JPS6077467A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS6077467A
JPS6077467A JP18448883A JP18448883A JPS6077467A JP S6077467 A JPS6077467 A JP S6077467A JP 18448883 A JP18448883 A JP 18448883A JP 18448883 A JP18448883 A JP 18448883A JP S6077467 A JPS6077467 A JP S6077467A
Authority
JP
Japan
Prior art keywords
film
region
type
electrode
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18448883A
Other languages
Japanese (ja)
Other versions
JPH028457B2 (en
Inventor
Toshio Nonaka
野中 敏夫
Hiroshi Nakamura
浩 中村
Nagayasu Yamagishi
山岸 長保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP18448883A priority Critical patent/JPS6077467A/en
Priority to US06/602,578 priority patent/US4540446A/en
Publication of JPS6077467A publication Critical patent/JPS6077467A/en
Publication of JPH028457B2 publication Critical patent/JPH028457B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • H01L29/66863Lateral single gate transistors
    • H01L29/66878Processes wherein the final gate is made before the formation, e.g. activation anneal, of the source and drain regions in the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain electrodes which have preferable GaAs/Ga boundary and Ge/W-Al boundary even if activated and annealed after electrode materials are covered by constructing electrodes of W-Al film of high melting point metal and an N<++>Ge film due to As ion implantation disposed under the W-Al film when forming ohmic electrodes at an FET. CONSTITUTION:Two Ge films 2 are formed on the ohmically contacting surface of a semi-insulating GaAs substrate 1, the region except this is covered with Ni mask 4, N type ions are implanted to alter the film 2 into N<++> type film 2', and N<++> type region 5 is formed under the film 2'. Then, the mask 4 is removed, a resist film 6 is covered from the film 2' on the outside, and a shallow N type region 7 is formed by ion implanting on the surface layer of the substrate 1 surrounded by the film 2'. Then, the both ends of the region 7 are altered to the N<+> type region 11 connected to the region 5, a gate electrode 8a and an ohmic electrode 8b made of W-Al are mounted on the region 7 and the film 2, and the entire surface is protected with the SiO2 film 12.

Description

【発明の詳細な説明】 (技術分野) 本発明は、化合物半導体を用いた電界効果トランジスタ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a field effect transistor using a compound semiconductor.

(従来技術) 従来の化合物半導体電界効果トランジスタ例えは’ G
aAsMESFETにおいては、ダート電極材として高
融点金属を用いたセルファライン構造が知られており、
そこではケ゛−ト電極を形成した後で、所1のn+高濃
度注入層を形成し、その活性化アニールが行われ、その
アニール温度として800℃〜900℃程度までは保証
されている。
(Prior art) An example of a conventional compound semiconductor field effect transistor is 'G
In aAs MESFET, a self-line structure using a high melting point metal as the dart electrode material is known.
In this method, after forming the gate electrode, a first n+ high concentration implantation layer is formed and activation annealing is performed, and the annealing temperature is guaranteed to be about 800 DEG C. to 900 DEG C.

他方、オーミック接触を得るための形成方法については
、AuGe/GaAsとの合金板あるいはAuGe/N
i/Au電極を利用した合金反応が広く行われていて、
その際の合金化温度としては400℃〜450℃程度が
採用されている。
On the other hand, regarding the formation method for obtaining ohmic contact, an alloy plate with AuGe/GaAs or an AuGe/N
Alloy reactions using i/Au electrodes are widely carried out,
The alloying temperature at this time is approximately 400°C to 450°C.

しかしながら、オーミック接触を形成する場合その合金
化処理工程において、例えばGaAsとAuGeとの界
面に凸凹が生じ易く、又オーミック電極の表面モホロジ
ー(状態)の悪化などによるボールアップ現象が発生し
易い。よってFETを作製する場合、オーミック電極を
形成した後はオーミック処理温度以上の熱処理は適当で
はない。
However, when forming an ohmic contact, in the alloying process, for example, unevenness tends to occur at the interface between GaAs and AuGe, and a ball-up phenomenon tends to occur due to deterioration of the surface morphology (condition) of the ohmic electrode. Therefore, when manufacturing an FET, heat treatment at a temperature higher than the ohmic processing temperature is not appropriate after forming the ohmic electrode.

従ってこのようなオーミック電極材を用いた従来の製造
方法においては、オーミック電極の形成工程の手順が特
定され、例えばGaAsMESFET を一つの構成要
素とする大規模回路を実現する場合、製造工程の自由度
が大幅に制約を受ける欠点があった。
Therefore, in conventional manufacturing methods using such ohmic electrode materials, the procedure for forming the ohmic electrode is specified, and for example, when realizing a large-scale circuit with GaAs MESFET as one component, the degree of freedom in the manufacturing process is limited. However, it had the disadvantage of being severely restricted.

(発明の目的) 本発明はゲート電極及びオーミック電極の形成工程の前
後如伺を問わず、アニールを行なえるようにした電解効
果トランジスタの製造方法を提供することにある。
(Object of the Invention) An object of the present invention is to provide a method for manufacturing a field effect transistor in which annealing can be performed before or after the step of forming the gate electrode and the ohmic electrode.

(発明の構成) 本発明はオーミック電極を形成する工程を含む電界効果
トランジスタの製造方法において、化合物半導体基板上
のオーミック電極形成予定領域にGe膜を形成し、との
Ge膜に高濃度のAsイオンを注入し、しかも前記基板
の前記Ge膜直下の領域に高濃度のn形不純物イオンを
注入する工程と、その後ショットキ接合を形成しうる高
融点金属で前記基板上にショットキ電極とオーミック電
極を同時に形成する工程を含むことを特徴とした電界効
果トランジスタの製造方法である。
(Structure of the Invention) The present invention provides a method for manufacturing a field effect transistor including a step of forming an ohmic electrode, in which a Ge film is formed in a region where the ohmic electrode is to be formed on a compound semiconductor substrate, and a high concentration of As is added to the Ge film. A step of implanting ions and implanting highly concentrated n-type impurity ions into a region directly under the Ge film of the substrate, and then forming a Schottky electrode and an ohmic electrode on the substrate using a high melting point metal capable of forming a Schottky junction. A method of manufacturing a field effect transistor characterized by including a step of forming simultaneously.

(実施例) 第1図ないし第1O図は本発明の一実施例の説明図であ
)、図面に沿って説明する。
(Embodiment) FIGS. 1 to 1O are explanatory diagrams of an embodiment of the present invention), and will be explained along with the drawings.

まず半絶縁GaAs基板の全面に耐熱オーミック材料で
あるGe膜を被着し、レノストを用いてパターンニング
することによって、第1図に示すように、半絶縁GaA
s基板1のオーミック接触予定表面にGe膜2を被着形
成する。その際、レノストパターン3は次の工程のため
に残しておく。
First, a Ge film, which is a heat-resistant ohmic material, is deposited on the entire surface of a semi-insulating GaAs substrate, and patterned using renost, as shown in Figure 1.
A Ge film 2 is deposited on the surface of the s-substrate 1 where ohmic contact is to be made. At that time, the Renost pattern 3 is left for the next process.

次にイオン阻止能の高いNi膜を全面に被着し、リフト
オフ法によってそのNi膜を・ぞターノニングすること
によって、第2図に示すように、Ge膜2が被着された
表面以外の表面にN1マスク4を被着形成する。
Next, a Ni film with high ion-stopping ability is deposited on the entire surface, and by turning the Ni film by a lift-off method, the surfaces other than the surface on which the Ge film 2 is deposited are An N1 mask 4 is deposited on the surface.

次に第3図に示すように、N1マスク4をマスクとして
n形イオン注入を行い、Ge膜2をn++形イオン注入
Ge膜2′とし、その直下領域をn++形イオン注入領
域5とする。Ge膜2へのイオン注入は、へ8イオンを
用い、イオン注入Ge膜2′の膜厚方向中央でのピーク
イオン濃度が1020/crn8になるようにするのが
よい。直下領域へのイオン注入は、Siイオンを用1/
s N n ” ”形イオン注入領域5のイオン濃度が
5 x 1018/副3程度となるように行うのがよい
O 次にNiマスク4を除去することによって、第4図に示
すように、オーミック接触予定表面にAsイオンが注入
されたGe膜2′が被着形成され、その直下にn++形
イオン注入領域5が形成されたものを作る。
Next, as shown in FIG. 3, n-type ions are implanted using the N1 mask 4 as a mask, so that the Ge film 2 is made into an n++-type ion-implanted Ge film 2', and the region immediately below it is made into an n++-type ion-implanted region 5. For ion implantation into the Ge film 2, it is preferable to use He8 ions so that the peak ion concentration at the center in the film thickness direction of the ion-implanted Ge film 2' is 1020/crn8. Ion implantation into the region directly below uses Si ions.
It is preferable to perform the ion implantation so that the ion concentration in the s N n "" type ion implantation region 5 is about 5 x 1018/3. Next, by removing the Ni mask 4, as shown in FIG. A Ge film 2' implanted with As ions is deposited on the surface to be contacted, and an n++ type ion implantation region 5 is formed immediately below it.

次に第5図に示すように、レノストノやター76を形成
したのち、これをマスクとして活性領域となる領域を含
む領域にイオン濃度が10”/cm3程度となるように
n形不純物であるSiイオンをイオン注入し、n形イオ
ン注入領域7とする。
Next, as shown in FIG. 5, after forming a layer 76, using this as a mask, Si, which is an n-type impurity, is added so that the ion concentration is about 10''/cm3 in the region including the region that will become the active region. Ions are implanted to form an n-type ion implantation region 7.

次に前記レノスト・母ターン6を除去したのち第6図に
示すように、GaAsn形活性層との間ショットキ接合
を形成できる高融点金属である、W−At膜8を全面に
被着する。
Next, after removing the Renost/mother turn 6, as shown in FIG. 6, a W-At film 8, which is a high melting point metal capable of forming a Schottky junction with the GaAsn type active layer, is deposited over the entire surface.

次にNi膜を全面に被着し、その後ツクターフ二/グす
ることによって、第7図に示すように、ゲート電極を形
成すべき表面とn++形イオン注入Ge膜2′の表面と
を被うNiマスク9を被着形成する。
Next, by depositing a Ni film on the entire surface and then performing a double coating, the surface on which the gate electrode is to be formed and the surface of the n++ type ion-implanted Ge film 2' are covered, as shown in FIG. A Ni mask 9 is deposited and formed.

次に第8図に示すように、前記Niマスク9をマスクと
して、高融点金属でちるW−At膜8をノRターンニン
グし、ダート電極8a及びオーミック電極被覆8bを形
成する。
Next, as shown in FIG. 8, using the Ni mask 9 as a mask, the W-At film 8 made of a high melting point metal is subjected to R-turning to form a dirt electrode 8a and an ohmic electrode coating 8b.

次に第9図に示すように、GaA6魔5FET 以外の
領域を被うレノスト・ぞターン10を形成したのち、n
++形イオン注入領域5とケ゛−ト電極8aとの間にイ
オン濃度1.018on−6程度でSiイオンをイオン
注入し、n+形イオン注入領域1ノを形成する。
Next, as shown in FIG.
Si ions are implanted between the + type ion implantation region 5 and the gate electrode 8a at an ion concentration of about 1.018 on -6 to form an n + type ion implantation region 1.

次にNiマスク9及びレジストノやターン10を除去し
たのち、第10図に示すように、n++形イオン注入G
e膜2′、n++イオン注入領域5、活性領域用のイオ
ン注入領域7及びn+イオン注入領域11の不純物を活
性化するために5102膜12を全面に被着したのち、
800℃程度の温度で20分間程度のアニールを行う。
Next, after removing the Ni mask 9 and the resist holes and turns 10, as shown in FIG.
After depositing the 5102 film 12 on the entire surface in order to activate the impurities in the e film 2', the n++ ion implantation region 5, the ion implantation region 7 for active region, and the n+ ion implantation region 11,
Annealing is performed at a temperature of about 800° C. for about 20 minutes.

その後、SiO□膜12の所定個所に窓を開けることに
よってGaAsMFJSFETは完成する。
Thereafter, the GaAs MFJSFET is completed by opening windows at predetermined locations in the SiO□ film 12.

以上説明したように、この実施例では、高融点金属であ
るW−A4膜でケ゛−ト電極を構成し、且つそのW−A
t膜とA8イオンによるn”Ge膜とでオーミック電極
を形成しているため、電極材の被着形成後に活性化アニ
ールを行っても、GaAs/Ge界面、Ge/’N−A
1界面および電極表面状態は良好であシ、従って全ての
領域の活性化を一度に行うことができる。
As explained above, in this embodiment, the gate electrode is composed of the W-A4 film, which is a high melting point metal, and the W-A film is made of a high melting point metal.
Since the ohmic electrode is formed by the t film and the n'Ge film made of A8 ions, even if activation annealing is performed after the electrode material is deposited, the GaAs/Ge interface, Ge/'N-A
The interface and electrode surface conditions are good, so activation of all regions can be performed at once.

また、この実施例では、中間にn+形領領域形成した構
造となっているので、ダート電極直下へのn形不純物の
横方向拡散を考慮することなく、オーミック電極直下の
n++形領域を十分高濃度にでき、従って寄生抵抗を低
減することができる。
Furthermore, since this embodiment has a structure in which an n+ type region is formed in the middle, the n++ type region directly under the ohmic electrode can be raised sufficiently without considering the lateral diffusion of n type impurities directly under the dart electrode. concentration, thus reducing parasitic resistance.

なおまた、第10図の工程の後、検査した結果、しきい
値が所定の値でなかった場合などにおいては、更に活性
領域7へのイオン注入とアニールを追加して行うことが
できるなどの利点がある。
Furthermore, if the threshold value is not the predetermined value as a result of the inspection after the process shown in FIG. There are advantages.

なお、第4図の構造1では、半絶縁GaAs基板1に、
まず第2図相当のN1マスクを形成し、次いでGe膜2
を全面被着し、その後所定のイオン注入を行い、その後
N1マスク4及びその上のGe膜を除去することによっ
ても作ることができる。
Note that in the structure 1 in FIG. 4, the semi-insulating GaAs substrate 1 is
First, an N1 mask corresponding to FIG. 2 is formed, and then a Ge film 2
It can also be made by depositing on the entire surface, then performing predetermined ion implantation, and then removing the N1 mask 4 and the Ge film thereon.

また、活性領域7を形成するだめのイオン注入は、例え
ば第2図の工程前で行うなど、比較的随時の手順で行う
ことができる。
Further, the ion implantation for forming the active region 7 can be performed relatively at any time, for example, before the process shown in FIG. 2.

また、ゲート電極及びオーミック電極のカバーとして用
いる高融点金属は、素子間配線を兼ねさせることもでき
る。
Furthermore, the high melting point metal used as the cover for the gate electrode and the ohmic electrode can also serve as inter-element wiring.

(発明の効果) 本発明は高融点金属によりケ゛−ト電極を形成し、これ
ト同一の工程においてオーミック電極材を前記高融点金
属で覆いあるいは更に前記高融点金属を配線パターンに
利用できるため、オーミック電極の形成手順が特定され
ることなく電界効果トランゾスタを一つの構成要素とす
る大規模回路の製造に利用することができる。
(Effects of the Invention) In the present invention, the gate electrode is formed from a high melting point metal, and in the same process, the ohmic electrode material can be covered with the high melting point metal, or the high melting point metal can be further used for the wiring pattern. The method can be used to manufacture large-scale circuits including field effect transistors as one component, without specifying the procedure for forming ohmic electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第10図は、本発明の実施例におけるGa
AsMESFETの構造断面図である。 1・・・半絶縁GaAs基板、2・・・Ge膜、2′・
・・n++形イオン注入Ge膜、3・・・レジストパタ
ーン、4・・・Niマスク、5・・・GaAs n”形
イオン注入領域、6・・・レジストパターン、7・・・
GaAs活性領域用イオン注入領域、8 ・W−At膜
、8 a−W−At)f”−ト電極、8b・・・W−A
Aオーミック雷接極被覆9・・・Niマスク、10・・
・レジストパターン、11・・・GaAs n+形イオ
ン注入領域、12・・・S io 2膜特許出願人 沖
電気工業株式会社 第1図 第2図 第5図 第7図
FIG. 1 to FIG. 10 show Ga in the embodiment of the present invention.
It is a structural sectional view of AsMESFET. 1... Semi-insulating GaAs substrate, 2... Ge film, 2'.
... n++ type ion-implanted Ge film, 3... resist pattern, 4... Ni mask, 5... GaAs n'' type ion implanted region, 6... resist pattern, 7...
Ion implantation region for GaAs active region, 8 ・W-At film, 8 a-W-At)f''-to electrode, 8b...W-A
A Ohmic lightning polarization coating 9...Ni mask, 10...
・Resist pattern, 11...GaAs n+ type ion implantation region, 12...S io 2 film patent applicant Oki Electric Industry Co., Ltd. Figure 1 Figure 2 Figure 5 Figure 7

Claims (1)

【特許請求の範囲】[Claims] オーミック電極を形成する工程を含む電界効果トランジ
スタの製造方法において、化合物半導体基板上のオーミ
ック電極形成予定領域にGe膜を形成し、とのGe膜に
高濃度のAsイオンを注入し、しかも前記基板の前記G
e膜膜下下領域に高濃度のn形不純物イオンを注入する
工程と、その後ショットキ接合を形成しうる高融点金属
で前記基板上にショットキ電極とオーミック電極とを同
時に形成する工程を含むことを特徴とした電界効果トラ
ンジスタの製造方法。
In a method for manufacturing a field effect transistor including a step of forming an ohmic electrode, a Ge film is formed in a region where an ohmic electrode is to be formed on a compound semiconductor substrate, a high concentration of As ions is implanted into the Ge film, and The above G
A step of implanting n-type impurity ions at a high concentration into a region under the e-film, and a step of simultaneously forming a Schottky electrode and an ohmic electrode on the substrate using a high melting point metal capable of forming a Schottky junction. Characteristic method for manufacturing field effect transistors.
JP18448883A 1983-09-19 1983-10-04 Manufacture of field effect transistor Granted JPS6077467A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18448883A JPS6077467A (en) 1983-10-04 1983-10-04 Manufacture of field effect transistor
US06/602,578 US4540446A (en) 1983-09-19 1984-04-20 Method of forming ohmic contact on GaAs by Ge film and implanting impurity ions therethrough

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18448883A JPS6077467A (en) 1983-10-04 1983-10-04 Manufacture of field effect transistor

Publications (2)

Publication Number Publication Date
JPS6077467A true JPS6077467A (en) 1985-05-02
JPH028457B2 JPH028457B2 (en) 1990-02-23

Family

ID=16154048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18448883A Granted JPS6077467A (en) 1983-09-19 1983-10-04 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS6077467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158778A (en) * 1987-12-15 1989-06-21 Fujitsu Ltd Manufacture of semiconductor device
JP2005245968A (en) * 2004-03-08 2005-09-15 Tetsuo Tokuda Bedding cover

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425171A (en) * 1977-07-27 1979-02-24 Fujitsu Ltd Manufacture of field effect semiconductor device
US4188710A (en) * 1978-08-11 1980-02-19 The United States Of America As Represented By The Secretary Of The Navy Ohmic contacts for group III-V n-type semiconductors using epitaxial germanium films
JPS5698877A (en) * 1980-01-08 1981-08-08 Mitsubishi Electric Corp Gaas field effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425171A (en) * 1977-07-27 1979-02-24 Fujitsu Ltd Manufacture of field effect semiconductor device
US4188710A (en) * 1978-08-11 1980-02-19 The United States Of America As Represented By The Secretary Of The Navy Ohmic contacts for group III-V n-type semiconductors using epitaxial germanium films
JPS5698877A (en) * 1980-01-08 1981-08-08 Mitsubishi Electric Corp Gaas field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158778A (en) * 1987-12-15 1989-06-21 Fujitsu Ltd Manufacture of semiconductor device
JP2005245968A (en) * 2004-03-08 2005-09-15 Tetsuo Tokuda Bedding cover

Also Published As

Publication number Publication date
JPH028457B2 (en) 1990-02-23

Similar Documents

Publication Publication Date Title
US4540446A (en) Method of forming ohmic contact on GaAs by Ge film and implanting impurity ions therethrough
JPS6077467A (en) Manufacture of field effect transistor
JPH046089B2 (en)
JPS6167272A (en) Manufacture of field effect transistor
JPS6160591B2 (en)
JPS6318348B2 (en)
JPS594083A (en) Manufacture of semiconductor device
JPH04359468A (en) Compound semiconductor device and manufacture thereof
JPS6142963A (en) Manufacture of semiconductor device
US3400308A (en) Metallic contacts for semiconductor devices
JPS6396914A (en) Manufacture of semiconductor device
JPH0226790B2 (en)
JPH04352333A (en) Manufacture of semiconductor device
JPH01293571A (en) Manufacture of semiconductor element
JPS59191384A (en) Manufacture of semiconductor device
JPS6258154B2 (en)
JPS6342177A (en) Manufacture of semiconductor element
JPS6323368A (en) Manufacture of semiconductor device
JPS6187378A (en) Manufacture of compound semiconductor device
JPS6050966A (en) Manufacture of field effect transistor
JPH0434821B2 (en)
JPH0439772B2 (en)
JPS6037169A (en) Manufacture of mosfet
JPS59161075A (en) Manufacture of semiconductor element
JPH0480929A (en) Manufacture of compound semiconductor device