JPH0996571A - Heat receiving body of temperature sensor - Google Patents

Heat receiving body of temperature sensor

Info

Publication number
JPH0996571A
JPH0996571A JP27693495A JP27693495A JPH0996571A JP H0996571 A JPH0996571 A JP H0996571A JP 27693495 A JP27693495 A JP 27693495A JP 27693495 A JP27693495 A JP 27693495A JP H0996571 A JPH0996571 A JP H0996571A
Authority
JP
Japan
Prior art keywords
sensitive element
temperature
heat receiving
heat
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27693495A
Other languages
Japanese (ja)
Inventor
Masaya Ito
正也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP27693495A priority Critical patent/JPH0996571A/en
Publication of JPH0996571A publication Critical patent/JPH0996571A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an inexpensive heat receiving body of temperature sensor having a simple structure and excellent responsiveness by connecting one conductive terminal to a ceramic heat sensitive element, which is bonded to the inner bottom surface of a tubular heat receiving metal body having the bottom. SOLUTION: One conductive terminal 4 is connected to a ceramic heat sensitive element 3, which is bonded to the inner bottom surface 21A of a tubular heat receiving metal body 2 having the bottom, and the heat receiving body 1 of temperature sensor is formed. In the heat receiving body 1, a buffer member is provided between the heat sensitive element 3 and the heat receiving metal body 2, and a buffer member is provided between the heat sensitive element 3 and the conductive terminal 4 at the same time. Furthermore, it is recommendable that the heat receiving metal body 2 and the heat sensitive element 3 are bonded through a bonding layer 5 containing an active metal. The heat sensitive element 3 is an oxide sintered body of crystal structure of any of perovskite type, spinel type, rutile type or corundum type. When the active metal is contained in the bonding layer 5, in general, the brazing filler metal containing Ti beforehand such as AgCuTi-based foil is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、物体と接触するこ
とによりその物体の温度を検知する温度センサーの温度
センサー受熱体に関し、詳しくはガスこんろ等の調理器
具に装着して鍋等の調理器具の温度を検知する温度セン
サーの温度センサー受熱体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor heat receiving body of a temperature sensor for detecting the temperature of an object by contacting the object, and more specifically, it is attached to a cooking appliance such as a gas stove to cook a pot. The present invention relates to a temperature sensor heat receiver for a temperature sensor that detects the temperature of a device.

【0002】[0002]

【従来の技術】従来は図10(図8に示す感温素子10
3が例えば接続されている)に示すように、温度センサ
ー受熱体101の要部を構成するサーミスタ素子等の感
温素子103、103’(図8、図9)には、一対の電
極(リード線)109、109’が接続されていた。即
ち、その一対の電極(リード線)によりプラス・マイナ
スの電位差を取っていた。
2. Description of the Related Art Conventionally, the temperature sensing element 10 shown in FIG.
3 is connected, for example, a pair of electrodes (leads) are attached to the temperature sensitive elements 103 and 103 ′ (FIGS. 8 and 9) such as the thermistor element that constitutes the main part of the temperature sensor heat receiver 101. (Line) 109, 109 'were connected. That is, the pair of electrodes (lead wires) was used to obtain a positive / negative potential difference.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの感温
素子103、103’は、例えば感温素子がセラミック
ス感温素子の場合には、セラミックス感温素子の製造工
程において同時に一対のリード線(電極)109、10
9’がセラミックス感温素子と一体化されるため、プレ
ス工程、焼成工程等において電極間(リード線間)にギ
ャップ(リード線のセラミックス感温素子に埋設されて
いる部分の先端間の距離)のバラツキが生じ、その結果
出力抵抗値がばらつくという不具合が生じていた。また
焼成工程において焼成温度が高いセラミックス感温素子
(例えばルチル型(TiO2 主成分)では1300℃以
上)は、電極をセラミックス感温素子と同時に焼成し一
体にする場合、その電極として白金等の高価な金属材料
しか高温に耐えることが出来ないため、比較的廉価な電
極(リード線)材料を選択できずコストが高くなった。
However, these temperature-sensitive elements 103 and 103 'are, for example, when the temperature-sensitive element is a ceramic temperature-sensitive element, a pair of lead wires (at the same time in the manufacturing process of the ceramic temperature-sensitive element). Electrode) 109, 10
Since 9'is integrated with the ceramic thermosensitive element, there is a gap between electrodes (between lead wires) in the pressing step, firing step, etc. (distance between the tips of the lead wires embedded in the ceramic thermosensitive element). Has occurred, and as a result, the output resistance value has varied. Further, in the case of a ceramic temperature-sensitive element whose firing temperature is high in the firing step (for example, 1300 ° C. or higher for rutile type (TiO2 main component)), when the electrodes are fired at the same time as the ceramic temperature-sensitive element and integrated, the cost of platinum or the like is high. Since only metallic materials that can withstand high temperatures, relatively inexpensive electrode (lead wire) materials cannot be selected, resulting in high costs.

【0004】本発明の目的は、単純な構造で応答性に優
れた安価な温度センサー受熱体を提供することである。
An object of the present invention is to provide an inexpensive temperature sensor heat receiving body having a simple structure and excellent responsiveness.

【0005】[0005]

【課題を解決するための手段】その手段は、有底筒状の
受熱金属体と、前記有底筒状の受熱金属体の内側底面に
接合されるセラミックス感温素子と、前記セラミックス
感温素子に接続される一つの導電性端子とからなる温度
センサー受熱体である。前記温度センサー受熱体は、前
記セラミックス感温素子と前記受熱金属体との間に緩衝
部材を介在させることが好ましい。また、前記温度セン
サー受熱体は、前記セラミックス感温素子と前記導電性
端子との間に緩衝部材を介在させることが好ましい。ま
た、前記温度センサー受熱体は、前記セラミックス感温
素子と前記受熱金属体との間に緩衝部材を介在させ、か
つ前記セラミックス感温素子と前記導電性端子との間に
緩衝部材を介在させることが好ましい。また、前記温度
センサー受熱体は、前記有底筒状の受熱金属体と前記セ
ラミックス感温素子とが活性金属を含む接合層を介して
接合されていることが好ましい。また、前記温度センサ
ー受熱体は、前記セラミックス感温素子と前記導電性端
子とが活性金属を含む接合層を介して接合されているこ
とが好ましい。上記手段のセラミックス感温素子が、ペ
ロブスカイト型、スピネル型(一般式AB24、例えば
CoOーAl23)、ルチル型(一般式AO2、例え
ば、TiO2、ZrO2)又はコランダム型(一般式A2
3、例えば、Cr23ーAl23)のいずれかの結晶
構造を酸化物焼結体であることが好ましい。
[Means for Solving the Problems] The means are a bottomed cylindrical heat receiving metal body, a ceramic temperature sensing element bonded to the inner bottom surface of the bottomed tubular heat receiving metal body, and the ceramic temperature sensing element. The temperature sensor heat receiver is composed of one conductive terminal connected to the temperature sensor. In the temperature sensor heat receiving body, it is preferable that a buffer member is interposed between the ceramic temperature sensing element and the heat receiving metal body. Further, in the temperature sensor heat receiver, it is preferable that a buffer member is interposed between the ceramic temperature sensing element and the conductive terminal. Further, in the temperature sensor heat receiving body, a buffer member is interposed between the ceramic temperature sensing element and the heat receiving metal body, and a buffer member is interposed between the ceramic temperature sensing element and the conductive terminal. Is preferred. Further, in the temperature sensor heat receiving body, it is preferable that the bottomed cylindrical heat receiving metal body and the ceramics temperature sensitive element are bonded via a bonding layer containing an active metal. Further, in the temperature sensor heat receiving body, it is preferable that the ceramics temperature sensing element and the conductive terminal are bonded via a bonding layer containing an active metal. The ceramic thermosensitive element of the above means is a perovskite type, a spinel type (general formula AB 2 0 4 , for example CoO-Al 2 0 3 ), a rutile type (general formula AO 2 , for example, TiO 2 , ZrO 2 ) or a corundum type. (General formula A 2
0 3 , for example, Cr 2 O 3 —Al 2 0 3 ) is preferable to be an oxide sintered body.

【0006】ここで、接合層中に活性金属を含有させる
には、AgCuTi系、AgTi系の箔のように予めT
iを含んだろう材を使用する方法一般的であるが、他に
例えば、AgCu合金箔とTi箔を又はCu箔とTi箔
を使用する方法、Tiを含んだペーストを塗布してろう
付け接合する方法などがある。また、AgCu合金ろう
材、AgPd合金ろう材、純Agろう材、Cuろう材等
の活性金属を含有しないろう材で接合する場合、予めセ
ラミックス感温素子の接合面を金属化しておいてもよ
い。一方、Ti、Zr、Hf等の活性金属を含有させた
活性ろう材で接合する場合、活性金属はセラミックスと
の界面に反応生成物を形成するため、予めセラミックス
感温素子の接合面を金属化しておく必要がない。そのた
め、セラミックス感温素子表面の接合面を金属化する工
程をなくすことができ、より安価な製造が可能となる。
ここで、受熱金属体は、電気抵抗が極端に大きくなけれ
ばどのような材料を用いてもよいが、高温にさらされる
場合には、ステンレス、耐熱鋼、ニッケル等が好まし
い。またそれの熱膨張係数がセラミックス感温素子を構
成するセラミックス材料に近いほどよい。また、前記導
電性端子は、受熱金属体ほど耐熱性は必要なく、軟鋼、
ニッケル、銅等が好適に使用できる。熱膨張係数の小さ
いコバール、Fe42Ni合金等も好適に使用される。ま
た、白金、ロジウム、パラジウム又はこれら合金も高価
である点を除けば好ましい。そして、この導電性端子
は、ホットプレス、摩擦圧接等によって拡散接合をする
ことにより、金属製の板をセラミックス感温素子に接続
することができる。また、スパッタリング、蒸着、メッ
キ、厚膜等によりセラミックス感温素子上に形成するこ
とができる。一方、焼結前の感温素子にろう材ペースト
を塗布し、感温素子と同時焼成することにより、セラミ
ックス感温素子上に形成することもできる。また、接合
用のろう材をセラミックス感温素子上に塗布し熱処理す
ることにより、その接合用のろう材自体を導電性端子と
して形成することもできる。また導電性端子は、セラミ
ックス感温素子の一面の全体を覆うように設けるのが好
ましい。特に、受熱金属体と平行になるように設けると
電気的に安定した出力を得ることが出来る。
Here, in order to contain the active metal in the bonding layer, it is necessary to preliminarily use T like an AgCuTi-based or AgTi-based foil.
A method using a brazing material containing i is general, but other methods such as AgCu alloy foil and Ti foil or Cu foil and Ti foil are used, and a paste containing Ti is applied for brazing and joining. There are ways to do it. When joining with a brazing material containing no active metal such as an AgCu alloy brazing material, an AgPd alloy brazing material, a pure Ag brazing material, or a Cu brazing material, the bonding surface of the ceramic temperature sensing element may be metallized in advance. . On the other hand, when joining with an active brazing material containing an active metal such as Ti, Zr, or Hf, the active metal forms a reaction product at the interface with the ceramics, and therefore the bonding surface of the ceramic temperature-sensitive element is metalized in advance. There is no need to keep it. Therefore, the step of metallizing the bonding surface on the surface of the ceramics temperature sensitive element can be eliminated, and the manufacturing cost can be reduced.
Here, the heat receiving metal body may be made of any material as long as the electric resistance is not extremely large, but when exposed to a high temperature, stainless steel, heat resistant steel, nickel or the like is preferable. Further, the coefficient of thermal expansion of the ceramic material is preferably close to that of the ceramic material forming the ceramic thermosensitive element. Further, the conductive terminal does not require heat resistance as much as the heat-receiving metal body, and a mild steel,
Nickel, copper and the like can be preferably used. Kovar, Fe42Ni alloy and the like having a small thermal expansion coefficient are also preferably used. In addition, platinum, rhodium, palladium or alloys thereof are preferable except that they are expensive. Then, this conductive terminal can be connected to the ceramic temperature sensitive element by a metal plate by diffusion bonding by hot pressing, friction welding or the like. Further, it can be formed on the ceramic temperature sensitive element by sputtering, vapor deposition, plating, thick film, or the like. On the other hand, it is also possible to apply a brazing filler metal paste to the temperature-sensitive element before sintering and co-firing with the temperature-sensitive element to form it on the ceramic temperature-sensitive element. Alternatively, the brazing material for bonding can be formed as a conductive terminal by applying the brazing material for bonding onto the ceramic temperature-sensitive element and heat-treating it. The conductive terminal is preferably provided so as to cover the entire one surface of the ceramics temperature sensitive element. In particular, if it is provided so as to be parallel to the heat receiving metal body, an electrically stable output can be obtained.

【0007】前記緩衝部材は、例えば、W、Mo、W合
金、コバール等の低膨張金属、又はNi、Cu等の軟質
金属からなる部材が好ましい。これらの緩衝部材は、一
枚のみ使用しても複数枚重ね合わせて使用してもよい。
緩衝部材の厚さは、0.1mm〜1mm程度が好まし
い。0.1mm未満では十分に熱衝撃を吸収することが
できない場合があり、また1mmを越えても熱衝撃に対
する応力の緩和効果がそれ以上向上しなくなるとともに
却って応答性が悪くなるからである。前記有底筒状の受
熱金属体は、金属板をプレス加工することにより製作で
きる。また、金属板に金属製の筒状部を溶接、摩擦圧接
等をすることにより接続し製作することもできる。
The cushioning member is preferably a member made of a low expansion metal such as W, Mo, W alloy, Kovar or a soft metal such as Ni or Cu. Only one of these buffer members may be used, or a plurality of these buffer members may be stacked and used.
The thickness of the cushioning member is preferably about 0.1 mm to 1 mm. This is because if it is less than 0.1 mm, the thermal shock may not be sufficiently absorbed, and if it exceeds 1 mm, the effect of alleviating the stress against the thermal shock will not be further improved and the response will be rather deteriorated. The bottomed tubular heat receiving metal body can be manufactured by pressing a metal plate. It is also possible to manufacture by connecting a metal tubular portion to a metal plate by welding, friction welding or the like.

【0008】[0008]

【作用】本発明の温度センサー受熱体は、有底筒状の受
熱金属体と前記有底筒状の受熱金属体の内側底面に接合
されるセラミックス感温素子と前記セラミックス感温素
子に接続される一つの導電性端子とからなるため、受熱
金属体を一つの電極として用い、一つの導電性端子を他
の一つの電極として用いることができる。従って、従来
の2つの電極(2本のリード線)を使用していた場合に
比べ、電極(リード線)となる導電性端子を構成する材
料を少なくすることができる。また、白金材料等は抵抗
値が一般に低く高価であるが、仮に導電性端子を白金材
料で構成したとしても白金材料を使う量が少なくするこ
とができる。また、受熱金属体を一つの電極として用い
るため、セラミックス感温素子に至るまでの抵抗を他方
の電極が不要になった分だけ下げることができる。ま
た、所定の形状又は大きさのセラミックス感温素子を使
用することにより安定した出力抵抗値を得ることが出
来、ひいては信頼性の高い温度センサー受熱体を得るこ
とが出来る。更に、受熱金属体とセラミックス感温素子
とが活性金属を含む接合層により接合されている場合、
センサーの熱応答性が良好となる。
The temperature sensor heat receiving body of the present invention is connected to the ceramic temperature sensing element and the ceramic temperature sensing element bonded to the inner bottom surface of the bottomed cylindrical heat receiving metal body and the bottomed cylindrical heat receiving metal body. Therefore, the heat receiving metal body can be used as one electrode, and one conductive terminal can be used as another electrode. Therefore, as compared with the conventional case where two electrodes (two lead wires) are used, it is possible to reduce the amount of material constituting the conductive terminal to be the electrodes (lead wires). Further, platinum materials and the like are generally low in resistance value and expensive, but even if the conductive terminals are made of platinum materials, the amount of platinum materials used can be reduced. Further, since the heat-receiving metal body is used as one electrode, the resistance up to the ceramic temperature-sensing element can be reduced by the amount that the other electrode becomes unnecessary. Further, a stable output resistance value can be obtained by using a ceramic temperature sensitive element having a predetermined shape or size, and by extension, a highly reliable temperature sensor heat receiver can be obtained. Furthermore, when the heat-receiving metal body and the ceramic temperature-sensitive element are joined by a joining layer containing an active metal,
The thermal response of the sensor becomes good.

【0009】また、接合層を介して接合した場合、受熱
金属体又は導電性端子と、セラミックス感温素子とは、
接合層中の成分が両者との界面で拡散することにより化
学的に接合されるため強固に接合される。その結果、本
発明の温度センサー受熱体は、急激な温度変化の熱衝撃
特性に優れ、更には熱応答性も良好である。そして、接
合層に活性金属を含む場合には、セラミックス感温素子
の接合界面には、反応生成層(例えば、TiO2、Ti
O等)が形成され、その反応生成層がセラミックス感温
素子を強固に接合することに有効に機能し、更には、熱
の伝導性即ち応答性に有効に機能する。また、受熱金属
体又は導電性端子と、セラミックス感温素子との間に接
合層の他に緩衝部材を介することにより、急激な温度変
化(冷却、加熱)による接合層の剥離及びセラミックス
感温素子の損傷を更に有効に防止できる。また,導電性
端子とセラミックス感温素子との間に接合層の他に緩衝
部材を介することにより、セラミックス感温素子が受熱
金属体から受ける応力をこの緩衝部材から受ける応力が
打ち消しバランスの取れた応力状態を得ることが出来
る。また,導電性端子とセラミックス感温素子との間に
接合層の他に緩衝部材を介することにより、セラミック
ス感温素子が受熱金属とセラミックス感温素子との間の
緩衝部材から受ける応力をこの他の緩衝部材から受ける
応力が打ち消しバランスの取れた応力状態を得ることが
出来る。また、セラミックス感温素子に予め導電性端子
を設けておくことにより、後工程例えばセラミックス感
温素子と受熱金属体との接合工程後に、導電性端子をセ
ラミックス感温素子に接合する必要がなく製造工程を単
純化することができる。一方、本発明の温度センサー受
熱体により構造を単純化することができ、ひいては製造
コストを下げることができる。
Further, in the case of bonding through the bonding layer, the heat receiving metal body or the conductive terminal and the ceramic temperature sensing element are
The components in the bonding layer diffuse chemically at the interface with the two, so that they are chemically bonded and thus firmly bonded. As a result, the temperature sensor heat receiver of the present invention is excellent in the thermal shock characteristics of a sudden temperature change, and also has a good thermal response. When the bonding layer contains an active metal, a reaction generation layer (for example, TiO 2 , Ti, etc.) is formed at the bonding interface of the ceramic thermosensitive element.
O and the like) are formed, and the reaction generation layer thereof effectively functions to firmly bond the ceramics temperature sensitive element, and further effectively functions to heat conductivity, that is, responsiveness. Further, by interposing a cushioning member in addition to the bonding layer between the heat receiving metal body or the conductive terminal and the ceramic temperature sensing element, the bonding layer is peeled off due to a sudden temperature change (cooling, heating) and the ceramic temperature sensing element. Can be more effectively prevented. Further, by interposing a buffer member between the conductive terminal and the ceramics temperature sensing element in addition to the bonding layer, the stress received from the heat receiving metal body by the ceramics temperature sensing element is canceled out and balanced. The stress state can be obtained. In addition, the cushioning member is interposed between the conductive terminal and the ceramics temperature sensing element in addition to the bonding layer, so that the stress that the ceramics temperature sensing element receives from the cushioning member between the heat-receiving metal and the ceramics temperature sensing element is further reduced. It is possible to cancel the stress received from the buffer member and to obtain a balanced stress state. Further, by providing the ceramic temperature-sensitive element with a conductive terminal in advance, it is not necessary to bond the conductive terminal to the ceramic temperature-sensitive element after the subsequent step, for example, the step of bonding the ceramic temperature-sensitive element and the heat-receiving metal body. The process can be simplified. On the other hand, the temperature sensor heat receiving body of the present invention can simplify the structure, and thus can reduce the manufacturing cost.

【0010】[0010]

【発明の実施の形態】本発明の温度センサ−受熱体の使
用方法を図1により説明する。前記有底筒状の受熱金属
体2の外側底面21Bが物体と接触することによりその
物体の温度を検知する。具体的には、ガスこんろ等の調
理器具(図示せず)に装着して鍋等の底に接触して温度
を検知する。そして、その温度(熱量)に応じて、受熱
金属体2を一つの電極とし導電性端子4を他の一つの電
極とし、所定量の電流が流れ温度センサーとして機能す
る。本発明の温度センサー受熱体1は、セラミックス感
温素子3の厚み等を予め所定の寸法に仕上げておくこと
により、出力抵抗値を所定の値にすることが容易にでき
る。
BEST MODE FOR CARRYING OUT THE INVENTION A method of using a temperature sensor-heat receiving body of the present invention will be described with reference to FIG. When the outer bottom surface 21B of the bottomed tubular heat receiving metal body 2 comes into contact with an object, the temperature of the object is detected. Specifically, it is attached to a cooking utensil (not shown) such as a gas stove and comes into contact with the bottom of a pan or the like to detect the temperature. Then, according to the temperature (heat amount), the heat receiving metal body 2 is used as one electrode and the conductive terminal 4 is used as another electrode, and a predetermined amount of current flows to function as a temperature sensor. In the temperature sensor heat receiving body 1 of the present invention, the output resistance value can be easily set to a predetermined value by finishing the thickness and the like of the ceramic temperature sensing element 3 in advance to a predetermined dimension.

【0011】−実施例1− 本実施例の温度センサー受熱体1は、図1(図6)に示
すように有底筒状の受熱金属体2と、前記有底筒状の受
熱金属体2の内側底面21に接合されるセラミックス感
温素子3と、前記セラミックス感温素子3に接続される
一つの導電性端子4とからなる。有底筒状の受熱金属体
2とセラミックス感温素子3とは、直接接合しても接合
層を介して接合してもどちらでもよい。接合層を介して
接合する場合には、導通材料からなる接合層でなければ
ならない。例えば、ろう材により接合層を形成するとよ
い。セラミックス感温素子3と導電性端子4は、直接接
合しても接合層を介して接合してもどちらでもよい。そ
の接合層を介して接合する場合には、導通材料からなる
接合層でなければならない。例えば、ろう材により接合
層を形成するとよい。導電性端子4にはリード線9が接
続されているが、このリード線9は予め導電性端子4と
一体に形成しておいてもよい。本実施例の温度センサー
受熱体の製造方法について、具体的に説明する。
-Example 1- As shown in FIG. 1 (FIG. 6), the temperature sensor heat receiving body 1 of the present embodiment has a bottomed cylindrical heat receiving metal body 2 and the bottomed cylindrical heat receiving metal body 2. The ceramic temperature sensitive element 3 is joined to the inner bottom surface 21 of the and the one conductive terminal 4 connected to the ceramic temperature sensitive element 3. The bottomed tubular heat-receiving metal body 2 and the ceramics temperature-sensitive element 3 may either be directly joined or joined via a joining layer. When joining is performed via a joining layer, the joining layer must be made of a conductive material. For example, the joining layer may be formed of a brazing material. The ceramics temperature sensitive element 3 and the conductive terminal 4 may be directly bonded or bonded via a bonding layer. When joining via the joining layer, the joining layer must be made of a conductive material. For example, the joining layer may be formed of a brazing material. Although the lead wire 9 is connected to the conductive terminal 4, the lead wire 9 may be formed integrally with the conductive terminal 4 in advance. A method of manufacturing the temperature sensor heat receiver of this embodiment will be specifically described.

【0012】(セラミックス感温素子の作り方)平均粒
径約1μmのY2 O3 と、平均粒径が1μm以下のSr
CO3 、Cr2O3 、TiO2 およびFe2 O3 を(Y
0.71Sr0.29)(Cr0.76Fe0.19Ti0.05)O3 とな
る割合(原子%)にて秤量し、湿式混合、乾燥し、その
後1400℃2時間大気中にて仮焼する。そして、仮焼
された粉末に平均粒径0.6μmのSiO2 粉末を1重
量%(仮焼された粉末を100%として)加えて湿式混
合し乾燥する。乾燥後バインダーとしてPVB(ポリ・
ビニル・ブチラール)、DBP(ジ・ブチル・フタレー
ト)、MEK(メチル・エチル・ケトン)およびトルエ
ンを適量添加し、造粒する。この造粒した粉末をプレス
成形した後1550℃大気中にて焼成することにより、
ペロブスカイト型のセラミックス感温素子3(サーミス
タ素子)を得た。そのサーミスタ素子の寸法は、直径4
mm厚さ2mmである(図7)。 尚、角部に0.2m
m程度のC面取りを施してある。
(How to make a ceramic temperature sensitive element) Y2O3 having an average particle size of about 1 μm and Sr having an average particle size of 1 μm or less
CO3, Cr2O3, TiO2 and Fe2O3 are added to (Y
0.71Sr0.29) (Cr0.76Fe0.19Ti0.05) O3 is weighed at a ratio (atomic%), wet mixed, dried, and then calcined in the atmosphere at 1400 ° C for 2 hours. Then, 1% by weight of SiO2 powder having an average particle size of 0.6 .mu.m (calcined powder as 100%) is added to the calcined powder, wet mixed and dried. After drying, PVB (poly
Vinyl butyral), DBP (dibutyl phthalate), MEK (methyl ethyl ketone) and toluene are added in appropriate amounts and granulated. By press-molding this granulated powder and then firing it in the atmosphere at 1550 ° C.,
A perovskite type ceramic temperature sensitive device 3 (thermistor device) was obtained. The thermistor element has a diameter of 4 mm.
mm thickness 2 mm (FIG. 7). 0.2m at the corner
C chamfer of about m is applied.

【0013】(受熱金属体の製造方法)厚さ0.3mm
の金属板(JIS SUS430)を、プレス加工によ
って有底筒状形状(外径16mm、高さ10mm、厚さ
0.3mm)とすることにより、受熱金属体2を得た。
その後電解Niメッキを施した。 (導電性端子)導電性端子4として、導電性端子板(S
US430直径4mm厚さ0.3mm)にNiメッキを
施したものを準備し、セラミックス感温素子3に摩擦圧
接することによりにより接合した。
(Method for manufacturing heat-receiving metal body) Thickness 0.3 mm
The heat-receiving metal body 2 was obtained by pressing the metal plate (JIS SUS430) of (1) into a cylindrical shape with a bottom (outer diameter 16 mm, height 10 mm, thickness 0.3 mm).
After that, electrolytic Ni plating was applied. (Conductive Terminal) As the conductive terminal 4, a conductive terminal plate (S
US430 diameter 4 mm and thickness 0.3 mm) prepared by plating Ni was prepared and bonded by friction pressure welding to the ceramic temperature sensitive element 3.

【0014】(受熱金属体とセラミックス感温素子との
接合)ろう材(厚さ0.05mm直径4mmのAg4重
量%Ti合金ろう材)を準備し、そのろう材を受熱金属
体2とセラミックス感温素子3との間に介し、真空中1
020℃にて接合した。本実施例の温度センサー受熱体
1は、導電性端子4を拡散接合の一つである摩擦圧接に
より予めセラミックス感温素子3に設けることが出来る
ため、受熱金属体2とセラミックス感温素子3との接合
工程又はその後工程において「導電性端子」を接続する
工程を設ける必要がなく、ひいては単純な製造工程する
ことにより不良品の発生を防止することができる。
(Joining of heat-receiving metal body and ceramic temperature-sensitive element) A brazing material (Ag4 wt% Ti alloy brazing material having a thickness of 0.05 mm and a diameter of 4 mm) is prepared, and the brazing material is bonded to the heat-receiving metal body 2 and a ceramic material. In the vacuum through the temperature element 3
Bonding was performed at 020 ° C. In the temperature sensor heat receiving body 1 of the present embodiment, the conductive terminals 4 can be provided in advance on the ceramic temperature sensing element 3 by friction welding, which is one of diffusion bonding, so that the heat receiving metal body 2 and the ceramic temperature sensing element 3 are connected to each other. It is not necessary to provide a step of connecting the "conductive terminal" in the joining step or the subsequent step, and it is possible to prevent defective products by a simple manufacturing process.

【0015】−実施例2− 本実施例の温度センサー受熱体21は、図2に示すよう
に有底筒状の受熱金属体22と、前記有底筒状の受熱金
属体22の内側底面221Aに接合されるセラミックス
感温素子23と、前記セラミックス感温素子23に接続
される一つの導電性端子24とからなる。有底筒状の受
熱金属体22とセラミックス感温素子23とは、直接接
合しても接合層を介して接合してもどちらでもよい。接
合層を介して接合する場合、導通材料からなる接合層で
なければならない。例えば、ろう材により接合層を形成
するとよい。本実施例の温度センサー受熱体の製造方法
について、具体的に説明する。 (セラミックス感温素子の作り方)実施例1と同様の方
法により得る。 (受熱金属体の製造方法)実施例1と同様の方法により
得る。 (導電性端子)導電性端子24として、導電性端子板
(純度99%以上のニッケル板、直径3mm厚さ0.3
mm)を準備した。 (受熱金属体、セラミックス感温素子及び導電性端子の
接合)ろう材(厚さ0.05mm直径4mmのAg5重
量%Ti合金ろう材)を準備し、そのろう材を受熱金属
体22とセラミックス感温素子23との間及びセラミッ
クス感温素子23と導電性端子24との間に介し、真空
中1020℃にて接合した。
Embodiment 2 As shown in FIG. 2, the temperature sensor heat receiving body 21 of this embodiment has a bottomed cylindrical heat receiving metal body 22 and an inner bottom surface 221A of the bottomed cylindrical heat receiving metal body 22. The ceramic temperature sensing element 23 bonded to the ceramic temperature sensing element 23 and one conductive terminal 24 connected to the ceramic temperature sensing element 23. The bottomed cylindrical heat-receiving metal body 22 and the ceramics temperature-sensitive element 23 may be directly joined together or may be joined together via a joining layer. When joining via a joining layer, the joining layer must be made of a conductive material. For example, the joining layer may be formed of a brazing material. A method of manufacturing the temperature sensor heat receiver of this embodiment will be specifically described. (How to Make Ceramic Temperature Sensitive Element) Obtained by the same method as in Example 1. (Method for producing heat-receiving metal body) Obtained by the same method as in Example 1. (Conductive Terminal) As the conductive terminal 24, a conductive terminal plate (a nickel plate having a purity of 99% or more, a diameter of 3 mm and a thickness of 0.3) is used.
mm) was prepared. (Joining the heat-receiving metal body, the ceramic temperature-sensitive element and the conductive terminal) A brazing material (Ag5 wt% Ti alloy brazing material having a thickness of 0.05 mm and a diameter of 4 mm) is prepared, and the brazing material and the ceramic-sensing metal are used. Bonding was performed at 1020 ° C. in vacuum with the temperature sensor 23 and the ceramic temperature sensor 23 and the conductive terminal 24 interposed.

【0016】−実施例3− 本実施例の温度センサー受熱体31は、図3に示すよう
に有底筒状の受熱金属体32と、前記有底筒状の受熱金
属体32の内側底面321Aに接合されるセラミックス
感温素子33と、前記セラミックス感温素子33に接続
される一つの導電性端子34とからなる。導電性端子3
4には、外部と電気的接続を行うためのリード線39
(純度99%以上のニッケル製)が接続されている。
尚、リード線39を導電性端子34と一体に形成しても
よい。有底筒状の受熱金属体32とセラミックス感温素
子33とは、低膨張金属からなる緩衝部材37を介して
接合されている。有底筒状の受熱金属体32と低膨張金
属からなる緩衝部材37とは、接合層35を介して接合
されている。セラミックス感温素子33と低膨張金属か
らなる緩衝部材37とは、接合層36を介して接合され
ている。これらの接合層35、36は、導通材料からな
るものでなければならない。例えば、ろう材により接合
層を形成するとよい。セラミックス感温素子33と導電
性端子34は、直接接合しても接合層を介して接合して
もどちらでもよい。その接合層を介して接合する場合、
導通材料からなる接合層でなければならない。例えば、
ろう材により接合層を形成するとよい。導電性端子34
にはリード線39が接続されているが、このリード線3
9は予め導電性端子34と一体に形成しておいてもよ
い。本実施例の温度センサー受熱体の製造方法につい
て、具体的に説明する。 (セラミックス感温素子の作り方)実施例1と同様の方
法により得る。 (受熱金属体の製造方法)厚さ0.4mmの金属板(J
IS SUS430)を、プレス加工によって有底筒状
形状(外径15mm、高さ11mm、厚さ0.4mm)
とすることにより、受熱金属体32を得た。その後、電
解Niメッキを施した。 (受熱金属体とセラミックス感温素子との接合及び導電
性端子の形成)ろう材(Ag5重量%Ti粉末よりなる
ぺ−ストろう材)を準備し、そのろう材を受熱金属体3
2と緩衝部材37との間及びセラミックス感温素子33
と緩衝部材37との間に介するとともにセラミックス感
温素子表面に塗布し、真空中1020℃にて熱処理を行
った。低膨張金属からなる緩衝部材37としては、W合
金製の円板(厚さ0.5mm、直径3mm)を用いた。
本実施例の温度センサー受熱体31は、受熱金属体32
とセラミックス感温素子33とを緩衝部材37を介して
接合しているため、受熱金属体32とセラミックス感温
素子33との熱膨張係数の差により両者間に生じる応力
を有効に緩和する。また、導電性端子34が、接合用の
ろう材ペ−ストを用いて形成できるため一回の熱処理に
て簡易に形成できる。
Third Embodiment As shown in FIG. 3, the temperature sensor heat receiving body 31 of the present embodiment has a bottomed cylindrical heat receiving metal body 32 and an inner bottom surface 321A of the bottomed cylindrical heat receiving metal body 32. The ceramic temperature-sensitive element 33 bonded to the ceramic temperature-sensitive element 33 and one conductive terminal 34 connected to the ceramic temperature-sensitive element 33. Conductive terminal 3
4 is a lead wire 39 for electrical connection with the outside.
(Made of nickel with a purity of 99% or more) is connected.
The lead wire 39 may be formed integrally with the conductive terminal 34. The bottomed tubular heat receiving metal body 32 and the ceramics temperature sensitive element 33 are joined together via a buffer member 37 made of a low expansion metal. The bottomed tubular heat-receiving metal body 32 and the cushioning member 37 made of a low expansion metal are joined via a joining layer 35. The ceramics temperature-sensitive element 33 and the buffer member 37 made of a low expansion metal are bonded via a bonding layer 36. These bonding layers 35 and 36 must be made of a conductive material. For example, the joining layer may be formed of a brazing material. The ceramics temperature sensitive element 33 and the conductive terminal 34 may be directly bonded or bonded via a bonding layer. When joining through the joining layer,
It must be a bonding layer made of a conductive material. For example,
The joining layer may be formed of a brazing material. Conductive terminal 34
A lead wire 39 is connected to the lead wire 3.
9 may be previously formed integrally with the conductive terminal 34. A method of manufacturing the temperature sensor heat receiver of this embodiment will be specifically described. (How to Make Ceramic Temperature Sensitive Element) Obtained by the same method as in Example 1. (Method for manufacturing heat receiving metal body) Metal plate having a thickness of 0.4 mm (J
IS SUS430) is pressed into a cylindrical shape with a bottom (outer diameter 15 mm, height 11 mm, thickness 0.4 mm).
Thus, the heat receiving metal body 32 was obtained. Then, electrolytic Ni plating was applied. (Joining of Heat-Responsive Metal Body and Ceramics Temperature Sensitive Element and Formation of Conductive Terminal) A brazing material (past brazing material made of Ag powder of 5 wt% Ti) is prepared, and the brazing material is used as the heat-receiving metal body 3
2 and the buffer member 37 and the ceramic temperature sensing element 33.
And the buffer member 37, and applied to the surface of the ceramic temperature-sensitive element, and heat-treated at 1020 ° C. in vacuum. A disk made of W alloy (thickness 0.5 mm, diameter 3 mm) was used as the buffer member 37 made of a low expansion metal.
The temperature sensor heat receiving body 31 of this embodiment is a heat receiving metal body 32.
Since the ceramic thermosensitive element 33 and the ceramic thermosensitive element 33 are joined via the buffer member 37, the stress generated between the heat receiving metal body 32 and the ceramic thermosensitive element 33 due to the difference in the coefficient of thermal expansion between them is effectively relieved. Further, since the conductive terminal 34 can be formed by using a brazing filler metal paste for joining, it can be easily formed by one heat treatment.

【0017】ー実施例4ー 本実施例の温度センサー受熱体41は、図4に示すよう
に有底筒状の受熱金属体42と、前記有底筒状の受熱金
属体42の内側底面421Aに接合されるセラミックス
感温素子43と、前記セラミックス感温素子43に接続
される一つの導電性端子44とからなる。導電性端子4
4には、外部と電気的接続を行うためのリード線49
(純度99%以上のニッケル製)が接続されている。
尚、リード線49を導電性端子44と一体に形成しても
よい。本実施例の温度センサー受熱体の製造方法につい
て、具体的に説明する。 (セラミックス感温素子の作り方)実施例1と同様の方
法により得る。 (受熱金属体の製造方法)厚さ0.5mmの金属板(コ
バ−ル)を、プレス加工によって有底筒状形状(外径1
4mm、高さ11mm、厚さ0.3mm)とすることに
より、受熱金属体42を得た。その後、電解ニッケルメ
ッキを施した。 (導電性端子)導電性端子44として、セラミックス感
温素子43にスパッタリングにより厚さ3μmの銅製導
電性膜を設けた。 (受熱金属体とセラミックス感温素子との接合)ろう材
(厚さ0.04mm直径3mmのAg5重量%Ti合金
ろう材)を準備し、そのろう材を受熱金属体42とセラ
ミックス感温素子43との間に介し、真空中1020℃
にて接合した。本実施例の温度センサー受熱体41は、
導電性端子44が薄いためろう付けによる接合時又は使
用時にセラミックス感温素子に働く応力が低くすること
ができ、その結果セラミックス感温素子の損傷を防止す
ることができる。
Fourth Embodiment As shown in FIG. 4, the temperature sensor heat receiving body 41 of the present embodiment has a bottomed cylindrical heat receiving metal body 42 and an inner bottom surface 421A of the bottomed cylindrical heat receiving metal body 42. The ceramic temperature sensitive element 43 is bonded to the ceramic temperature sensitive element 43, and one conductive terminal 44 connected to the ceramic temperature sensitive element 43. Conductive terminal 4
4 is a lead wire 49 for electrical connection with the outside.
(Made of nickel with a purity of 99% or more) is connected.
The lead wire 49 may be formed integrally with the conductive terminal 44. A method of manufacturing the temperature sensor heat receiver of this embodiment will be specifically described. (How to Make Ceramic Temperature Sensitive Element) Obtained by the same method as in Example 1. (Manufacturing method of heat-receiving metal body) A metal plate (coval) having a thickness of 0.5 mm is pressed into a cylindrical shape with a bottom (outer diameter 1
4 mm, a height of 11 mm, and a thickness of 0.3 mm), a heat receiving metal body 42 was obtained. Then, electrolytic nickel plating was applied. (Conductive Terminal) As the conductive terminal 44, a copper conductive film having a thickness of 3 μm was provided on the ceramic temperature sensitive element 43 by sputtering. (Bonding of heat-receiving metal body and ceramic temperature-sensitive element) A brazing material (Ag5 wt% Ti alloy brazing material having a thickness of 0.04 mm and a diameter of 3 mm) is prepared, and the brazing material is used as the heat-receiving metal body 42 and the ceramic temperature-sensitive element 43. Between and 1020 ℃ in vacuum
Joined together. The temperature sensor heat receiver 41 of this embodiment is
Since the conductive terminal 44 is thin, the stress acting on the ceramic temperature sensitive element at the time of joining by brazing or during use can be reduced, and as a result, damage to the ceramic temperature sensitive element can be prevented.

【0018】ー実施例5ー 本実施例の温度センサー受熱体51は、図5に示すよう
に有底筒状の受熱金属体52と、前記有底筒状の受熱金
属体52の内側底面521Aに接合されるセラミックス
感温素子53と、前記セラミックス感温素子53に接続
される一つの導電性端子54とからなる。導電性端子5
4には、外部と電気的接続を行うためのリード線59
(純度99%以上のニッケル製)が接続されている。
尚、リード線59を導電性端子54と一体に形成しても
よい。ここで、有底筒状の受熱金属体52とセラミック
ス感温素子53とは、軟質金属からなる緩衝部材57を
介して接合されている。有底筒状の受熱金属体52と軟
質金属からなる緩衝部材57とは、接合層55を介して
接合されている。セラミックス感温素子53と軟質金属
からなる緩衝部材57とは、接合層56を介して接合さ
れている。これらの接合層56、57は、導通材料から
なるものでなければならない。例えば、ろう材により接
合層を形成するとよい。そして、セラミックス感温素子
53と導電性端子54とは、低膨張金属からなる緩衝部
材58を介して接合されている。セラミックス感温素子
53と低膨張金属からなる緩衝部材58とは、接合層5
6を介して接合されている。これらの接合層56は、導
通材料からなるものでなければならない。例えば、ろう
材により接合層を形成するとよい。本実施例の温度セン
サー受熱体の製造方法について、具体的に説明する。 (セラミックス感温素子の作り方)実施例1と同様の方
法により得る。 (受熱金属体の製造方法)厚さ0.4mmの金属板(J
IS SUS430)を、プレス加工によって有底筒状
形状(外径15mm、高さ11mm、厚さ0.4mm)
とすることにより、受熱金属体52を得た。その後、電
解Niメッキを施した。 (導電性端子)導電性端子54として、導電性端子板
(直径2.5mm厚さ0.15mmの純度99%以上の
ニッケル板)を準備した。 (受熱金属体、セラミックス感温素子及び緩衝部材の接
合)ろう材(厚さ0.04mm直径3mmのAg5重量
%Ti合金ろう材)を準備し、そのろう材を受熱金属体
52と軟質金属からなる緩衝部材57との間、セラミッ
クス感温素子53と軟質金属からなる緩衝部材57との
間、セラミックス感温素子53と低膨張金属からなる緩
衝部材58との間及び導電性端子54と低膨張金属から
なる緩衝部材58との間に介し、真空中1020℃にて
接合した。軟質金属からなる緩衝部材57としては、純
度99%以上のニッケル製の円板(厚さ0.15mm直
径3mm)を用いた。低膨張金属からなる緩衝部材58
としては、W合金製の円板(厚さ0.5mm直径3m
m)を用いた。
Fifth Embodiment As shown in FIG. 5, a temperature sensor heat receiving body 51 of this embodiment has a bottomed tubular heat receiving metal body 52 and an inner bottom surface 521A of the bottomed tubular heat receiving metal body 52. And a ceramic thermosensitive element 53 joined to the ceramic thermosensitive element 53 and one conductive terminal 54 connected to the ceramic thermosensitive element 53. Conductive terminal 5
4 is a lead wire 59 for electrical connection to the outside.
(Made of nickel with a purity of 99% or more) is connected.
The lead wire 59 may be formed integrally with the conductive terminal 54. Here, the bottomed tubular heat receiving metal body 52 and the ceramics temperature sensitive element 53 are joined via a buffer member 57 made of a soft metal. The bottomed tubular heat receiving metal body 52 and the cushioning member 57 made of a soft metal are joined via a joining layer 55. The ceramics temperature sensitive element 53 and the cushioning member 57 made of soft metal are joined via the joining layer 56. These bonding layers 56 and 57 must be made of a conductive material. For example, the joining layer may be formed of a brazing material. Then, the ceramics temperature sensitive element 53 and the conductive terminal 54 are joined via a buffer member 58 made of a low expansion metal. The ceramic temperature-sensitive element 53 and the cushioning member 58 made of a low-expansion metal form the bonding layer 5
It is joined via 6. These bonding layers 56 must be made of a conductive material. For example, the joining layer may be formed of a brazing material. A method of manufacturing the temperature sensor heat receiver of this embodiment will be specifically described. (How to Make Ceramic Temperature Sensitive Element) Obtained by the same method as in Example 1. (Method for manufacturing heat receiving metal body) Metal plate having a thickness of 0.4 mm (J
IS SUS430) is pressed into a cylindrical shape with a bottom (outer diameter 15 mm, height 11 mm, thickness 0.4 mm).
Thus, the heat receiving metal body 52 was obtained. Then, electrolytic Ni plating was applied. (Conductive Terminal) As the conductive terminal 54, a conductive terminal plate (a nickel plate having a diameter of 2.5 mm and a thickness of 0.15 mm and a purity of 99% or more) was prepared. (Joining of the heat-receiving metal body, the ceramic temperature-sensitive element and the cushioning member) A brazing material (Ag5 wt% Ti alloy brazing material having a thickness of 0.04 mm and a diameter of 3 mm) is prepared, and the brazing material is formed from the heat-receiving metal body 52 and the soft metal. Between the ceramic temperature sensitive element 53 and the buffer member 57 made of a soft metal, between the ceramic temperature sensitive element 53 and the buffer member 58 made of a low expansion metal, and between the conductive terminal 54 and the low expansion. Bonding was performed at 1020 ° C. in a vacuum via a buffer member 58 made of metal. As the cushioning member 57 made of a soft metal, a nickel disc having a purity of 99% or more (thickness 0.15 mm, diameter 3 mm) was used. Buffer member 58 made of low expansion metal
As a disc made of W alloy (thickness 0.5 mm, diameter 3 m
m) was used.

【0019】本実施例の温度センサー受熱体51は、受
熱金属体52とセラミックス感温素子53とを軟質金属
からなる緩衝部材57を介して接合しているため、受熱
金属体52とセラミックス感温素子53との熱膨張係数
の差により生じる両者間に生じる応力を有効に緩和す
る。また、導電性端子54とセラミックス感温素子53
とを低膨張金属からなる緩衝部材57を介して接合して
いるため、導電性端子54とセラミックス感温素子53
との熱膨張係数の差により生じる両者間に生じる応力を
有効に緩和する。また更に、セラミックス感温素子53
が、軟質金属からなる緩衝部材57と低膨張金属からな
る緩衝部材57とに挟まれているため、仮に受熱金属体
52及び導電性端子54から熱膨張係数の差に起因する
応力をうけてもその内部応力の傾斜をなくすことができ
バランスの取れた応力状態を得ることが出来る。
In the temperature sensor heat receiving body 51 of the present embodiment, the heat receiving metal body 52 and the ceramic temperature sensing element 53 are joined together via the buffer member 57 made of a soft metal, so that the heat receiving metal body 52 and the ceramic temperature sensing body are joined together. The stress generated between the element 53 and the element 53 due to the difference in coefficient of thermal expansion is effectively relaxed. In addition, the conductive terminal 54 and the ceramic temperature sensing element 53
, And the ceramic thermosensitive element 53, since they are joined via a buffer member 57 made of a low expansion metal.
Effectively relieves the stress generated between the two due to the difference in thermal expansion coefficient between and. Furthermore, the ceramic temperature sensitive element 53
Are sandwiched between the cushioning member 57 made of a soft metal and the cushioning member 57 made of a low expansion metal, even if the heat receiving metal body 52 and the conductive terminal 54 receive stress due to the difference in thermal expansion coefficient. The inclination of the internal stress can be eliminated and a balanced stress state can be obtained.

【0020】[0020]

【発明の効果】本発明により、単純な構造で応答性の優
れた安価な温度センサー受熱体を提供することができ
る。
According to the present invention, it is possible to provide an inexpensive temperature sensor heat receiver having a simple structure and excellent responsiveness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の温度センサー受熱体(実施例1)の断
面図である。
FIG. 1 is a cross-sectional view of a temperature sensor heat receiver of the present invention (Example 1).

【図2】本発明の温度センサー受熱体(実施例2)の断
面図である。
FIG. 2 is a cross-sectional view of a temperature sensor heat receiver of the present invention (Example 2).

【図3】本発明の温度センサー受熱体(実施例3)の断
面図である。
FIG. 3 is a cross-sectional view of a temperature sensor heat receiving body (Example 3) of the present invention.

【図4】本発明の温度センサー受熱体(実施例4)の断
面図である。
FIG. 4 is a cross-sectional view of a temperature sensor heat receiving body (Example 4) of the present invention.

【図5】本発明の温度センサー受熱体(実施例5)の断
面図である。
FIG. 5 is a cross-sectional view of a temperature sensor heat receiving body (Example 5) of the present invention.

【図6】本発明の温度センサー受熱体の概略斜視図であ
る。
FIG. 6 is a schematic perspective view of a temperature sensor heat receiving body of the present invention.

【図7】本発明の温度センサー受熱体を構成するセラミ
ックス感温素子の斜視図である。
FIG. 7 is a perspective view of a ceramics temperature sensitive element that constitutes the temperature sensor heat receiver of the present invention.

【図8】従来の感温素子を示す斜視図である。FIG. 8 is a perspective view showing a conventional temperature sensitive element.

【図9】従来の感温素子を示す斜視図である。FIG. 9 is a perspective view showing a conventional temperature sensitive element.

【図10】従来の温度センサー受熱体の断面図である。FIG. 10 is a cross-sectional view of a conventional temperature sensor heat receiver.

【符号の説明】[Explanation of symbols]

1 温度センサー受熱体 2 有底筒状の受熱金属体 21 有底筒状の受熱金属体の内部底面 3 セラミックス感温素子 4 導電性端子 5 接合層 6 接合層 7 緩衝部材 8 緩衝部材 9 リード線 DESCRIPTION OF SYMBOLS 1 Temperature sensor heat receiving body 2 Bottomed cylindrical heat receiving metal body 21 Internal bottom surface of bottomed cylindrical heat receiving metal body 3 Ceramics temperature sensitive element 4 Conductive terminal 5 Bonding layer 6 Bonding layer 7 Buffer member 8 Buffer member 9 Lead wire

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 有底筒状の受熱金属体と、前記有底筒状
の受熱金属体の内側底面に接合されるセラミックス感温
素子と、前記セラミックス感温素子に接続される一つの
導電性端子とからなることを特徴とする温度センサー受
熱体。
1. A bottomed tubular heat-receiving metal body, a ceramic temperature-sensitive element bonded to an inner bottom surface of the bottomed tubular heat-receiving metal body, and one conductive element connected to the ceramics temperature-sensitive element. A temperature sensor heat receiver comprising a terminal.
【請求項2】 前記セラミックス感温素子と前記受熱金
属体との間に緩衝部材を介在させたことを特徴とする請
求項1に記載の温度センサー受熱体。
2. The temperature sensor heat receiving body according to claim 1, further comprising a cushioning member interposed between the ceramics temperature sensitive element and the heat receiving metal body.
【請求項3】 前記セラミックス感温素子と前記導電性
端子との間に緩衝部材を介在させたことを特徴とする請
求項1又は2に記載の温度センサー受熱体。
3. The temperature sensor heat receiver according to claim 1, wherein a buffer member is interposed between the ceramics temperature sensitive element and the conductive terminal.
【請求項4】 前記セラミックス感温素子と前記受熱金
属体との間に緩衝部材を介在させ、かつ前記セラミック
ス感温素子と前記導電性端子との間に緩衝部材を介在さ
せたことを特徴とする請求項1に記載の温度センサー受
熱体。
4. A cushioning member is interposed between the ceramics temperature sensitive element and the heat receiving metal body, and a cushioning member is interposed between the ceramics temperature sensitive element and the conductive terminal. The temperature sensor heat receiver according to claim 1.
【請求項5】 前記有底筒状の受熱金属体と前記セラミ
ックス感温素子とが活性金属を含む接合層を介して接合
されていることを特徴とする請求項1〜4のいずれかに
記載の温度センサー受熱体。
5. The cylindrical heat-receiving metal body having a bottom and the ceramics temperature-sensitive element are bonded to each other via a bonding layer containing an active metal. Temperature sensor heat receiver.
【請求項6】 前記セラミックス感温素子と前記導電性
端子とが活性金属を含む接合層を介して接合されている
ことを特徴とする請求項1〜5のいずれかに記載の温度
センサー受熱体。
6. The temperature sensor heat receiving body according to claim 1, wherein the ceramics temperature sensitive element and the conductive terminal are bonded to each other through a bonding layer containing an active metal. .
【請求項7】 前記セラミックス感温素子が、ペロブス
カイト型、スピネル型、ルチル型又はコランダム型のい
ずれかの結晶構造を有することを特徴とする請求項1〜
6のいずれかに記載の温度センサー受熱体。
7. The ceramic temperature-sensitive element has a perovskite type, spinel type, rutile type or corundum type crystal structure.
The temperature sensor heat receiver according to any one of 6 above.
JP27693495A 1995-09-28 1995-09-28 Heat receiving body of temperature sensor Pending JPH0996571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27693495A JPH0996571A (en) 1995-09-28 1995-09-28 Heat receiving body of temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27693495A JPH0996571A (en) 1995-09-28 1995-09-28 Heat receiving body of temperature sensor

Publications (1)

Publication Number Publication Date
JPH0996571A true JPH0996571A (en) 1997-04-08

Family

ID=17576450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27693495A Pending JPH0996571A (en) 1995-09-28 1995-09-28 Heat receiving body of temperature sensor

Country Status (1)

Country Link
JP (1) JPH0996571A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007206A (en) * 2007-06-28 2009-01-15 Toyota Central R&D Labs Inc Ceramic sensor
CN103389751A (en) * 2013-08-05 2013-11-13 南京贝孚莱电子科技有限公司 Temperature controller adopting novel temperature acquisition technology
KR20150123390A (en) * 2014-04-24 2015-11-04 (주) 래트론 Temperature sensor element and method for manufacturing the same
CN105068578A (en) * 2015-07-18 2015-11-18 陈鸽 Temperature controller capable of restraining fluctuation of detection temperature
JP2018021889A (en) * 2016-07-25 2018-02-08 株式会社Soken Particulate substance detection sensor and particulate substance detector
WO2023063396A1 (en) * 2021-10-15 2023-04-20 京セラ株式会社 Joined body, housing for electronic components, diaphragm support, and method for producing joined body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007206A (en) * 2007-06-28 2009-01-15 Toyota Central R&D Labs Inc Ceramic sensor
CN103389751A (en) * 2013-08-05 2013-11-13 南京贝孚莱电子科技有限公司 Temperature controller adopting novel temperature acquisition technology
KR20150123390A (en) * 2014-04-24 2015-11-04 (주) 래트론 Temperature sensor element and method for manufacturing the same
CN105068578A (en) * 2015-07-18 2015-11-18 陈鸽 Temperature controller capable of restraining fluctuation of detection temperature
CN105068578B (en) * 2015-07-18 2017-05-17 陈鸽 Temperature controller capable of restraining fluctuation of detection temperature
JP2018021889A (en) * 2016-07-25 2018-02-08 株式会社Soken Particulate substance detection sensor and particulate substance detector
WO2023063396A1 (en) * 2021-10-15 2023-04-20 京セラ株式会社 Joined body, housing for electronic components, diaphragm support, and method for producing joined body

Similar Documents

Publication Publication Date Title
US6766574B2 (en) Production control method for temperature sensor by adjusting thickness of a heat-sensing surface side ceramic layer
JP6096918B2 (en) Temperature probe and method of manufacturing temperature probe
JPS629239A (en) High-speed response type temperature sensor
JP2012508870A (en) Sensor element and method for manufacturing sensor element
US5844122A (en) Sensor with output correcting function
US6368734B1 (en) NTC thermistors and NTC thermistor chips
JPH0996571A (en) Heat receiving body of temperature sensor
JP2002188966A (en) Temperature sensor and its manufacturing method and manufacture control method
JP2868272B2 (en) Sensor assembly structure
JPS62189701A (en) Sintered silicon carbide thermistor
JPH01313751A (en) Gas sensor
JPH08283075A (en) Temperature sensor heat receiving body and its production
JP3452282B2 (en) Composite thermistor temperature sensor
JP7473753B1 (en) Temperature sensor element and temperature sensor
JPH10199708A (en) Temperature sensor
JP3021774B2 (en) Piezoelectric sensor
JPS5946401B2 (en) thermistor
JPH08255679A (en) Plate ceramic heater and its manufacture
JP2701565B2 (en) Thin film thermistor and method of manufacturing the same
JP4485712B2 (en) Sensor substrate, gas sensor element including the same, and sensor
JP2753494B2 (en) Method for manufacturing a thermistor element
JPS60179619A (en) Thin film thermistor
JPS6367321B2 (en)
JPH01278001A (en) Thermistor temperature transducer structure
JPH05322828A (en) Humidity sensor and its manufacture