JPS5826802B2 - Temperature sensing element for high temperature - Google Patents

Temperature sensing element for high temperature

Info

Publication number
JPS5826802B2
JPS5826802B2 JP7530879A JP7530879A JPS5826802B2 JP S5826802 B2 JPS5826802 B2 JP S5826802B2 JP 7530879 A JP7530879 A JP 7530879A JP 7530879 A JP7530879 A JP 7530879A JP S5826802 B2 JPS5826802 B2 JP S5826802B2
Authority
JP
Japan
Prior art keywords
temperature
heat
sensing element
sensitive material
temperature sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7530879A
Other languages
Japanese (ja)
Other versions
JPS55166902A (en
Inventor
文雄 細見
嘉浩 松尾
恒治 新田
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7530879A priority Critical patent/JPS5826802B2/en
Publication of JPS55166902A publication Critical patent/JPS55166902A/en
Publication of JPS5826802B2 publication Critical patent/JPS5826802B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は約300℃以上、特に800℃以上で苛酷な条
件下で使用される、アンプなどの不用な高温用感温素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an unnecessary high-temperature sensing element such as an amplifier, which is used under severe conditions at temperatures above about 300°C, particularly above 800°C.

従来このような感温素子としては、特に自動車用の排ガ
ス浄化触媒用の温度検知素子が知られており、感温材料
としての安定性はある程度評価されている。
Conventionally, temperature sensing elements for use in exhaust gas purification catalysts for automobiles have been known as such temperature sensing elements, and their stability as temperature sensing materials has been evaluated to a certain extent.

しかしながら素子としてのコストが高い、構造上導電線
やその接合部が断線し易い、感温材料である焼結セラミ
ック中に埋設した電極部の欠損が多い、電極用に使用す
る白金電極が高価である、などの欠点があり、その改良
が望まれていた。
However, the cost of the device is high, the conductive wires and their joints are prone to breakage due to the structure, the electrodes embedded in the sintered ceramic, which is a temperature-sensitive material, are often damaged, and the platinum electrodes used for the electrodes are expensive. However, there were some shortcomings, and improvements were desired.

本発明はこのような欠点の改善された高温用感温素子を
提供するものであり、上述のように自動車用として限定
されることなく、広く一般に適用され得るものである。
The present invention provides a high-temperature sensing element that has been improved from such drawbacks, and is not limited to use in automobiles as described above, but can be widely applied in general.

以十本発明の一実施例を図面に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

本発明による高温用感温素子は、基本的には第1図に示
すように、耐熱導電線、電極部と感温材料との接地部を
兼ねた耐熱金属体11の少なくとも2本を耐熱酸化物絶
縁体12に埋設すると同時に→体向に結合し、その一方
の端部の露出部に感温材料13を溶射して構成される。
Basically, as shown in FIG. 1, the high-temperature sensing element according to the present invention includes at least two heat-resistant conductive wires, a heat-resistant metal body 11 that also serves as a grounding part between the electrode part and the temperature-sensitive material. It is constructed by embedding it in the physical insulator 12 and simultaneously connecting it in the → body direction, and thermally spraying the temperature-sensitive material 13 on the exposed part of one end.

耐熱金属体11としては、例えばハステロイ、ニクロム
、カンタルの耐熱性合金や、高価であるが白金の被覆を
施した金属体を使用できる。
As the heat-resistant metal body 11, for example, a heat-resistant alloy such as Hastelloy, Nichrome, or Kanthal, or an expensive metal body coated with platinum can be used.

耐熱酸化物絶縁体12としては、アルミナ、マグネシア
、ムライトなどを、また感温材料としては、従来より知
られているスピネル系酸化物、プロブスカイト系酸化物
、ジルコニア系酸化物などの材料を適用する。
As the heat-resistant oxide insulator 12, alumina, magnesia, mullite, etc. are used, and as the temperature-sensitive material, conventionally known materials such as spinel oxide, provskite oxide, zirconia oxide, etc. are used. do.

感温材料は、室温で1010Ωα以上あっても、i o
oo℃程度の温度では1Ωαまでにも抵抗が低下するの
で、これより十分に抵抗が高げれば、耐熱酸化物絶縁体
は特に高抵抗のものでなくとも十分に使用に耐える。
Even if the temperature-sensitive material has a resistance of 1010 Ωα or more at room temperature, i o
At a temperature of about 00° C., the resistance decreases to as low as 1 Ωα, so if the resistance is sufficiently higher than this, the heat-resistant oxide insulator can withstand use even if it does not have a particularly high resistance.

さらに高温になるのは感温材料の溶射された一端だけで
あるため、低温での抵抗が幾分低くとも問題が少ないこ
とが予想される。
Moreover, since only one end of the temperature-sensitive material is thermally sprayed, it is expected that the somewhat lower resistance at low temperatures will be less of a problem.

本発明によるこのような感温素子は、その一体化された
構造からも明白であるように、信頼性が高く、寿命が長
いといった特徴が認められた。
The temperature-sensitive element according to the present invention has been found to have high reliability and long life, as evidenced by its integrated structure.

本発明による感温素子で見られた故障は感温材料の接地
部であるが、従来のセラミック中に埋設された電極部の
欠損に比べれば、遥かに小さく、他の欠点は一掃された
The failure observed in the temperature-sensitive element according to the present invention was in the grounding part of the temperature-sensitive material, but it was much smaller than the damage in the electrode part embedded in the conventional ceramic, and other defects were eliminated.

さらに従来例では埋設電極強度に問題があり、歩留りが
悪い上に、高温素子に組立てる工程が多く、高価につい
ていたが、本発明によれば、感温材料の接地部の接合は
、歩留りは殆ど100%であり、かつ工程が単純で短い
ため、大巾なコストダウンが可能となった。
Furthermore, in the conventional example, there was a problem with the strength of the buried electrode, the yield was low, and there were many steps to assemble it into a high-temperature element, making it expensive. However, according to the present invention, the yield is almost negligible when bonding the grounding part of the temperature-sensitive material. 100%, and the process is simple and short, making it possible to significantly reduce costs.

第2図は本発明による感温素子の別の実施例を示す。FIG. 2 shows another embodiment of the temperature-sensitive element according to the invention.

この構造では、感温材料23は2本の耐熱金属体21に
接地するように耐熱酸化物絶縁体重に埋め込まれて構成
されている。
In this structure, the temperature-sensitive material 23 is embedded in a heat-resistant oxide insulating body so as to be grounded to the two heat-resistant metal bodies 21 .

また熱応答性は幾分劣化するが、第3図に示すように感
温材料の部分を劣悪な雰囲気から保護するために、保護
皮膜34を設けることは有用である。
Also, although the thermal response is somewhat degraded, it is useful to provide a protective film 34 to protect the temperature-sensitive material from the harsh atmosphere, as shown in FIG.

特にジルコニア系材料のように酸素分圧依存性を示すも
のには必要である。
This is especially necessary for materials that exhibit oxygen partial pressure dependence, such as zirconia-based materials.

第4図には、本発明による感温素子のさらに別の実施例
を示す。
FIG. 4 shows yet another embodiment of the temperature sensing element according to the present invention.

少なくとも2つの穴を有する耐熱酸化物絶縁体42の該
穴の中に導電部を構成する耐熱金属体41を通し、その
一端に電極45を設け、絶縁体42に固定する。
A heat-resistant metal body 41 constituting a conductive portion is passed through the holes of a heat-resistant oxide insulator 42 having at least two holes, and an electrode 45 is provided at one end of the heat-resistant metal body 41 and fixed to the insulator 42 .

他端に感温材料椙を溶射し、耐熱金属体41を接地し固
定する。
The other end is thermally sprayed with a temperature-sensitive material, and the heat-resistant metal body 41 is grounded and fixed.

さらに必要に応じて保護皮膜44を設ける。Furthermore, a protective film 44 is provided as necessary.

これらの変化した構造のものは、第1図に示したような
基本的な構造の高温素子と同様に優れた特徴を有する。
These modified structures have the same excellent characteristics as the high temperature elements of the basic structure shown in FIG.

次に限定的でない本発明の実施例を挙げて説明する。Next, non-limiting examples of the present invention will be described.

実施例−1 経1.5titφ、長さ60mのニクロム線を200メ
ツシユのアルミナ細粒でサンドブラストして表面を荒し
た上に、平均30μmのアルミナ粉をプラズマ溶射した
Example 1 A nichrome wire with a diameter of 1.5 titφ and a length of 60 m was roughened by sandblasting with 200 meshes of fine alumina particles, and then alumina powder having an average size of 30 μm was plasma sprayed.

プラズマとしてAr N2混合ガスを用い、プラズマ
電流を80OAとし、70nの溶射距離においた2本の
前記ニクロム線上に直経が6關楕円柱となるように2本
のニクロム線をその中間軸心を中心にして回転させ、数
分間溶射を行なった。
Ar N2 mixed gas was used as the plasma, the plasma current was set to 80OA, and the two nichrome wires were placed at a spraying distance of 70n, with the center axis of the two nichrome wires forming an elliptical cylinder with a diameter of 6. It was rotated around the center and sprayed for several minutes.

一端の露出したニクロム線端((13mm)に、感温材
料を約250μm厚にプラズマ溶射し、さらに保護皮膜
として厚さ1關のアルミナの膜を作成した。
A temperature-sensitive material was plasma-sprayed to a thickness of about 250 μm onto the exposed end of the nichrome wire (13 mm), and an alumina film about 1 inch thick was further formed as a protective film.

スピネル型の材料A12038.6モ#%、Mgo 5
0.7モル%、Cr20327.1モル%、F e20
313.6モ/l/%より成る組成)やZr102系材
料(Y2O2を9モル%含む材料)を用いた。
Spinel type material A12038.6Mo#%, Mgo 5
0.7 mol%, Cr20327.1 mol%, Fe20
313.6 mole/l/%) and a Zr102-based material (a material containing 9 mole percent of Y2O2) were used.

溶射時のストレスを排除するために800℃で2時間ア
ニールした後、炉冷し、特性を調べた。
After annealing at 800° C. for 2 hours to eliminate stress during thermal spraying, the material was cooled in a furnace and its properties were investigated.

これらの素子のB定数は850〜950℃間で1000
0°に以上あり、自動車排ガス中での1050℃、60
0時間に及ぶ耐熱試験後のB定数及び抵抗の変化は±3
%以下であった。
The B constant of these elements is 1000 between 850 and 950°C.
0° or more, 1050°C in automobile exhaust gas, 60°
Changes in B constant and resistance after 0 hours of heat resistance test are ±3
% or less.

さらに10Gの加わる耐震耐熱テスト10万回後も特性
の変化は殆ど認められなかった。
Furthermore, even after 100,000 cycles of seismic and heat resistance tests in which 10G was applied, almost no changes in characteristics were observed.

従来品の耐震テストでは、導電部や接地部などの接合部
が応力に弱い構造のため、50%位のものが破損してい
た。
In seismic tests of conventional products, about 50% of them were damaged due to the structure of the joints, such as conductive parts and grounding parts, being susceptible to stress.

実施例 2 経1.6m11にの2つの穴を有する長さ501t1直
経6nのアルミナパイプ中に経1.5 ms、長さ65
mmのカンタル線を挿通し、一端を電極部としてアルミ
ナセメントで固定し、他端に感温材料を溶射した。
Example 2 An alumina pipe with a diameter of 1.5 ms and a length of 65 mm is placed in an alumina pipe with a diameter of 501 t and a diameter of 6 nm having two holes with a diameter of 1.6 m.
A Kanthal wire of mm was inserted, one end was fixed with alumina cement as an electrode part, and a temperature-sensitive material was sprayed on the other end.

感温材料は実施例1と同じである。この時、溶射面は実
施例1と同様に幾分荒らしてあり、かつカンタル線の先
端部分に白金メッキを施した。
The temperature-sensitive material is the same as in Example 1. At this time, the sprayed surface was somewhat roughened as in Example 1, and the tip of the Kanthal wire was plated with platinum.

さらに保護皮膜としてアルミナを溶射し、第4図に示す
ような素子を作成した。
Furthermore, alumina was thermally sprayed as a protective film to produce an element as shown in FIG.

実施例1と同様の試験をしたところ、殆ど同じ特性を示
し、信頼性も同様に高かった。
When the same test as in Example 1 was conducted, almost the same characteristics were shown, and the reliability was similarly high.

このような高信頼性、とりわけ端子の結合強度の向上は
、溶射による物理的結合強度(嵌合強度)が化学的結合
力に相乗した効果をもたらすことによると考えられる。
Such high reliability, especially the improvement in the bonding strength of the terminals, is thought to be due to the fact that the physical bonding strength (fitting strength) due to thermal spraying has a synergistic effect with the chemical bonding force.

また、本実施例のように端子部に穴があり、その中にま
で溶射した材料が侵入しているのが見受けられ、これが
さらに結合強度を向上させていると推測される。
In addition, as in this example, there is a hole in the terminal portion, and it can be seen that the thermally sprayed material has penetrated into the hole, which is presumed to further improve the bonding strength.

すなわち、溶射により一体化された高温用感温素子は安
定性に優れ、機械的応力や熱的応力に強い耐性をもち、
従来品におけるような端子などでの問題がなく、簡単な
構造を有する優れた素子である。
In other words, the high-temperature sensing element integrated by thermal spraying has excellent stability and strong resistance to mechanical stress and thermal stress.
It is an excellent element with a simple structure and no problems with terminals as in conventional products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による高温用感温素子の基本的な構造を
示す斜視図、第2図〜第4図はその変形例を示すそれぞ
れ別の実施例の斜視図および断面図である。 11.21,41・・・・・・耐熱金属体、12,22
゜42・・・・・・耐熱酸化物絶縁体、13,23,4
3・・・・・・感温材料、44・・・・・・保護皮膜、
45・・・・・・電極。
FIG. 1 is a perspective view showing the basic structure of a high-temperature sensing element according to the present invention, and FIGS. 2 to 4 are perspective views and sectional views of different embodiments showing modifications thereof. 11.21,41...Heat-resistant metal body, 12,22
゜42...Heat-resistant oxide insulator, 13,23,4
3...Temperature-sensitive material, 44...Protective film,
45... Electrode.

Claims (1)

【特許請求の範囲】 1 少なくとも2本の耐熱金属体の少なくとも電極部と
感温材料の接地部とを除いた部分を耐熱酸化物絶縁体で
密封一体化し、前記接地部を短絡するように感温材料を
溶射してなる高温用感温素子。 2 感温材料は、その上に溶射された絶縁皮膜により保
護されていることを特徴とする特許請求の範囲第1項記
載の高温用感温素子。 3 絶縁パイン沖に設けた少なくとも2本の穴に耐熱導
電線を挿通し、該耐熱導電線の一端に電極端子を接続し
て前記絶縁パイプに固定し、他端を短絡するように感温
材料を溶射して前記絶縁パイプに固着してなる高温用感
温素子。 4 感温材料は、その上に溶射された絶縁皮膜により保
護されていることを特徴とする特許請求の範囲第3項記
載の高温用感温素子。
[Scope of Claims] 1. The parts of at least two heat-resistant metal bodies excluding at least the electrode part and the grounding part of the temperature-sensitive material are sealed and integrated with a heat-resistant oxide insulator, and the grounding part is sensed to short-circuit. A high-temperature sensing element made by thermally spraying a hot material. 2. The high-temperature sensing element according to claim 1, wherein the temperature-sensitive material is protected by an insulating film sprayed thereon. 3. Insert a heat-resistant conductive wire into at least two holes provided in the insulating pine, connect an electrode terminal to one end of the heat-resistant conductive wire and fix it to the insulated pipe, and short-circuit the other end with a temperature-sensitive material. A high-temperature temperature sensing element formed by thermally spraying and adhering to the insulating pipe. 4. The high-temperature sensing element according to claim 3, wherein the temperature-sensitive material is protected by an insulating film sprayed thereon.
JP7530879A 1979-06-14 1979-06-14 Temperature sensing element for high temperature Expired JPS5826802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7530879A JPS5826802B2 (en) 1979-06-14 1979-06-14 Temperature sensing element for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7530879A JPS5826802B2 (en) 1979-06-14 1979-06-14 Temperature sensing element for high temperature

Publications (2)

Publication Number Publication Date
JPS55166902A JPS55166902A (en) 1980-12-26
JPS5826802B2 true JPS5826802B2 (en) 1983-06-06

Family

ID=13572486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7530879A Expired JPS5826802B2 (en) 1979-06-14 1979-06-14 Temperature sensing element for high temperature

Country Status (1)

Country Link
JP (1) JPS5826802B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892126U (en) * 1981-12-17 1983-06-22 株式会社クボタ Frame mounting structure of transmission case for agricultural machinery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108105A (en) * 1984-11-01 1986-05-26 松下電器産業株式会社 Thermistor element
JPS61108104A (en) * 1984-11-01 1986-05-26 松下電器産業株式会社 Thermistor element
JP2904066B2 (en) 1995-08-31 1999-06-14 松下電器産業株式会社 Temperature sensor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892126U (en) * 1981-12-17 1983-06-22 株式会社クボタ Frame mounting structure of transmission case for agricultural machinery

Also Published As

Publication number Publication date
JPS55166902A (en) 1980-12-26

Similar Documents

Publication Publication Date Title
EP0017359B1 (en) Ceramic type sensor device
US6880969B2 (en) Temperature sensor and production method thereof
JP2708915B2 (en) Gas detection sensor
US5696348A (en) Thermocouple structure
JP5719303B2 (en) Sensor element and method for manufacturing sensor element
JP3806434B2 (en) Thermistor for high temperature
JPS5826802B2 (en) Temperature sensing element for high temperature
JPS6259079B2 (en)
JPH01200601A (en) Temperature detector
JPH01140055A (en) Oxygen sensor
JPS6338663B2 (en)
JP2006054258A (en) High-temperature resistant thermistor
JPH02120624A (en) Production of detection element
JP3641759B2 (en) Manufacturing method of temperature sensor with integrated thermocouple and protective tube
JPS5821801B2 (en) Temperature sensing element for high temperature and its manufacturing method
JP2006522927A (en) Overheat detection sensor
WO2022224763A1 (en) Gas sensor
JPS6133463B2 (en)
JPH1123337A (en) Measuring element for airflow rate measuring apparatus
JPS5915848A (en) Detector
JP2880009B2 (en) Detection element for flow meter
JPS5895228A (en) Production of high temperature sensor
JP2013211437A (en) Thermistor element and manufacturing method of the same
JPH074565Y2 (en) Oxygen sensor
JPS63190301A (en) Thermistor