) 1984-03-24
JPS6155055B2 true JPS6155055B2 (en) 1986-11-26

Family

ID=15174933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13642983A Granted JPS5951323A (en) 1983-07-25 1983-07-25 Thermistor

Country Status (1)

Country Link
JP (1) JPS5951323A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142800U (en) * 1986-03-04 1987-09-09
US4874399A (en) * 1988-01-25 1989-10-17 Minnesota Mining And Manufacturing Company Electret filter made of fibers containing polypropylene and poly(4-methyl-1-pentene)

Also Published As

Publication number Publication date
JPS5951323A (en) 1984-03-24

Similar Documents

Publication Publication Date Title
KR20090008352A (en) Ceramic heater and method of securing a thermocouple thereto
JP6357579B2 (en) Sensor device and method for manufacturing sensor device
JPH02213733A (en) Electrothermal sensor
JPH1197203A (en) Shunt resistance element for semiconductor device, and method of mounting it
JPS6155055B2 (en)
JPH1140403A (en) Temp. sensor element
JPS5951503A (en) Thermistor
JPS5831502A (en) Thin film thermistor
JPS6219954Y2 (en)
JPS60179619A (en) Thin film thermistor
JPS622683B2 (en)
JPS6157682B2 (en)
JPH0996571A (en) Heat receiving body of temperature sensor
JPS5932041B2 (en) thin film thermistor
JPS6150361B2 (en)
JPS5946401B2 (en) thermistor
JPS5951502A (en) Thermistor
JPS5924521B2 (en) thin film thermistor
JPS5932042B2 (en) thermistor
JPH01270302A (en) Thin film thermistor
JPH0342485B2 (en)
JPS6236603B2 (en)
JPH0638363B2 (en) Thin film thermistor
JPH07260589A (en) Temperature sensor and heat receiving body thereefor
JPS587803A (en) Positive temperature coefficient thrmistor element