JPH08283075A - Temperature sensor heat receiving body and its production - Google Patents

Temperature sensor heat receiving body and its production

Info

Publication number
JPH08283075A
JPH08283075A JP7108986A JP10898695A JPH08283075A JP H08283075 A JPH08283075 A JP H08283075A JP 7108986 A JP7108986 A JP 7108986A JP 10898695 A JP10898695 A JP 10898695A JP H08283075 A JPH08283075 A JP H08283075A
Authority
JP
Japan
Prior art keywords
temperature sensor
heat receiving
temperature
sensitive element
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7108986A
Other languages
Japanese (ja)
Inventor
Masaya Ito
正也 伊藤
Katsumi Miyama
克己 見山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP7108986A priority Critical patent/JPH08283075A/en
Publication of JPH08283075A publication Critical patent/JPH08283075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE: To obtain a temp. sensor heat receiving body excellent in the thermal shock characteristic in a rapid temp. change and heat responsiveness by chemically bonding a heat receiving metallic member and a ceramic temp.-sensor element through a bonding layer. CONSTITUTION: A ceramic temp.-sensor element 3 is bonded to the inner bottom face 21 of a bottomed head receiving metallic body 2 through a bonding layer 4 contg. an active metal to constitute this temp. sensor heat receiving body 1. In a temp. sensor heat receiving body 1' formed by bonding the temp.-sensor element 3 to the inner bottom face 21 of the metallic body 2 through the bonding layer 4 and a buffer member 5, the damage of the bonding part and the temp.-sensitive element due to a rapid temp. change is more effectively prevented. The element 3 is preferably provided with a couple of electrodes 31, preferably furnished with a perovskite, spinel, rutile or corundum crystal structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体と接触することに
よりその物体の温度を検知する温度センサーに関し、詳
しくはガスこんろ等の調理器具に装着して鍋等の調理器
具の温度を検知する温度センサーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor for detecting the temperature of an object by coming into contact with the object. Regarding the temperature sensor to do.

【0002】[0002]

【従来の技術】従来の温度センサについては、下記に示
す技術が現在開示されている。まず、図4に示す様に有
底筒状の金属部材42に電気絶縁層43(ガラス接着
層)を介して接合されたアルミナ基板44の片面にSi
Cサーミスタまたは白金等よりなる感温抵抗体46及び
電極45を設けた温度センサ41が開示されている。次
に、図5に示すようにセラミックス基板54の一表面に
感温抵抗体56及び電極膜55を形成し、他の表面にメ
タライズ層(図示せず)を形成し、そのメタライズ層を
セラミックスからなる感熱ヘッド52の内面にろう付け
53により固定した温度センサ51が開示されている
(特開昭57−14727号公報)。また、図6に示す
様に有底筒状の金属部材62に電気絶縁層(ガラス接着
層)63を介して設けた一対の電極65と、その一対の
電極65間にまたがって前記電気絶縁層63の表面に感
温抵抗体66を設けた温度センサ61が開示されている
(特開平5−34205号公報)。一方、感温素子74
を受熱金属板72に機械的に直接固定する温度センサ7
1もある。その温度センサ71は、図7に示すように受
熱金属板72に中間金属板75が(スポット)溶接さ
れ、その中間金属板75に感温素子74が、中間金属板
75に溶接された固定用金属材76により機械的に固定
されている。
2. Description of the Related Art Regarding conventional temperature sensors, the following techniques are currently disclosed. First, as shown in FIG. 4, Si is attached to one surface of an alumina substrate 44 joined to a bottomed tubular metal member 42 via an electrical insulating layer 43 (glass adhesive layer).
A temperature sensor 41 provided with a temperature sensitive resistor 46 made of a C thermistor or platinum and an electrode 45 is disclosed. Next, as shown in FIG. 5, a temperature sensitive resistor 56 and an electrode film 55 are formed on one surface of the ceramic substrate 54, a metallized layer (not shown) is formed on the other surface, and the metallized layer is made of ceramics. There is disclosed a temperature sensor 51 fixed to the inner surface of a heat sensitive head 52 by brazing 53 (JP-A-57-14727). In addition, as shown in FIG. 6, a pair of electrodes 65 provided on the bottomed tubular metal member 62 via an electric insulating layer (glass adhesive layer) 63, and the electric insulating layer extending between the pair of electrodes 65. A temperature sensor 61 in which a temperature sensitive resistor 66 is provided on the surface of 63 is disclosed (JP-A-5-34205). On the other hand, the temperature sensor 74
Sensor 7 for mechanically directly fixing the heat to the heat receiving metal plate 72
There is also 1. For the temperature sensor 71, as shown in FIG. 7, the intermediate metal plate 75 is (spot) welded to the heat receiving metal plate 72, and the temperature sensitive element 74 is welded to the intermediate metal plate 75. It is mechanically fixed by the metal material 76.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記各温度セ
ンサには、次に示す問題点があった。まず、図4に示し
た温度センサ41は、金属部材42とアルミナ基板44
を接着するガラス43の強度が十分でないため、熱衝撃
(例えば400℃からの水冷)によりガラス層43にク
ラックが発生し、損傷するという問題があった。また、
一般にアルミナ等のセラミックスは熱伝導率が低いが、
温度センサ41は、ガラス層43及びアルミナ基板44
を介して金属部材42と感温素子46とを接合している
ため、感温素子46の応答性という点で十分ではなかっ
た。次に、図5に示した温度センサ51は、鍋、やかん
等に接する感熱ヘッドがセラミックスで構成されている
ため、応答性の点で十分ではない。更に感温抵抗体とセ
ラミックスからなる感熱ヘッドと間にセラミックス基板
が介されているため、更に応答性を悪くする原因となっ
ていた。また、図6に示した温度センサ61は、電気絶
縁層63の表面に感温抵抗体66を設けられているた
め、熱衝撃(例えば500℃からの水冷)によりガラス
層63にクラックが発生し、損傷するという問題があっ
た。一方、図7に示した温度センサ71は、感温素子7
4が中間金属板75に機械的に固定されているため、中
間金属板75と感温素子74とは点接触となる場合があ
り、かかる場合温度変化に対する応答性にばらつきがあ
った。また、受熱金属板72に中間金属板75が(スポ
ット)溶接されているため、温度センサの応答性を溶接
性の良否に依存していた。
However, the above temperature sensors have the following problems. First, the temperature sensor 41 shown in FIG. 4 includes a metal member 42 and an alumina substrate 44.
Since the strength of the glass 43 for adhering is not sufficient, there is a problem that the glass layer 43 is cracked and damaged by thermal shock (for example, water cooling from 400 ° C.). Also,
Ceramics such as alumina generally have low thermal conductivity,
The temperature sensor 41 includes a glass layer 43 and an alumina substrate 44.
Since the metal member 42 and the temperature-sensitive element 46 are bonded via the above, the responsiveness of the temperature-sensitive element 46 is not sufficient. Next, in the temperature sensor 51 shown in FIG. 5, the thermosensitive head that comes into contact with a pot, a kettle, or the like is made of ceramics, so that it is not sufficient in terms of responsiveness. Further, since the ceramics substrate is interposed between the temperature sensitive resistor and the thermal head made of ceramics, it further deteriorates the responsiveness. Further, since the temperature sensor 61 shown in FIG. 6 is provided with the temperature sensitive resistor 66 on the surface of the electric insulating layer 63, cracks are generated in the glass layer 63 due to thermal shock (for example, water cooling from 500 ° C.). There was a problem of damage. On the other hand, the temperature sensor 71 shown in FIG.
Since 4 is mechanically fixed to the intermediate metal plate 75, the intermediate metal plate 75 and the temperature-sensitive element 74 may be in point contact with each other, and in such a case, the responsiveness to the temperature change varies. Further, since the intermediate metal plate 75 is (spot) welded to the heat receiving metal plate 72, the responsiveness of the temperature sensor depends on the quality of the weldability.

【0004】本発明の目的は、受熱金属と感温素子とを
強固に接合し、応答性の優れた温度センサー受熱体及び
その製造方法を提供するものである。
It is an object of the present invention to provide a temperature sensor heat-receiving body having excellent responsiveness by firmly joining a heat-receiving metal and a temperature sensitive element, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】その第1の手段は、有底
筒状の受熱金属体の内部底面に活性金属を含む接合層を
介してセラミックス感温素子が接合されている温度セン
サー受熱体である。その第2の手段は、有底筒状の受熱
金属体の内部底面にセラミックス感温素子が、活性金属
を含む接合層及び緩衝部材を介して接合されている温度
センサー受熱体である。上記第1及び第2の手段のセラ
ミックス感温素子が、ペロブスカイト型、スピネル型
(一般式AB24、例えばCoOーAl23)、ルチル
型(一般式AO2、例えば、TiO2、ZrO2)又はコ
ランダム型(一般式A23、例えば、Cr23ーAl2
3)のいずれかの結晶構造を酸化物焼結体であること
が好ましい。また、上記第1及び第2の手段のセラミッ
クス感温素子が一対の電極を有することが好ましい。そ
の第3の手段は、有底筒状の受熱金属体の内部底面にセ
ラミックス感温素子を、活性金属を含むろう材にて接合
する温度センサー受熱体の製造方法である。その第4の
手段は、有底筒状の受熱金属体の内部底面にセラミック
ス感温素子を、活性金属を含むろう材及び緩衝部材を介
して接合する温度センサー受熱体の製造方法である。そ
の第5の手段は、有底筒状の受熱金属体の内部底面にセ
ラミックス感温素子を、ろう材にて接合する温度センサ
ー受熱体の製造方法である。その第6の手段は、有底筒
状の受熱金属体の内部底面にセラミックス感温素子を、
ろう材及び緩衝部材を介して接合する温度センサー受熱
体の製造方法である。上記第3〜6の手段のセラミック
ス感温素子が、ペロブスカイト型、スピネル型、ルチル
型又はコランダム型等の結晶構造を有する酸化物焼結体
のいずれかであることが好ましい。また、上記第3〜6
の手段のセラミックス感温素子が一対の白金、ロジウ
ム、パラジウム又はこれら合金からなる電極を有するこ
とが好ましい。
The first means is a temperature sensor heat receiving body in which a ceramic temperature sensitive element is bonded to the inner bottom surface of a bottomed cylindrical heat receiving metal body through a bonding layer containing an active metal. Is. The second means is a temperature sensor heat receiving body in which a ceramic temperature sensitive element is bonded to the inner bottom surface of a bottomed cylindrical heat receiving metal body via a bonding layer containing an active metal and a buffer member. The ceramic temperature-sensitive element of the first and second means is a perovskite type, a spinel type (general formula AB 2 0 4 , for example CoO-Al 2 0 3 ), a rutile type (general formula AO 2 , for example TiO 2 , ZrO 2 ) or corundum type (general formula A 2 0 3 , for example, Cr 2 O 3 -Al 2
It is preferable that the crystal structure of any one of ( 3 ) is an oxide sintered body. In addition, it is preferable that the ceramic temperature-sensitive element of the first and second means has a pair of electrodes. The third means is a method of manufacturing a temperature sensor heat receiving body in which a ceramic temperature sensing element is joined to the inner bottom surface of a bottomed cylindrical heat receiving metal body with a brazing material containing an active metal. The fourth means is a method of manufacturing a temperature sensor heat receiving body in which a ceramic temperature sensitive element is joined to the inner bottom surface of a bottomed tubular heat receiving metal body via a brazing material containing active metal and a buffer member. The fifth means is a method of manufacturing a temperature sensor heat receiving body in which a ceramic temperature sensing element is joined to the inner bottom surface of a bottomed tubular heat receiving metal body with a brazing material. The sixth means is to provide a ceramic thermosensitive element on the inner bottom surface of a bottomed cylindrical heat receiving metal body,
It is a method of manufacturing a temperature sensor heat receiving body that is joined via a brazing material and a cushioning member. It is preferable that the ceramic temperature-sensitive element of the third to sixth means is any one of oxide sintered bodies having a crystal structure such as a perovskite type, a spinel type, a rutile type, or a corundum type. Also, the above third to sixth
It is preferable that the ceramic temperature sensitive device of the above means has a pair of electrodes made of platinum, rhodium, palladium or an alloy thereof.

【0006】ここで、ろう材は、AgCu合金ろう材、
AgPd合金ろう材、純Agろう材、Cuろう材等又は
これらろう材にTi、Zr、Hf等の活性金属を含有さ
せたろう材が適用可能である。そして、AgCu合金ろ
う材、AgPd合金ろう材、純Agろう材、Cuろう材
等の活性金属を含有しないろう材で接合する場合、予め
セラミックス感温素子の接合面を金属化する必要があ
る。一方、Ti、Zr、Hf等の活性金属を含有させた
活性ろう材で接合する場合、活性金属はセラミックスと
の界面に反応生成物を形成するため、予めセラミックス
感温素子の接合面を金属化しておく必要がない。そのた
め、セラミックス感温素子表面の金属化工程をなくして
より安価な製造が可能となる。ここで、接合層中への活
性金属の含有のさせ方であるが、AgCuTi系、Ag
Ti系の箔のように予めTiを含んだろう材が好適に使
用されるが、例えば、AgCu合金箔とTi箔を又はC
u箔とTi箔をセラミックス感温素子と受熱金属体との
間に介在させて接合する方法、またはTiを含んだペー
ストを塗布してろう付け接合する方法などでもよい。こ
こで、緩衝部材は、W、Mo、W合金、コバール等の低
膨張金属、Ni、Cu等の軟質金属からなる部材が好ま
しい。これらの緩衝部材は、有底筒状の受熱金属とセラ
ミックス感温素子との間に介する場合、一枚でも複数枚
でもどちらでもよい。緩衝部材の厚さは、0.1mm〜
1mm程度が好ましい。0.1mm未満では十分に熱衝
撃を吸収することができず、1mmを越えても熱衝撃等
に対する応力の緩和効果がそれ以上向上しなくなるとと
もに却って応答性が悪くなる。ここで、有底筒状の受熱
金属体は、金属板をプレス加工することにより製作で
き、金属板に金属製の筒状部を溶接、摩擦圧接すること
により製作することもできる。
Here, the brazing material is an AgCu alloy brazing material,
An AgPd alloy brazing material, a pure Ag brazing material, a Cu brazing material, etc., or a brazing material containing an active metal such as Ti, Zr or Hf in these brazing materials is applicable. When joining with a brazing material containing no active metal, such as an AgCu alloy brazing material, an AgPd alloy brazing material, a pure Ag brazing material, and a Cu brazing material, it is necessary to metallize the joint surface of the ceramic temperature sensitive element in advance. On the other hand, when joining with an active brazing material containing an active metal such as Ti, Zr, or Hf, the active metal forms a reaction product at the interface with the ceramics, and therefore the bonding surface of the ceramic temperature-sensitive element is metalized in advance. There is no need to keep it. Therefore, the metallurgical process on the surface of the ceramic temperature-sensitive element can be eliminated and the manufacturing cost can be reduced. Here, regarding the method of including the active metal in the bonding layer, it is AgCuTi system, Ag
A brazing material containing Ti in advance such as a Ti-based foil is preferably used. For example, AgCu alloy foil and Ti foil or C
A method of joining by interposing a u foil and a Ti foil between the ceramic temperature-sensitive element and the heat-receiving metal body, or a method of applying a paste containing Ti and brazing and joining may be used. Here, the buffer member is preferably a member made of a low expansion metal such as W, Mo, a W alloy, Kovar, or a soft metal such as Ni or Cu. When these buffer members are interposed between the bottomed tubular heat receiving metal and the ceramic temperature-sensitive element, one or a plurality of them may be used. The thickness of the cushioning member is 0.1 mm ~
It is preferably about 1 mm. If it is less than 0.1 mm, the thermal shock cannot be sufficiently absorbed, and if it exceeds 1 mm, the effect of relaxing the stress against the thermal shock or the like is not further improved and the response is rather deteriorated. Here, the bottomed tubular heat-receiving metal body can be produced by pressing a metal plate, or can be produced by welding and friction-welding a metal tubular portion to the metal plate.

【0007】[0007]

【作用】受熱金属体とセラミックス感温素子とは、接合
層中の成分が両者との界面で拡散することにより化学的
に接合されるため、強固に接合される。その結果、本発
明の温度センサー受熱体は、急激な温度変化の熱衝撃特
性に優れ、更には熱応答性も良好である。そして、接合
層に活性金属を含む場合には、セラミックス感温素子の
界面には、反応生成層(例えば、TiO2、TiO等)
が形成され、セラミックス感温素子を強固に接合するこ
とに有効に機能し、更には、熱の伝導性即ち応答性に有
効に機能する。また、受熱金属とセラミックス感温素子
との間に接合層の他に緩衝部材を介することにより、急
激な温度変化(冷却、加熱)による接合部及びセラミッ
クス感温素子の損傷を更に有効に防止できる。また、セ
ラミックス感温素子に予め一対の電極を設けておくこと
により、後工程で電極を接合する必要がなく製造工程が
単純となる。本発明の温度センサー受熱体の製造方法
は、有底筒状の受熱金属体の内部底面にセラミックス感
温素子を、活性金属を含むろう材にて接合するため、単
純な製造方法で安価に製造することができる。本発明の
温度センサー受熱体の製造方法は、有底筒状の受熱金属
体の内部底面にセラミックス感温素子を、活性金属を含
むろう材及び緩衝部材を介して接合するため、単純な製
造方法で安価に製造することができる。本発明の温度セ
ンサー受熱体の製造方法は、有底筒状の受熱金属体の内
部底面にセラミックス感温素子を、ろう材にて接合する
ため、単純な製造方法で安価に製造することができる。
本発明の温度センサー受熱体の製造方法は、有底筒状の
受熱金属体の内部底面にセラミックス感温素子を、ろう
材及び緩衝部材を介して接合するため、単純な製造方法
で安価に製造することができる。
The heat-receiving metal body and the ceramics temperature-sensitive element are chemically bonded by the components in the bonding layer diffusing at the interface between them, so that they are firmly bonded. As a result, the temperature sensor heat receiver of the present invention is excellent in the thermal shock characteristics of a sudden temperature change, and also has a good thermal response. When the bonding layer contains an active metal, a reaction generation layer (for example, TiO 2 , TiO, etc.) is formed at the interface of the ceramic temperature sensitive element.
Is formed, which effectively functions to firmly bond the ceramics temperature-sensitive element, and further effectively functions to heat conductivity, that is, responsiveness. In addition, by interposing a cushioning member between the heat-receiving metal and the ceramics temperature sensitive element in addition to the bonding layer, damage to the bonding part and the ceramics temperature sensitive element due to rapid temperature changes (cooling, heating) can be more effectively prevented. . Further, by providing a pair of electrodes in advance on the ceramic temperature-sensitive element, there is no need to join the electrodes in a later step, and the manufacturing process is simplified. The temperature sensor heat receiving body of the present invention is manufactured at low cost by a simple manufacturing method because the ceramic temperature sensitive element is bonded to the inner bottom surface of the bottomed cylindrical heat receiving metal body by the brazing material containing the active metal. can do. The method for manufacturing the temperature sensor heat receiving body of the present invention is a simple manufacturing method since the ceramic temperature sensitive element is bonded to the inner bottom surface of the bottomed cylindrical heat receiving metal body through the brazing material and the cushioning member containing the active metal. Can be manufactured at low cost. In the method for manufacturing the temperature sensor heat receiving body of the present invention, since the ceramic temperature sensitive element is bonded to the inner bottom surface of the bottomed cylindrical heat receiving metal body by the brazing material, it can be manufactured at a low cost by a simple manufacturing method. .
In the method for manufacturing the temperature sensor heat receiving body of the present invention, the ceramic temperature sensitive element is bonded to the inner bottom surface of the bottomed cylindrical heat receiving metal body through the brazing material and the cushioning member, and thus the manufacturing method is simple and inexpensive. can do.

【0008】[0008]

【実施例】【Example】

ー実施例1ー 本発明の温度センサー受熱体1は、図1に示す様に有底
筒状の受熱金属体2の内部底面21にセラミックス感温
素子3が、活性金属を含む接合層4を介して接合されて
いる。前記セラミックス感温素子3が、ペロブスカイト
型、スピネル型ルチル型又はコランダム型のいずれかで
あることが好ましい。また、前記セラミックス感温素子
3が一対の電極31を有することが好ましい(図2)。
本発明の温度センサー受熱体1は、有底筒状の受熱金属
体2の内部底面21にセラミックス感温素子3を、活性
金属を含むろう材にて接合することが好ましいが、活性
金属を含まないろう材にて接合する場合には、セラミッ
クス感温素子3の接合面に予め活性金属の金属層をスパ
ッタリング、メッキ、蒸着等により設けておくのが良
い。
Example 1 In the temperature sensor heat receiving body 1 of the present invention, as shown in FIG. 1, the ceramic temperature sensitive element 3 has the bonding layer 4 containing an active metal on the inner bottom surface 21 of the bottomed cylindrical heat receiving metal body 2. Are joined through. It is preferable that the ceramics temperature sensitive element 3 is one of a perovskite type, a spinel type rutile type, and a corundum type. Further, it is preferable that the ceramics temperature sensitive device 3 has a pair of electrodes 31 (FIG. 2).
In the temperature sensor heat receiving body 1 of the present invention, it is preferable that the ceramic temperature sensitive element 3 is bonded to the inner bottom surface 21 of the bottomed cylindrical heat receiving metal body 2 by a brazing material containing an active metal, but the active metal is contained. In the case of bonding with a non-brazing material, it is preferable to previously provide a metal layer of an active metal on the bonding surface of the ceramics temperature sensitive element 3 by sputtering, plating, vapor deposition or the like.

【0009】ー実験例1ー (セラミックス感温素子の作り方)平均粒径約1μmの
23粉末と、平均粒径が1μm以下のSrCO3粉末
、Cr23粉末、TiO2粉末及びFe23粉末を(Y
0.71Sr0.29)(Cr0.76Fe0.19Ti0.05)O3とな
る割合に秤量し、湿式混合し、乾燥し、その後1400
℃で2時間大気中にて仮焼する。そして、仮焼された粉
末に平均粒径0.6μmのSiO2粉末を1重量%加え
て湿式混合し乾燥する。乾燥後バインダーとしてPV
B、DBP、MEKおよびトルエンを添加してプレス成
形用粉末を造粒する。 次にこの粉末を直径0.4mm
の白金線を2本セットした金型に充填してプレス成形し
た後、1550℃の大気中で焼成することにより、ペロ
ブスカイト型のセラミックス感温素子3(サーミスタ素
子)を得た。そのサーミスタ素子の寸法は、直径4mm
厚さ2mmである(図2)。尚、角部に0.2mm程度
のC面取りを施してある。 (温度センサー受熱体の製造方法)厚さ0.3mmの金
属板(SUS430)を、プレス加工によって有底筒状
形状(外径16mm、高さ10mm、厚さ0.3mm)
とすることにより、受熱金属体2を得た。その後電解N
iメッキを施した。次に、表1に示すろう材(表1に示
す厚さ、直径4mm)を用いて真空中で所定の温度にて
セラミックス感温素子3と有底筒状の受熱金属体2とを
ろう付けにより接合し、温度センサー受熱体1を得た
(図1)。 (比較例 No.6)図4に示す様に有底筒状の金属部
材42に電気絶縁層43(ガラス接着層)を介して接合
されたアルミナ基板44の片面に白金よりなる感温抵抗
体46及び電極45を設けた温度センサ41を準備し
た。 (比較例 No.7 機械的接合)図7に示すように受
熱金属板72に中間金属板75が(スポット)溶接さ
れ、その中間金属板75にガラス封入感温素子74が、
中間金属板74に溶接された固定用金属材76により機
械的に直接固定されている温度センサ71を準備した。
(温度変化に対する評価)得られた温度センサー受熱
体及び比較例の温度センサーを5個ずつ用意し、大気中
500℃にて10分間保持したのち直ちに水冷する熱衝
撃試験を10回くり返した。本発明の温度センサーは5
個ともセラミックス感温素子3、接合層4にはクラック
等の異常は認められなかった。結果を表1に示す。
-Experimental Example 1- (How to make a ceramic temperature sensitive element) Y 2 O 3 powder having an average particle size of about 1 μm, SrCO 3 powder, Cr 2 O 3 powder, TiO 2 powder having an average particle size of 1 μm or less, and Fe 2 O 3 powder (Y
0.71 Sr 0.29 ) (Cr 0.76 Fe 0.19 Ti 0.05 ) O 3 is weighed, wet-mixed and dried, then 1400
Calcination is performed in the atmosphere at ℃ for 2 hours. Then, 1% by weight of SiO 2 powder having an average particle size of 0.6 μm is added to the calcined powder, and the mixture is wet mixed and dried. PV as a binder after drying
B, DBP, MEK and toluene are added to granulate the powder for press molding. This powder is then 0.4 mm in diameter
After filling in a mold in which two platinum wires are set up and press-molding, it is fired in the atmosphere at 1550 ° C. to obtain a perovskite-type ceramic temperature-sensitive element 3 (thermistor element). The thermistor element has a diameter of 4 mm.
It has a thickness of 2 mm (Fig. 2). The corners are chamfered with a radius of about 0.2 mm. (Method for manufacturing temperature sensor heat receiving body) A metal plate (SUS430) having a thickness of 0.3 mm is pressed into a cylindrical shape with a bottom (outer diameter 16 mm, height 10 mm, thickness 0.3 mm).
Thus, the heat receiving metal body 2 was obtained. Then electrolysis N
i-plated. Next, using the brazing material shown in Table 1 (thickness shown in Table 1, diameter 4 mm), the ceramic temperature sensitive element 3 and the bottomed tubular heat receiving metal body 2 are brazed at a predetermined temperature in vacuum. Were joined together to obtain a temperature sensor heat receiving body 1 (Fig. 1). (Comparative Example No. 6) As shown in FIG. 4, a temperature-sensitive resistor made of platinum is formed on one surface of an alumina substrate 44 joined to a bottomed tubular metal member 42 with an electrical insulating layer 43 (glass adhesive layer) interposed therebetween. A temperature sensor 41 provided with 46 and an electrode 45 was prepared. (Comparative Example No. 7 Mechanical Bonding) As shown in FIG. 7, the intermediate metal plate 75 is (spot) welded to the heat-receiving metal plate 72, and the glass-sealed temperature sensitive element 74 is attached to the intermediate metal plate 75.
The temperature sensor 71 mechanically directly fixed by the fixing metal material 76 welded to the intermediate metal plate 74 was prepared.
(Evaluation with respect to temperature change) The obtained temperature sensor heat receivers and the temperature sensors of the comparative examples were prepared five by five, held at 500 ° C. in the atmosphere for 10 minutes, and then immediately water-cooled. The thermal shock test was repeated 10 times. The temperature sensor of the present invention is 5
No abnormalities such as cracks were found in the ceramic temperature-sensitive element 3 and the bonding layer 4 in each case. The results are shown in Table 1.

【表1】 (応答性試験)温度センサー受熱体1を100℃の湯1
00に浸し(図8)、一定の電流を流し電圧の出力変化
を計測し、100℃の電圧出力に達するまでの時間を1
00%として90%の電圧出力が発生するまでの時間を
求める(図9)。そして、図3に示すNo.7の機械的
接合された温度センサ71の90%の電圧出力が発生す
るまでの時間を100とした場合の相対値を応答性とし
て求めた。結果を表1に示す。本発明の温度センサー受
熱体1は、比較例(従来)の温度センサに比べ応答性が
高く(即ち、応答が早い)、実用性に優れることが確認
できた。
[Table 1] (Responsiveness test) Temperature sensor heat receiving body 1 is 100 ° C. hot water 1
Soak in 00 (Fig. 8), apply a constant current, measure the output change of the voltage, and set the time to reach the voltage output of 100 ° C to 1
The time until the voltage output of 90% is generated as 00% is calculated (FIG. 9). Then, the relative value when the time until the 90% voltage output of the mechanically joined temperature sensor 71 of No. 7 shown in FIG. The results are shown in Table 1. It has been confirmed that the temperature sensor heat receiving body 1 of the present invention has higher responsiveness (that is, faster response) than the temperature sensor of the comparative example (conventional) and is excellent in practicality.

【0010】ー実施例2ー 本発明の他の温度センサー受熱体1’は、図3に示す様
に有底筒状の受熱金属体2の内部底面21にセラミック
ス感温素子3が、活性金属を含む接合層4及び緩衝部材
5を介して接合されている。前記セラミックス感温素子
3が、ペロブスカイト型、スピネル型ルチル型又はコラ
ンダム型のいずれかであることが好ましい。また、前記
セラミックス感温素子3が一対の電極31を有すること
が好ましい(図3)。本発明の他の温度センサー受熱体
1’は、有底筒状の受熱金属体2の内部底面21にセラ
ミックス感温素子3を活性金属を含むろう材及び緩衝部
材5を介して接合することが好ましいが、活性金属を含
まないろう材にて接合する場合には、セラミックス感温
素子の接合部に予め活性金属の金属層をスパッタリン
グ、メッキ、蒸着等により設けておくのが良い。
Second Embodiment As shown in FIG. 3, another temperature sensor heat receiving body 1'of the present invention has a ceramic temperature sensing element 3 on an inner bottom surface 21 of a cylindrical heat receiving metal body 2 with an active metal. Are joined together via a joining layer 4 including a cushioning member 5. It is preferable that the ceramics temperature sensitive element 3 is one of a perovskite type, a spinel type rutile type, and a corundum type. Further, it is preferable that the ceramics temperature sensitive element 3 has a pair of electrodes 31 (FIG. 3). In another temperature sensor heat receiving body 1 ′ of the present invention, the ceramic temperature sensitive element 3 can be bonded to the inner bottom surface 21 of the bottomed cylindrical heat receiving metal body 2 via the brazing material containing the active metal and the buffer member 5. Although preferable, when joining with a brazing material containing no active metal, it is preferable to previously provide a metal layer of the active metal on the joining portion of the ceramics temperature sensitive element by sputtering, plating, vapor deposition, or the like.

【0011】ー実験例2ー (セラミックス感温素子の作り方)実験例1のセラミッ
クス感温素子3と同様の手法により得た。 (温度センサー受熱体の製造方法)厚さ0.25mmの
金属板(SUS304)を、プレス加工によって有底筒
状形状(外径16mm、高さ10mm、厚さ0.25m
m)とすることにより、有底筒状の受熱金属体を得た。
その後電解Niメッキを施した。次に、緩衝部材5とし
て直径4mmの表2に示す厚さの緩衝板を準備した。そ
して、表2に示すろう材(表2に示す厚さ、直径4m
m)を用いて真空中で所定の温度においてセラミックス
感温素子3と緩衝部材5及び緩衝部材5と有底筒状の受
熱金属体2とをろう付けにより各々一体に接合し、温度
センサー受熱体1’を得た(図3)。 (温度変化に対する評価)実験例1と同様な方法によ
り、評価を行った。5個の温度センサー受熱体のセラミ
ックス感温素子、接合層にクラック等の異常がないこと
が確認された(結果は、表に示さず)。 (応答性試験)実験例1と同様な方法により、試験を行
った。実験例1のNo.7の機械的接合された温度セン
サーの90%の電圧出力が発生するまでの時間を100
とした場合の相対値を応答性として求めた。結果を表2
に示す。
-Experimental Example 2- (How to make a ceramics temperature sensitive element) The same method as that of the ceramics temperature sensitive element 3 of Experimental Example 1 was used. (Method for manufacturing temperature sensor heat receiving body) A metal plate (SUS304) having a thickness of 0.25 mm is pressed into a cylindrical shape with a bottom (outer diameter 16 mm, height 10 mm, thickness 0.25 m).
By setting m), a bottomed tubular heat-receiving metal body was obtained.
After that, electrolytic Ni plating was applied. Next, a buffer plate having a diameter of 4 mm and a thickness shown in Table 2 was prepared as the buffer member 5. Then, the brazing material shown in Table 2 (thickness shown in Table 2, diameter 4 m
m), the ceramic temperature-sensitive element 3 and the buffer member 5 and the buffer member 5 and the bottomed tubular heat receiving metal body 2 are integrally joined to each other by brazing at a predetermined temperature using a temperature sensor heat receiving body. 1'was obtained (Fig. 3). (Evaluation with respect to temperature change) Evaluation was performed in the same manner as in Experimental Example 1. It was confirmed that there were no abnormalities such as cracks in the ceramic thermosensitive element and the bonding layer of the five temperature sensor heat receivers (the results are not shown in the table). (Responsiveness test) A test was conducted in the same manner as in Experimental Example 1. The time until the 90% voltage output of the mechanically joined temperature sensor of No. 7 of Experimental Example 1 was generated was 100.
The relative value was calculated as the response. Table 2 shows the results
Shown in

【表2】 本発明の温度センサー受熱体1’は、緩衝部材5を介さ
ないものに比べ、応答性が低くなるが(即ち、応答が遅
い)、従来の温度センサに比べれば応答性が高く(即
ち、応答が早い)、実用性に優れることが確認できた。
[Table 2] The temperature sensor heat receiving body 1 ′ of the present invention has lower responsiveness (that is, slower response) than that without the buffer member 5, but has higher responsiveness (that is, responsiveness) than the conventional temperature sensor. It was confirmed that it was excellent in practicality.

【0012】[0012]

【発明の効果】本発明の温度センサー受熱体は、受熱金
属部材とセラミックス感温素子とが接合層を介して化学
的に接合されているのでセンサーの熱応答性が良好とな
る。また、構造が単純化され製造工程が単純になる。
In the temperature sensor heat receiving body of the present invention, the heat receiving metal member and the ceramic temperature sensitive element are chemically bonded via the bonding layer, so that the thermal response of the sensor becomes good. In addition, the structure is simplified and the manufacturing process is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の温度センサー受熱体(実施例1)の断
面図である。
FIG. 1 is a cross-sectional view of a temperature sensor heat receiver of the present invention (Example 1).

【図2】本発明の温度センサー受熱体を構成するセラミ
ックス感温素子の斜視図である。
FIG. 2 is a perspective view of a ceramics temperature sensitive element that constitutes the temperature sensor heat receiver of the present invention.

【図3】本発明の温度センサー受熱体(実施例2)の断
面図である。
FIG. 3 is a cross-sectional view of a temperature sensor heat receiving body (Example 2) of the present invention.

【図4】従来の温度センサー受熱体(実験例の比較例N
o.6)の断面図である。
FIG. 4 is a conventional temperature sensor heat receiver (comparative example N of experimental example).
o.6) is a sectional view.

【図5】従来の温度センサー受熱体の断面図である。FIG. 5 is a cross-sectional view of a conventional temperature sensor heat receiver.

【図6】従来の温度センサー受熱体の断面図である。FIG. 6 is a cross-sectional view of a conventional temperature sensor heat receiver.

【図7】従来の温度センサー受熱体(実験例の比較例N
o.7)の断面図である。
FIG. 7: Conventional temperature sensor heat receiver (Comparative Example N of Experimental Example)
7 is a sectional view of FIG.

【図8】応答性試験を方法を示す図である。FIG. 8 is a diagram showing a method of a responsiveness test.

【図9】応答性試験における応答性の相対値の求め方を
示すための出力電圧と時間との関係を表した図である。
FIG. 9 is a diagram showing a relationship between an output voltage and time for showing a relative value of responsiveness in a responsiveness test.

【符号の説明】[Explanation of symbols]

1、1’ 温度センサー受熱体 2 有底筒状の受熱金属体 21 有底筒状の受熱金属体の内部底面 3 セラミックス感温素子 31 セラミックス感温素子の電極 4 接合層 5 緩衝部材 1, 1'Temperature sensor heat receiving body 2 Bottomed cylindrical heat receiving metal body 21 Internal bottom surface of bottomed cylindrical heat receiving metal body 3 Ceramics temperature sensitive element 31 Ceramics temperature sensing element electrode 4 Bonding layer 5 Buffer member

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 有底筒状の受熱金属体の内部底面に活性
金属を含む接合層を介してセラミックス感温素子が接合
されていることを特徴とする温度センサー受熱体。
1. A temperature sensor heat-receiving body, wherein a ceramic temperature-sensitive element is bonded to an inner bottom surface of a bottomed cylindrical heat-receiving metal body via a bonding layer containing an active metal.
【請求項2】 有底筒状の受熱金属体の内部底面にセラ
ミックス感温素子が、活性金属を含む接合層及び緩衝部
材を介して接合されていることを特徴とする温度センサ
ー受熱体。
2. A temperature sensor heat-receiving body, wherein a ceramic temperature-sensitive element is bonded to an inner bottom surface of a bottomed cylindrical heat-receiving metal body via a bonding layer containing an active metal and a buffer member.
【請求項3】 前記セラミックス感温素子が、ペロブス
カイト型、スピネル型、ルチル型又はコランダム型のい
ずれかの結晶構造を有することを特徴とする請求項1又
は2に記載の温度センサー受熱体。
3. The temperature sensor heat receiving body according to claim 1, wherein the ceramics temperature sensitive device has a perovskite type, spinel type, rutile type, or corundum type crystal structure.
【請求項4】 前記セラミックス感温素子が一対の電極
を有することを特徴とする請求項1〜3のいずれかに記
載の温度センサー受熱体。
4. The temperature sensor heat receiver according to claim 1, wherein the ceramics temperature sensitive element has a pair of electrodes.
【請求項5】 有底筒状の受熱金属体の内部底面にセラ
ミックス感温素子を、活性金属を含むろう材にて接合す
ることを特徴とする温度センサー受熱体の製造方法。
5. A method for manufacturing a temperature sensor heat receiving body, comprising: joining a ceramics temperature sensitive element to an inner bottom surface of a bottomed cylindrical heat receiving metal body with a brazing material containing an active metal.
【請求項6】 有底筒状の受熱金属体の内部底面にセラ
ミックス感温素子を、活性金属を含むろう材及び緩衝部
材を介して接合することを特徴とする温度センサー受熱
体の製造方法。
6. A method of manufacturing a temperature sensor heat receiving body, comprising: joining a ceramics temperature sensitive element to an inner bottom surface of a bottomed cylindrical heat receiving metal body via a brazing material containing active metal and a buffer member.
【請求項7】 有底筒状の受熱金属体の内部底面にセラ
ミックス感温素子を、ろう材にて接合することを特徴と
する温度センサー受熱体の製造方法。
7. A method for manufacturing a temperature sensor heat receiving body, which comprises bonding a ceramic temperature sensitive element to a bottom surface of a bottomed cylindrical heat receiving metal body with a brazing material.
【請求項8】 有底筒状の受熱金属体の内部底面にセラ
ミックス感温素子を、ろう材及び緩衝部材を介して接合
することを特徴とする温度センサー受熱体の製造方法。
8. A method for manufacturing a temperature sensor heat receiving body, comprising: joining a ceramic temperature sensitive element to an inner bottom surface of a bottomed cylindrical heat receiving metal body via a brazing material and a cushioning member.
【請求項9】 前記セラミックス感温素子が、ペロブス
カイト型、スピネル型、ルチル型又はコランダム型のい
ずれかの結晶構造を有することを特徴とする請求項5〜
8いずれかに記載の温度センサー受熱体の製造方法。
9. The ceramic temperature-sensitive element has a perovskite type, spinel type, rutile type or corundum type crystal structure.
8. The method for manufacturing the temperature sensor heat receiving body according to any one of 8 above.
【請求項10】 前記セラミックス感温素子が一対の電
極を有することを特徴とする請求項5〜9いずれかに記
載の温度センサー受熱体の製造方法。
10. The method for manufacturing a temperature sensor heat receiver according to claim 5, wherein the ceramics temperature sensitive element has a pair of electrodes.
JP7108986A 1995-04-10 1995-04-10 Temperature sensor heat receiving body and its production Pending JPH08283075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7108986A JPH08283075A (en) 1995-04-10 1995-04-10 Temperature sensor heat receiving body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7108986A JPH08283075A (en) 1995-04-10 1995-04-10 Temperature sensor heat receiving body and its production

Publications (1)

Publication Number Publication Date
JPH08283075A true JPH08283075A (en) 1996-10-29

Family

ID=14498697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7108986A Pending JPH08283075A (en) 1995-04-10 1995-04-10 Temperature sensor heat receiving body and its production

Country Status (1)

Country Link
JP (1) JPH08283075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535291A (en) * 2006-04-26 2009-10-01 ワトロウ エレクトリック マニュファクチュアリング カンパニー Ceramic heater and method for fixing a thermocouple to a ceramic heater
JP2011220868A (en) * 2010-04-09 2011-11-04 Shibaura Electronics Co Ltd Temperature sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535291A (en) * 2006-04-26 2009-10-01 ワトロウ エレクトリック マニュファクチュアリング カンパニー Ceramic heater and method for fixing a thermocouple to a ceramic heater
JP2011220868A (en) * 2010-04-09 2011-11-04 Shibaura Electronics Co Ltd Temperature sensor

Similar Documents

Publication Publication Date Title
US7832616B2 (en) Methods of securing a thermocouple to a ceramic substrate
JP5304822B2 (en) Temperature sensor
JPH0749277A (en) Pressure sensor and manufacture thereof
US6766574B2 (en) Production control method for temperature sensor by adjusting thickness of a heat-sensing surface side ceramic layer
JPS629239A (en) High-speed response type temperature sensor
JP2012508870A (en) Sensor element and method for manufacturing sensor element
JP2002188966A (en) Temperature sensor and its manufacturing method and manufacture control method
JPH08283075A (en) Temperature sensor heat receiving body and its production
JPH0996571A (en) Heat receiving body of temperature sensor
JPH02124456A (en) Connecting structure of solid-state electrolyte element
JP2701565B2 (en) Thin film thermistor and method of manufacturing the same
JP3377874B2 (en) Thin film sensor element and method of manufacturing the same
JP2734840B2 (en) Contact type thin film thermistor
JPH01278001A (en) Thermistor temperature transducer structure
JPH07172948A (en) Adhesion of metallic material to ceramic material
JPS5946401B2 (en) thermistor
JPH0646663B2 (en) Method for manufacturing piezoelectric bimorph
JPH04293202A (en) Contact type thin film thermistor
JPS63299101A (en) Lead terminal for high-temperature sensor
JPH0455437Y2 (en)
JPS622683B2 (en)
JPS62145803A (en) Manufacture of thin film thermistor
JPS60179619A (en) Thin film thermistor
JPH04293201A (en) Thin film thermistor
JPS5951323A (en) Thermistor