JPS62287601A - Thin film thermistor - Google Patents

Thin film thermistor

Info

Publication number
JPS62287601A
JPS62287601A JP13229786A JP13229786A JPS62287601A JP S62287601 A JPS62287601 A JP S62287601A JP 13229786 A JP13229786 A JP 13229786A JP 13229786 A JP13229786 A JP 13229786A JP S62287601 A JPS62287601 A JP S62287601A
Authority
JP
Japan
Prior art keywords
glass
coating layer
thin film
insulating coating
film thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13229786A
Other languages
Japanese (ja)
Inventor
彪 長井
中川 貞雄
祐 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13229786A priority Critical patent/JPS62287601A/en
Publication of JPS62287601A publication Critical patent/JPS62287601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は耐熱性の高い薄膜サーミスタに関するもので、
この薄膜サーミスタは電気オーブン、ガスオーブンなど
の温度センサとして利用される。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a thin film thermistor with high heat resistance.
This thin film thermistor is used as a temperature sensor for electric ovens, gas ovens, etc.

従来の技術 薄膜サーミスタは、例えば、長井能ナショナルテクニカ
ルレポート(NationalTschnicagRe
port )Vol 、29.(1983)P、145
に示されるように、アルミナなどの平板状絶縁基板の一
方の表面に炭火硅素(SiC)膜と電極膜を形成したの
ち、この電極膜にpt線などのリード線を接続し、更に
前述した平板状絶縁基板の一方の表面に硝子被覆層を設
けて構成される。
Conventional technology thin film thermistors are described, for example, in the National Technical Report by Noh Nagai.
port) Vol, 29. (1983) P, 145
As shown in Figure 2, after forming a silicon charcoal (SiC) film and an electrode film on one surface of a flat insulating substrate such as alumina, a lead wire such as a PT wire is connected to this electrode film, and then the above-mentioned flat insulating substrate is It is constructed by providing a glass coating layer on one surface of a shaped insulating substrate.

発明が解決しようとする問題点 前記従来例に示されているように、硝子被覆層はSiC
膜を結露、湿度など外部環境から保護する。
Problems to be Solved by the Invention As shown in the prior art example, the glass coating layer is made of SiC.
Protects the membrane from external environment such as condensation and humidity.

しかし、この硝子被覆層の厚さが局部的に厚くなったり
、あるいは薄くなったりした場合、クランクが生じ易い
という欠点があった。このため、硝子被覆層の形成は厳
しい工程条件の管理を必要とし、また価格も高くなると
いう欠点も生じていた。
However, if the thickness of this glass coating layer becomes locally thick or thin, there is a drawback that cranking is likely to occur. For this reason, the formation of the glass coating layer requires strict control of process conditions, and also has the disadvantage of being expensive.

また、実用上も、300 ’C程度の高温に保たれた硝
子被覆層に室温の水滴が付着した場合など、硝子被覆層
にクランクが生じ易いという欠点もあった。硝子被覆層
にクランクが生じると、そのクラックを通って水分が内
部に浸透し、このために薄膜サーミスタの特性変動が生
じ易くなる。
In addition, in practical use, there is also a drawback that the glass coating layer tends to crack when water droplets at room temperature adhere to the glass coating layer maintained at a high temperature of about 300'C. When cracks occur in the glass coating layer, moisture permeates into the interior through the cracks, which tends to cause variations in the characteristics of the thin film thermistor.

本発明はクランクの生じ難い絶縁性被覆層を提供するも
のである。
The present invention provides an insulating coating layer that is less prone to cranking.

問題点を解決するための手段 前記問題点を解決する本発明の技術的手段は、熱膨張係
数(40〜60)X10−7/℃の硝子とアルミナ粒子
の混合物で絶縁性被覆層を構成する点にある。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to configure an insulating coating layer with a mixture of glass and alumina particles having a coefficient of thermal expansion of (40 to 60) x 10-7/°C. At the point.

作   用 本発明は上述したように、絶縁性被覆層が硝子とアルミ
ナ粒子の混合物で構成される。硝子の熱伝導率は一般的
に小さく、例えば石英硝子のそれは約0,014w、/
 Cm a de、gである。一方、アルミナの熱伝導
率は約0,3 w/Cm 6 d e g であり、硝
子のそれに比べ1桁以上大きい。従って、硝子とアルミ
ナの混合物の熱伝導率は、硝子単独のそれと比べ大きく
なる。
Function As described above, in the present invention, the insulating coating layer is composed of a mixture of glass and alumina particles. The thermal conductivity of glass is generally low; for example, that of quartz glass is approximately 0,014W, /
Cm a de, g. On the other hand, the thermal conductivity of alumina is about 0.3 w/Cm 6 de g , which is more than an order of magnitude higher than that of glass. Therefore, the thermal conductivity of a mixture of glass and alumina is higher than that of glass alone.

急熱または急冷時に硝子にクラックが入り易い理由の一
つは、硝子に生じる温度傾斜による熱応力にある。本発
明の絶縁性被覆層の熱伝導率は硝子単独のそれに比べ大
きいので、急熱または急冷時に温度傾斜が生じ難くなる
ため熱応力が小さくなる。このためにクランクが生じ難
くなると考えられる。
One of the reasons why glass tends to crack during rapid heating or cooling is the thermal stress caused by the temperature gradient that occurs in the glass. Since the thermal conductivity of the insulating coating layer of the present invention is higher than that of glass alone, temperature gradients are less likely to occur during rapid heating or cooling, and therefore thermal stress is reduced. It is thought that this makes it difficult for cranks to occur.

実施例 第1図は本発明の薄膜サーミスタの一実施例を示す断面
図である。平板状アルミナ基板1の一方の表面にあらか
じめAu−Pt厚膜電極膜2を形成し、その後スパッタ
法によりSiC膜3を形成し、薄膜サーミスタ素子を構
成した。
Embodiment FIG. 1 is a sectional view showing an embodiment of the thin film thermistor of the present invention. An Au-Pt thick film electrode film 2 was formed in advance on one surface of a flat alumina substrate 1, and then a SiC film 3 was formed by sputtering to form a thin film thermistor element.

次にptリード線4を電極膜2に溶接で接続した。この
後更に絶縁性被覆層5を形成し薄膜サーミスタを構成し
た。絶縁性被覆層5は硝子51とアルミナ粒子52とで
構成した。
Next, the PT lead wire 4 was connected to the electrode film 2 by welding. After this, an insulating coating layer 5 was further formed to constitute a thin film thermistor. The insulating coating layer 5 was composed of glass 51 and alumina particles 52.

硝子51の熱膨張係数は(40〜60)XIO−7/′
°Cのものが望ましい。この範囲外の熱膨張係数を有す
る硝子51は、クランクを発生し易い傾向を示した。硝
子51はクラックが発生しないことの外にも、内包され
る気泡は独立し、ピンホールが形成されないこと、また
密着性が良いことなどを求められる。これ等の点も含め
、種々の硝子材料を検討した結果、Zn0−B 203
−S i 02系硝子材料が優れていた。
The coefficient of thermal expansion of glass 51 is (40-60)XIO-7/'
°C is preferable. Glass 51 having a coefficient of thermal expansion outside this range showed a tendency to easily generate cranks. In addition to not causing cracks, the glass 51 is required to have independent air bubbles, no pinholes, and good adhesion. As a result of examining various glass materials including these points, we found that Zn0-B 203
-S i 02 type glass material was excellent.

次にZnO−B2O3−5r○2系硝子51の粉末にア
ルミナ粒子52(純度99%以上、30〜50μm)を
一定量加えた混合粉末を空気巾約700’Cで焼成して
、絶縁性被覆層5を形成した。絶縁性被覆層5を形成し
たのちの薄膜サーミスタは、絶縁性被覆層5について焼
成後に発生するクラックの有無、機械的強度を調べられ
たのち、熱衝撃試験にかけられた。熱衝撃試験は次の手
順で実施された。
Next, a powder mixture of ZnO-B2O3-5r○2 glass 51 and a certain amount of alumina particles 52 (purity of 99% or more, 30 to 50 μm) is fired in an air width of about 700'C to form an insulating coating. Layer 5 was formed. After forming the insulating coating layer 5, the thin film thermistor was examined for the presence or absence of cracks that occur in the insulating coating layer 5 after firing and for mechanical strength, and then subjected to a thermal shock test. The thermal shock test was conducted using the following procedure.

最初、薄膜サーミスタは空気中で100’Cに加熱され
たのち、手早く室温水中(約20 ’C)に浸漬された
。浸漬後、絶縁性被覆層5にクラックが発生したかどう
か検査したのち、クラックの発生がなければ、次に20
0°Cに加熱して、同様の手順で試験した。このように
して、絶縁性被覆層5にクラックが発生するまで、薄膜
サーミスタは100°Cづつ加熱された。
First, the thin film thermistor was heated to 100'C in air and then briefly immersed in room temperature water (approximately 20'C). After immersion, the insulating coating layer 5 is inspected to see if any cracks have occurred, and if no cracks have occurred, then the
It was heated to 0°C and tested using the same procedure. In this way, the thin film thermistor was heated by 100° C. until cracks occurred in the insulating coating layer 5.

アルミナ粒子52の添加量が零wt%のとき(従来例)
、絶縁性被覆層5は実質的に硝子層である。硝子層5の
厚さが局部的に1n以上(その他の部分は0.5朋以下
)になると、焼成後クランクが生じ易かった。しかし、
その厚さがQ、5mm以下であればクラックは発生しな
かった。熱衝撃試験では、200〜300°Cに加熱さ
れたとき、クラックが新たに、多く発生した。
When the amount of alumina particles 52 added is 0 wt% (conventional example)
, the insulating coating layer 5 is substantially a glass layer. When the thickness of the glass layer 5 locally became 1n or more (other parts had a thickness of 0.5 or less), cranking was likely to occur after firing. but,
No cracks occurred if the thickness was Q, 5 mm or less. In the thermal shock test, many new cracks were generated when heated to 200 to 300°C.

アルミナ粒子52の添加量が(5〜30)wt%のとき
、絶縁性被覆層5の厚さが局部的に2〜4mmになって
もクラックは発生しなかった。また、熱衝撃試験でも、
400〜500°Cに加熱されるまで、クランクは新た
に発生しなかった。絶縁性被覆層5の熱伝導率は、硝子
層単独のそれに比べ大きいので、焼成時あるいは熱衝撃
試験のときにも、絶縁性被覆層5に大きな温度傾斜が生
じない。
When the amount of alumina particles 52 added was (5 to 30) wt%, no cracks occurred even if the thickness of the insulating coating layer 5 locally became 2 to 4 mm. Also, in thermal shock tests,
No new cranking occurred until heated to 400-500°C. Since the thermal conductivity of the insulating coating layer 5 is higher than that of the glass layer alone, a large temperature gradient does not occur in the insulating coating layer 5 even during firing or thermal shock testing.

この結果、クラックの発生がなく、耐熱衝撃性も高い。As a result, no cracks occur and the thermal shock resistance is high.

アルミナ粒子52の添加量が40 w t%以上のとき
、クラックは発生しないが、アルミナ粒子52の密着力
が弱く、絶縁性被覆層5からアルミナ粒子52が脱離し
易くなった。
When the amount of alumina particles 52 added was 40 wt% or more, cracks did not occur, but the adhesion of the alumina particles 52 was weak and the alumina particles 52 were easily detached from the insulating coating layer 5.

このようにして構成された薄膜サーミスタは、煮沸試験
、空気中400°C11000時間放置試験にかけられ
たが、いずれも特性変動は実用上問題にならない程度で
あった。
The thin film thermistor constructed in this manner was subjected to a boiling test and a standing test in air at 400° C. for 11,000 hours, but in both cases, the characteristic fluctuations were not a problem for practical use.

なお、感温抵抗体膜3としてSiC膜以外にも、Fe、
Ni、Co、Mnなどの複合金属酸化物膜、Si膜など
を用いても良いことは自明であろう。
In addition to the SiC film, as the temperature sensitive resistor film 3, Fe,
It is obvious that composite metal oxide films such as Ni, Co, Mn, etc., Si films, etc. may be used.

発明の効果 以上述べてきたように、本発明によれば次に示す効果が
得られる。
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

(1)絶縁性被覆層は硝子とアルミナ粒子とからなるの
で、その熱伝導率は硝子層単独に比べ大きくなる。この
ため絶縁性被覆層はクランクの発生がなく、またその耐
熱衝撃性も大巾に高くなる。
(1) Since the insulating coating layer is composed of glass and alumina particles, its thermal conductivity is higher than that of the glass layer alone. Therefore, the insulating coating layer is free from cranking, and its thermal shock resistance is greatly improved.

(2)絶縁性被覆層の厚さが局部的に2〜4mmになっ
ても、クラックは発生しない。このため絶縁性被覆層の
形成は容易になり、作業性が向上する。
(2) Even if the thickness of the insulating coating layer locally becomes 2 to 4 mm, no cracks occur. Therefore, the formation of the insulating coating layer becomes easy and workability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す薄膜サーミスタの断面図で
ある。 1−・・・・平板状アルミナ基板、2−・電極膜、3・
・・・・感温抵抗体膜、4 ・・リード線、5・・・・
・・絶縁性被覆層、51・・・・・・硝子、52 ・・
・アルミナ硝子。
The figure is a sectional view of a thin film thermistor showing an embodiment of the present invention. 1-...Flat alumina substrate, 2--Electrode film, 3-
... Temperature-sensitive resistor film, 4 ... Lead wire, 5 ...
...Insulating coating layer, 51...Glass, 52...
・Alumina glass.

Claims (3)

【特許請求の範囲】[Claims] (1)平板状アルミナ基板の一方の表面に電極膜と感温
抵抗体膜が形成された薄膜サーミスタ素子と前記電極膜
に接続されたリード線と前記平板状アルミナ基板の一方
の表面に全面に形成された絶縁性被覆層とから成り、前
記絶縁性被覆層が熱膨張係数(40〜60)×10^−
^7/℃の硝子とアルミナ粒子の混合物で構成された薄
膜サーミスタ。
(1) A thin film thermistor element having an electrode film and a temperature-sensitive resistor film formed on one surface of a flat alumina substrate, a lead wire connected to the electrode film, and a thin film thermistor element having an electrode film and a temperature-sensitive resistor film formed on one surface of the flat alumina substrate, and a lead wire connected to the electrode film, and and an insulating coating layer formed, the insulating coating layer having a thermal expansion coefficient (40 to 60) x 10^-
A thin film thermistor composed of a mixture of glass and alumina particles at ^7/℃.
(2)絶縁性被覆層が酸化亜鉛、酸化硼素、酸化硅素を
主成分とする硝子とアルミナ粒子の混合物で構成された
特許請求の範囲第1項記載の薄膜サーミスタ。
(2) The thin film thermistor according to claim 1, wherein the insulating coating layer is composed of a mixture of glass and alumina particles whose main components are zinc oxide, boron oxide, and silicon oxide.
(3)アルミナ粒子の密度が(5〜30)wt%である
特許請求の範囲第2項記載の薄膜サーミスタ。
(3) The thin film thermistor according to claim 2, wherein the density of the alumina particles is (5 to 30) wt%.
JP13229786A 1986-06-06 1986-06-06 Thin film thermistor Pending JPS62287601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13229786A JPS62287601A (en) 1986-06-06 1986-06-06 Thin film thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13229786A JPS62287601A (en) 1986-06-06 1986-06-06 Thin film thermistor

Publications (1)

Publication Number Publication Date
JPS62287601A true JPS62287601A (en) 1987-12-14

Family

ID=15077997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13229786A Pending JPS62287601A (en) 1986-06-06 1986-06-06 Thin film thermistor

Country Status (1)

Country Link
JP (1) JPS62287601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250604A (en) * 1989-12-28 1991-11-08 Mitsubishi Materials Corp Thermistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615001A (en) * 1979-07-17 1981-02-13 Matsushita Electric Ind Co Ltd Heattsensitive element
JPS58103102A (en) * 1981-12-15 1983-06-20 松下電器産業株式会社 Thin film thermistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615001A (en) * 1979-07-17 1981-02-13 Matsushita Electric Ind Co Ltd Heattsensitive element
JPS58103102A (en) * 1981-12-15 1983-06-20 松下電器産業株式会社 Thin film thermistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250604A (en) * 1989-12-28 1991-11-08 Mitsubishi Materials Corp Thermistor

Similar Documents

Publication Publication Date Title
WO2011136193A1 (en) Temperature sensor comprising temperature sensing element
US4396899A (en) Platinum thin film resistance element and production method therefor
KR970705012A (en) Temperature sensor element and method of manufacturing temperature sensor and temperature sensor element having same
US4424507A (en) Thin film thermistor
JP3806434B2 (en) Thermistor for high temperature
JPS62287601A (en) Thin film thermistor
JPH02120624A (en) Production of detection element
JPH01130503A (en) Thin-film thermistor
JPS61242002A (en) Thin film thermistor
JPH0211762Y2 (en)
JP2858352B2 (en) Thin film thermistor
JP2548351B2 (en) Thin film thermistor
JPS5884405A (en) Method of producing thin film thermistor
JPS5826802B2 (en) Temperature sensing element for high temperature
JPH01134901A (en) Thermistor
JP2548365B2 (en) Thin film thermistor
JPS6252924B2 (en)
JPS6341002A (en) Thin film thermistor
JPH02305406A (en) Thin film thermistor
JPS6367321B2 (en)
JPS58103102A (en) Thin film thermistor
JP2880009B2 (en) Detection element for flow meter
JP2000131271A (en) Limiting current type oxygen sensor
JPH1123337A (en) Measuring element for airflow rate measuring apparatus
JPS62111402A (en) Thin film thermistor