JPS6015977A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS6015977A
JPS6015977A JP12283583A JP12283583A JPS6015977A JP S6015977 A JPS6015977 A JP S6015977A JP 12283583 A JP12283583 A JP 12283583A JP 12283583 A JP12283583 A JP 12283583A JP S6015977 A JPS6015977 A JP S6015977A
Authority
JP
Japan
Prior art keywords
gaas
gate metal
junction
type
alloying reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12283583A
Other languages
Japanese (ja)
Inventor
Akiyoshi Tamura
彰良 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12283583A priority Critical patent/JPS6015977A/en
Publication of JPS6015977A publication Critical patent/JPS6015977A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To obtain the P-N junction type FET by the reduced number of processes easily by using Pt or Ni for the gate metal which includes the element which will become P type impurity and performs alloying reaction with GaAs to perform the alloying reaction by heating and to promote diffusion of the P type impurity at the same time. CONSTITUTION:An N<+> region 4 is formed on the semi-insulating GaAs substrate 1 by using an insulating film 2 and a photoresist film 3 as the mask and by implantation of Si ions with high doze. Next, the Si ions are implanted with the desired doze to form an active layer 5 of the N type region. Next, annealing is done with high temperature by using an insulating film 6 as a protective film to activate the Si-ion implanted regions 4 and 5. Then AuGe is vapor-deposited followed by sintering to form a source electrode 8 and a drain electrode 9. Next, the Zn 11 which will become P type impurity is vapor-deposited as the first gate metal and the Pt 12 is vapor-deposited as the second gate metal on said Zn 11. Next, sintering is done to perform the alloying reaction of the gate metal 11 and 12 with GaAs thereby forming P-N junction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、Ga A sを活性層に用いた電界効果1・
ランジスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a field effect system using GaAs as an active layer.
The present invention relates to a method of manufacturing a transistor.

従来1タリの11”1j成とその問題点GaAsを用い
た電界効果トランジスタ(以上FETと略す)には、P
n接合型FETとンヨノトキ接合型FETの2つに大別
される。ノーマリ・オフ型FETを用いた論理回路で比
較ずると、Pn接合型FETは、ショノ1・主接合型F
ETに比して論理振幅が大きく、集積回路には有利であ
る。
Conventional 1Tari 11"1J structure and its problems Field effect transistors (hereinafter abbreviated as FET) using GaAs have P
They are roughly divided into two types: n-junction FETs and n-junction FETs. Comparing logic circuits using normally-off FETs, Pn junction FETs are
The logic amplitude is larger than that of ET, which is advantageous for integrated circuits.

一方製造方法を比較すると、Pn−1と金型FETは、
Pn接合型FET(tJ、、ンヨノ1・主接合型FET
に比して、製造工程が多く、特にノーマリ・オフ型FE
Tのように活性層か薄くなると、薄いP型層の形成か難
しく、現在、イオン注入法,拡i欣法等か用いられてい
るか、その市11 1AIはg’L L.い。
On the other hand, when comparing the manufacturing methods, Pn-1 and mold FET are
Pn junction type FET (tJ, Nyono 1/main junction type FET
There are many manufacturing processes compared to
When the active layer becomes thin like T, it is difficult to form a thin P-type layer, and currently methods such as ion implantation and expansion methods are used. stomach.

第1図(a)〜(q)は従来のイオン住人法によるPn
接合型屯昇動果1・ランンスタの製造方法を示したもの
である。まず、同図(a)にiドずように、゛1′−絶
絆性GaAs 基板1に、絶縁膜2、フ]トレンスト膜
3をマスクとしてSiイオンを高ドース゛で注入し、ソ
ースドレインオーミノクコンタク!・部となるn 型領
域4を形成する。次に、同図(b)に示すように、同様
にSiイオンをi内当なドーズ注入して、活性層となる
n型領域5を形成ずる。次に同図(C)にイくtように
絶縁膜6を保護J摸として高i’AaでアニールをイJ
4:いn’、n型イJ1゛1域4,5を活性化さぜる。
Figures 1(a) to (q) show Pn obtained by the conventional ion resident method.
This figure shows a method for manufacturing a joint-type turret lift device 1 and a runner. First, as shown in FIG. 2(a), Si ions are implanted at a high dose into a 1'-absolute GaAs substrate 1 using the insulating film 2 and the free-strength film 3 as masks. Nokkontaku!・An n-type region 4 is formed. Next, as shown in FIG. 4B, Si ions are similarly implanted at a suitable dose to form an n-type region 5 that will become an active layer. Next, annealing is performed at a high i'Aa using the insulating film 6 as a protective layer as shown in FIG.
4: In', activates n-type IJ1'1 regions 4 and 5.

次に同図(d)に示すように、Znイオンを注入して、
P型領域7を形成する。次に同図(e)に示すように、
同図(C)と同様に絶縁膜6を保護膜として高i’Mで
アニールを行ないP型領域7を活性化させる。次に同図
(f)に示すようにAuGeを蒸着してシンターを行な
いソース電極8、ドレイン電極9を形成する。次に同図
(q)に示すように、AuZnを蒸着してシンターを行
ないゲート電極10を形成するものである。以上のよう
に、従来の方法では、Zn610人後のアニールか比較
的高温を要するため、Znの拡散が大きく、薄いP型層
を得ることは9!IfLいし、拡散法でも同様である。
Next, as shown in the same figure (d), Zn ions are implanted,
A P-type region 7 is formed. Next, as shown in the same figure (e),
Similarly to FIG. 6C, annealing is performed at high i'M using the insulating film 6 as a protective film to activate the P-type region 7. Next, as shown in FIG. 2F, AuGe is deposited and sintered to form a source electrode 8 and a drain electrode 9. Next, as shown in FIG. 3(q), AuZn is deposited and sintered to form a gate electrode 10. As mentioned above, in the conventional method, Zn610 post-annealing or relatively high temperature is required, so Zn diffusion is large and it is difficult to obtain a thin P-type layer. The same applies to IfL and the diffusion method.

そのため!4S債回路には、製造工程の簡単なショット
キ型FETが多く用いられている。
Therefore! Schottky type FETs, which have a simple manufacturing process, are often used in 4S bond circuits.

発明の1三1的 本発明は、かかる問題に鑑み、従来のPn接合型FET
の製造方法に比して、1程数か少なく、7υiいP型層
が容易に得られるPn接合型FETの製造方法を提供す
るものである。
SUMMARY OF THE INVENTION In view of such problems, the present invention
The purpose of the present invention is to provide a method for manufacturing a Pn junction FET, which can easily obtain a P-type layer with a thickness of about 1 or less and a thickness of 7υi compared to the manufacturing method of the present invention.

発明の構成 本発明は、GaAsを活性層とするFETにおいて、ゲ
ート金属としてP型不純物となる元素(たとえばZn 
、Be等)を含み、GaAsと合金化反応をおこす金属
pt又はN1を用い、加熱を行なって合金化反応をおこ
ない、同1時にP型不純物の拡散を促進させ、容易にP
n接合型FETを得るものである。
Structure of the Invention The present invention provides an FET having an active layer of GaAs, in which an element that becomes a P-type impurity (for example, Zn) is used as a gate metal.
, Be, etc.), which causes an alloying reaction with GaAs, is heated to cause an alloying reaction, and at the same time promotes the diffusion of P-type impurities, making it easy to form P-type impurities.
This is to obtain an n-junction FET.

実施例の説明 第2図(a)〜(f)は、本発明の一実施例を示したも
のである。
DESCRIPTION OF THE EMBODIMENT FIGS. 2(a) to 2(f) show an embodiment of the present invention.

まず同図(a)に示すように、半絶縁1生GaAs基板
1上に、絶、1tg2、フォトレジスト膜3をマスクと
して、Si イオンを高ドーズでtJE人し、ソース。
First, as shown in FIG. 5A, Si ions are injected at a high dose onto a semi-insulating raw GaAs substrate 1 using the photoresist film 3 as a mask, and then a source is formed.

トレインオーミソクコ/タクト部となるnI鎮域4を形
成する。次に同図(b)に示すようKst イオンを所
望のドーズ注入して、n領域の活性層5を形成する。
Form the nI area 4 which will become the Train Ohmisokuko/Tact section. Next, as shown in FIG. 4B, Kst ions are implanted at a desired dose to form an n-type active layer 5.

次に同図(c+)に示すように絶縁膜6を1呆護膜とし
テ、高tfuiでアニールを行ないS1イオン注入領域
4.5を活性化させる。次に同図(d)に示すように、
AuGeを蒸着し、シンターを行ない、ソース電極8、
ドレイン電極9を形成する。次に同図(e)に示すよう
に、第1のゲート金属としてP型不純物となるZn11
を蒸着し、さらにその上に第2のゲート金属としてPt
、12を蒸着する。次に同図(f)に示すように、適当
な温度(30o℃〜460℃)でシンター行ないゲート
金属11.1−2とGaAsとを合金化反応を行なわせ
Pn接合を形成する。
Next, as shown in (c+) of the same figure, the insulating film 6 is used as a protective film, and annealing is performed at a high tfui to activate the S1 ion implantation region 4.5. Next, as shown in the same figure (d),
AuGe is deposited and sintered to form a source electrode 8,
A drain electrode 9 is formed. Next, as shown in the same figure (e), Zn11 becomes the P-type impurity as the first gate metal.
Pt is further deposited on top of it as a second gate metal.
, 12 are deposited. Next, as shown in FIG. 6(f), sintering is performed at a suitable temperature (30° C. to 460° C.) to cause an alloying reaction between the gate metal 11.1-2 and GaAs to form a Pn junction.

図中の7はP型層を示す。7 in the figure indicates a P-type layer.

一般に、ゲート<+’;’、属としてZnだけの場合、
ZnとGaAsが反L1−’= してPn接合を形成す
るには約600℃以上の高’1m:でアニールすること
が必要であり、この’l:u’+度域では、オーミック
電極8,9が劣化する。又、一般にptは250℃〜5
00℃でGaAsと合金化反応をおこし、その合金層と
GaAsがンヨノトキ接合を形成することか知られてい
る。本発明は、このことを応用したものであり、p g
llj不純、吻となるZn上に、pt を形成して適当
な温度(300℃〜450℃)でシンターすることによ
り、 ptとGa Asの合金化反応を行なわせ、同時
にpt前に存在するZnかGaAs中に拡散することを
促進させPn接合を形成するものである。この方法を用
いれは、従来の拡散法、イオン注入法よりも低温で容易
にPn接合を形成すること力inf能で、しかも、P型
層厚の制御も、低?AAのため正確に制御することが可
能である。
In general, if the gate <+';', and Zn is the only genus,
In order to form a Pn junction between Zn and GaAs by anti-L1-'=, it is necessary to anneal at a high temperature of about 600°C or higher. , 9 deteriorate. Also, generally pt is 250℃~5
It is known that an alloying reaction occurs with GaAs at 00° C., and the alloy layer and GaAs form a junction. The present invention applies this fact, and p g
By forming PT on Zn, which becomes an impurity, and sintering it at an appropriate temperature (300°C to 450°C), an alloying reaction between PT and GaAs is carried out, and at the same time, the Zn existing in front of PT is It promotes diffusion into GaAs to form a Pn junction. Using this method, it is possible to easily form a Pn junction at a lower temperature than the conventional diffusion method or ion implantation method, and it is also possible to control the P-type layer thickness. Accurate control is possible due to AA.

g>図はゲート金属11.12のas depo (a
)とシンター後(5)のFETのゲート、ソース間順方
向電流覗圧特注を比較したものである。as dep。
g>The figure shows gate metal 11.12 as depo (a
) and (5) after sintering, the FET's gate-to-source forward current peek pressure is compared. as dep.

では、ショットキ接合のため、順方向電流の立ち」ニリ
ttr丁は0.8■ぐらいであるか、シンターすると、
Pn接合が形成されるため、1蹄壁か人きぐなり、立ち
上り電圧は1.2■ぐらいとなっていることがわかる。
Now, because of the Schottky junction, the forward current is about 0.8 mm, or when sintered,
It can be seen that because a Pn junction is formed, the rise voltage is about 1.2 .mu.m.

なお、第1のゲート金属Znの厚さは、たいたい200
〜500八ぐらいが適当である。
Note that the thickness of the first gate metal Zn is approximately 200 mm.
~5008 is appropriate.

以上の説明では、P型不純物となる第1のゲート金属と
してZn 、 GaAs と合金化反応をおこす第2の
ゲート金属としてptの場合について述へたが、pt中
にZnが最初から含まれる場合も同様である。合合化反
応をおこす金属としてはNiも用いられることはもちろ
んである。
In the above explanation, we have described the case where PT is used as the first gate metal that becomes a P-type impurity and the second gate metal that causes an alloying reaction with GaAs. However, in the case where PT contains Zn from the beginning, The same is true. Of course, Ni can also be used as the metal that causes the combination reaction.

発明の効果 以上のように、本発明は従来よりも工程数が少なく、し
かもP型層厚の制御が容易なPn接合型FETの製造方
法を提供するものであり、集積回路に適して分り歩沼り
の向上をはかるものである。
Effects of the Invention As described above, the present invention provides a method for manufacturing a Pn junction FET that requires fewer steps than the conventional method and allows easy control of the P-type layer thickness, and is suitable for integrated circuits. This is intended to improve the quality of the swamp.

しかも、シコノトキ型FETを用いたものより論理振幅
か大きくなる。
Furthermore, the logic amplitude is larger than that using the Shikonotoki type FET.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(81〜(qlは従来のPn接合型F 、E T
の製造工程断]n1図、第2図(,1〜(f)は本発明
の一実施例のPn接合型FETの製造工程断面図、第3
図は本発明のFETのas depo とシンター後の
ゲート。 ソース順方向′)L流電圧特性を示す図である。 1・・・・・半導体絶縁性GaAs基板、5・・・・・
・n型領域、7・・・・P型領域、1o・・・・・・ゲ
ート電極(AuZn)、11・・・・第1のゲート金属
Zn、12・・・・・第2のゲート金属Pt、13・・
・・・シンター後のゲート電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第1図 第 2 図 ρ 7 第2図 汐 !2 ノ/q (5’ /3 q
Figure 1 (81~(ql is the conventional Pn junction type F, ET
1 to 2 (f) are cross-sectional views of the manufacturing process of a Pn junction FET according to an embodiment of the present invention;
The figure shows the FET of the present invention as depo and the gate after sintering. FIG. 4 is a diagram showing the source forward direction')L current voltage characteristics. 1... Semiconductor insulating GaAs substrate, 5...
・N-type region, 7...P-type region, 1o...gate electrode (AuZn), 11...first gate metal Zn, 12...second gate metal Pt, 13...
...Gate electrode after sintering. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Figure 2 Figure ρ 7 Figure 2 Shio! 2 ノ/q (5' /3 q

Claims (2)

【特許請求の範囲】[Claims] (1) GaAsを活性層とし、ゲート電極としてP型
不純物と4巽)ノし素を含みGa Asと合金化反応を
する金属を用い、/Ill熱を行ない合金化反応を行な
わせてP n 1.i;音ゲートを上記活性層上に形成
することを特徴とする綴≠郡電界効果トランジスタの製
造方法。
(1) Using GaAs as the active layer and a P-type impurity as the gate electrode and a metal that contains nitrogen and undergoes an alloying reaction with GaAs, /Ill heating is performed to cause an alloying reaction and P n 1. i; A method for manufacturing a field effect transistor, characterized in that an acoustic gate is formed on the active layer.
(2) GaAsと合金化反応をする金属として、pt
又はNiを用いることを特徴とする特)i’l請求の範
囲射1項記戦の寮會阜r比界効果トランンスタの製造方
法0
(2) As a metal that undergoes an alloying reaction with GaAs, pt
or a method for manufacturing a field-effect transistor according to claim 1, characterized in that Ni is used.
JP12283583A 1983-07-06 1983-07-06 Manufacture of field effect transistor Pending JPS6015977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12283583A JPS6015977A (en) 1983-07-06 1983-07-06 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12283583A JPS6015977A (en) 1983-07-06 1983-07-06 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS6015977A true JPS6015977A (en) 1985-01-26

Family

ID=14845809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12283583A Pending JPS6015977A (en) 1983-07-06 1983-07-06 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS6015977A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646563A (en) * 1979-09-26 1981-04-27 Seiko Instr & Electronics Ltd Static induction transistor
JPS5844771A (en) * 1981-09-10 1983-03-15 Mitsubishi Electric Corp Junction type field effect transistor and manufacture thereof
JPS58143582A (en) * 1982-02-22 1983-08-26 Toshiba Corp Manufacture of diffused junction gate fet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646563A (en) * 1979-09-26 1981-04-27 Seiko Instr & Electronics Ltd Static induction transistor
JPS5844771A (en) * 1981-09-10 1983-03-15 Mitsubishi Electric Corp Junction type field effect transistor and manufacture thereof
JPS58143582A (en) * 1982-02-22 1983-08-26 Toshiba Corp Manufacture of diffused junction gate fet

Similar Documents

Publication Publication Date Title
JP2550013B2 (en) Field effect transistor
JPS6015977A (en) Manufacture of field effect transistor
JPS63248136A (en) Semiconductor device
JPH0379035A (en) Mos transistor and manufacture thereof
JPH0235463B2 (en)
JPH08264724A (en) Semiconductor device and fabrication thereof
JPS6159781A (en) Manufacture of semiconductor device
JPS61177780A (en) Manufacture of semiconductor device
KR0167667B1 (en) Method of fabricating semiconductor
JPH0737905A (en) Manufacture of semiconductor device
JPS6077467A (en) Manufacture of field effect transistor
JPS63260174A (en) Manufacture of semiconductor device
JPS59135774A (en) Manufacture of semiconductor device
JPS59161075A (en) Manufacture of semiconductor element
JPH04359468A (en) Compound semiconductor device and manufacture thereof
JPH0439775B2 (en)
JPS61125089A (en) Manufacture of semiconductor device
JPS6396964A (en) Manufacture of field-effect transistor
JPS59195874A (en) Manufacture of field-effect transistor
JPS6197973A (en) Manufacture of mosfet
JPS61276270A (en) Manufacture of mes fet
JPS60150677A (en) Integrated circuit
JPS58219762A (en) Formation of schottky junction
JPS6323368A (en) Manufacture of semiconductor device
JPS58131774A (en) Manufacture of gaas schottky barrier type field-effect transistor