JPS6323368A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6323368A
JPS6323368A JP16861186A JP16861186A JPS6323368A JP S6323368 A JPS6323368 A JP S6323368A JP 16861186 A JP16861186 A JP 16861186A JP 16861186 A JP16861186 A JP 16861186A JP S6323368 A JPS6323368 A JP S6323368A
Authority
JP
Japan
Prior art keywords
gate electrode
photoresist layer
film
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16861186A
Other languages
Japanese (ja)
Other versions
JPH0626221B2 (en
Inventor
Asamitsu Tosaka
浅光 東坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16861186A priority Critical patent/JPH0626221B2/en
Publication of JPS6323368A publication Critical patent/JPS6323368A/en
Publication of JPH0626221B2 publication Critical patent/JPH0626221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To manufacture a semiconductor device with high performance and excellent reproducibility and low in gate electrode resistance and source parasitic resistance, by a method wherein a metallic film as a feeder electrode for metallic plating is formed on the surfaces of a gate electrode through the intermediary of a dielectric film. CONSTITUTION:A semiconductor substrate 21 comprising GaAs containing chrome is selectively implanted with Si<+> ion 29 to form an n type layer 22. Overall surface is coated with W5Si3(high melting point metal) and then selectively processed to form a gate electrode 24. The substrate 21 is implanted with Si<+> ion 29 again using the gate electrode 24 as a mask to provide n<+>type layers 23 on both sides of gate electrode 24. The overall surface of a wafer is coated with an SiO2 film 11 to be annealed in hydrogen atmosphere. After coating the overall surface with the first photoresist layer 12, the SiO2 film 11 on the surface and sides of the first photoresist layer 12 and the gate electrode 24 is removed to expose the surface and sides of the first photoresist layer 12 and the gate electrode 24 is removed to expose the surface 32 and the upper part 33 of sides of the gate electrode 24. Finally, after removing he first photoresist layer 12, Ti and Au are successively evaporated on the overall surface to form a TiAu film 31.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は゛1導体装置の製造方法に関し、特に半導体導
電層上にショッI・キー障壁ゲート電極を設けた半導体
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a single conductor device, and more particularly to a method for manufacturing a semiconductor device in which a Schottky barrier gate electrode is provided on a semiconductor conductive layer.

]、従来の技術゛] 半絶縁性16(板上に形成した半導体導電層」−にシ=
+ −:/ l□キー障障壁ゲート型電極設けてなる半
導体装置、例えば砒化ガリウムを用いたショットキード
◇:壁ゲー1−型電界効果トランジスタ(以下GaAs
MIESFIΣ′Fと称す)は、数十ギガヘルツ(Gl
lz)の高周波帯で動作する半導体装置であり、今後の
高度情報化社会を担う重要な半導体装置の一つである。
], Conventional technology゛] Semi-insulating 16 (semiconductor conductive layer formed on a board)
+ -:/l□Key barrier Semiconductor device provided with gate type electrode, for example, Schottkyd using gallium arsenide◇: Wall gate type field effect transistor (hereinafter referred to as GaAs)
(referred to as MIESFIΣ′F)
It is a semiconductor device that operates in the high frequency band of 1z), and is one of the important semiconductor devices that will support the advanced information society of the future.

このようなGaAs  M E S F F、 Tの周
波数特性の向上にはゲート電極抵抗R6の低減とソース
寄生抵抗Rsの低減が不可欠である。
In order to improve the frequency characteristics of such GaAs MESF, T, it is essential to reduce the gate electrode resistance R6 and the source parasitic resistance Rs.

このようなことから、従来第2図に示すごとき構造のG
aAs  M E S F E Tが提案されている。
For this reason, conventional G
aAs MESFET has been proposed.

第2図において、21はGaAsからなる半絶縁性基板
、22は例えばイオン注入法により形成したn型層、2
3はショットキー障壁ゲート電極24の両側に選択的に
形成した低抵抗のn+型層、25はゲート抵抗低減化の
為のAuめっき層、26.27は各々ソース、ドレイン
電極である。このようなGaAs  M E S F 
E Tにおいては、A、めっき層25の存在の故にRG
は小さく、さらにn+型層23の存在の故にR3の低減
も図られている。
In FIG. 2, 21 is a semi-insulating substrate made of GaAs, 22 is an n-type layer formed by, for example, ion implantation, and 2
3 is a low resistance n+ type layer selectively formed on both sides of the Schottky barrier gate electrode 24, 25 is an Au plating layer for reducing gate resistance, and 26 and 27 are source and drain electrodes, respectively. Such GaAs MESF
In ET, A, RG due to the presence of the plating layer 25
is small, and due to the presence of the n+ type layer 23, R3 is also reduced.

次に、第2図に示した構造のGaAs  M E S 
F ETの従来の製造方法について第3図(a)〜(d
)を用いて説明する。
Next, GaAs MES with the structure shown in FIG.
Figure 3 (a) to (d) shows the conventional manufacturing method of FET.
).

まず、第3図(a)に示ずようにGaAsからなる半絶
縁性基板21中に第1のイオン注入によりnを不純物を
注入しnを層22を形成し、このn型層22−1=の所
定の領域に、例えばタングステンシリサイド(WSi)
よりなる高融点金属のデー1〜電極24を設け、続いて
このゲート電極2/1をマスクとして第2のイオン注入
を行い、ゲート電極24の両側にn+型層23を設ける
。ここで、第1のイオン注入は加速電圧30keV、ド
ーズ量3×1、0 ’ 2cm ”” (S i+イオ
ン)の条件で、又第2のイオン注入は100にeV、3
 X 10 ”cm−3(si+イオン)の条件で行な
う。WSiからなるゲート電極上層のグー1〜長は例え
ば1μmである。
First, as shown in FIG. 3(a), n impurities are implanted by first ion implantation into a semi-insulating substrate 21 made of GaAs to form an n layer 22, and this n-type layer 22-1 =, for example, tungsten silicide (WSi)
Next, using gate electrode 2/1 as a mask, second ion implantation is performed to form n+ type layers 23 on both sides of gate electrode 24. Here, the first ion implantation was carried out under the conditions of an acceleration voltage of 30 keV, a dose of 3 x 1, and 0' 2 cm "" (S i + ions), and the second ion implantation was carried out at 100 eV and 3 cm.
This is carried out under the condition of X 10 "cm-3 (si+ ions). The length of the upper layer of the gate electrode made of WSi is, for example, 1 μm.

次に、第3図(b)に示すように、注入イオンの活性化
を行なった後、全面にTi^」1膜31を蒸着し、第1
のホトレジスト層13Aを塗布したのちエツチングし、
Ti^11膜31の膜面12及び側面の上部33を露出
させる。
Next, as shown in FIG. 3(b), after activating the implanted ions, a Ti^'1 film 31 is deposited on the entire surface, and the first
After applying a photoresist layer 13A, etching is performed.
The film surface 12 and the upper part 33 of the side surface of the Ti^11 film 31 are exposed.

つづいて第3図(C)に示すように、TiAu膜31全
31電極としてTiAu膜31全31と側面部に^Uめ
っき層25を形成する。
Subsequently, as shown in FIG. 3C, a U plating layer 25 is formed on all 31 of the TiAu film 31 and on the side surfaces as electrodes of all 31 of the TiAu film 31.

最後に第3図(d)に示すように、不要なホトレジスト
層13A及びTiAu膜31全31したのち、ソース、
ドレイン電極26.27を形成することにより第2図の
如き半導体装置が得られる。
Finally, as shown in FIG. 3(d), after removing the unnecessary photoresist layer 13A and the TiAu film 31, the source
By forming drain electrodes 26 and 27, a semiconductor device as shown in FIG. 2 is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来の半導体装置の製造方法におけるTi
Au膜31全31工程においては、^lはイオンミリン
グ法で除去でき、又Tiは塩酸等によりエツチング可能
であるが、^Uのイオンミリングの段階では下地のGa
As導電層へのイオン衝撃による損傷が問題となり、又
TiエツチングにおいてはTiが完全には取り切れない
という問題がある。TiとGaAsはわずかに反応して
おり、その反応層を塩酸溶液では完全には収り切れない
ためである。
However, in the conventional manufacturing method of semiconductor devices, Ti
In all 31 steps of the Au film 31, ^l can be removed by ion milling, and Ti can be etched with hydrochloric acid, etc., but in the ion milling stage of ^U, the underlying Ga
There is a problem of damage to the As conductive layer due to ion bombardment, and there is also a problem that Ti cannot be completely removed in Ti etching. This is because Ti and GaAs react slightly, and the reaction layer cannot be completely absorbed by the hydrochloric acid solution.

本発明は従来の半導体装置の製造方法における上記の欠
点に鑑みて成されたものであり、その「1的はゲート電
極抵抗及びソース寄生抵抗が小さく、高性能な半導体装
置を再現性良く実現するための製造方法を提供すること
にある。
The present invention was made in view of the above-mentioned shortcomings in conventional semiconductor device manufacturing methods, and its "first objective is to realize high-performance semiconductor devices with low gate electrode resistance and low source parasitic resistance with good reproducibility. The purpose is to provide a manufacturing method for.

C問題点を解決するための手段〕 本発明の半導体装置の製造方法は、半絶縁性基板中に不
純物を選択的にイオン注入し第1導電型不純物層を形成
する工程と、前記第1導電型不純物層」二の所定領域に
高融点金属よりなるゲート電極を形成する工程と、前記
ゲート電極をマスクとして不純物をイオン注入法し前記
半絶縁性基板中に第1導電型高濃度不純物層を形成する
工程と、全面に誘電体膜を形成したのち熱処理し、前記
注入イオンを活性化する工程と、全面に第1のホトレジ
スト層を形成したのち前記ゲート電極上の第1のホI・
レジスI−層と前記誘電体膜とをエツチングし1iir
記ゲー1〜電極の」二面及び側面の上部を露出さぜる工
程と、前記第1のホトレジスト層を除去したのち前記ゲ
ート電極の上面を含む全面に金属膜を形成する]工程と
、全面に第2のホトレジスト層を形成したのちエツチン
グし前記ゲート電極上部の前記金属膜を露出させる工程
と、前記金属膜の露出1mに金属のめっきを行う工程と
、前記第2のポ1〜レジス1−層及び第2のホトレジス
ト層丁の前記金属膜を除去する工程とを舒んで構成され
る。
Means for Solving Problem C] The method for manufacturing a semiconductor device of the present invention includes the steps of selectively ion-implanting impurities into a semi-insulating substrate to form a first conductivity type impurity layer; forming a gate electrode made of a refractory metal in a predetermined region of the second conductivity type impurity layer, and ion-implanting impurities using the gate electrode as a mask to form a first conductivity type high concentration impurity layer in the semi-insulating substrate; A step of forming a dielectric film on the entire surface and then performing heat treatment to activate the implanted ions; and a step of forming a first photoresist layer on the entire surface and then forming a first photoresist layer on the gate electrode.
Etching the resist I-layer and the dielectric film
Game 1 - exposing the tops of the second and side surfaces of the electrode; forming a metal film on the entire surface including the top surface of the gate electrode after removing the first photoresist layer; a step of forming a second photoresist layer and then etching it to expose the metal film above the gate electrode; a step of plating metal on the exposed 1 m of the metal film; - removing the metal film of the photoresist layer and the second photoresist layer.

[一実施例〕 次に、本発明の実施例について図面を参照して説明する
[One Embodiment] Next, an embodiment of the present invention will be described with reference to the drawings.

第1図(a)〜(i)は本発明の一実施例を説明する為
の工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(i) are cross-sectional views of a semiconductor chip shown in order of steps for explaining an embodiment of the present invention.

まず、第1図(a)に示すように、クロム(Cr)を導
入したGaAsからなる半絶縁性基板21中にSi+イ
オン29を30keVの加速電圧で3×1011012
C1だけホトレジストマスク10を用いて選択的にイオ
ン注入しn型層22を形成する。
First, as shown in FIG. 1(a), Si + ions 29 are introduced into a semi-insulating substrate 21 made of GaAs doped with chromium (Cr) at an acceleration voltage of 30 keV for 3×1011012
Only C1 is selectively ion-implanted using the photoresist mask 10 to form an n-type layer 22.

次に、第1図(b)に示すように、Wdi3なる高融点
金属を約5000人の厚さで全面に被着させたあと、ホ
トリソグラフィ技術を用いて選択的に加工し、ゲート電
極24とする。
Next, as shown in FIG. 1(b), a high melting point metal called Wdi3 is deposited on the entire surface to a thickness of about 5,000 mm, and then selectively processed using photolithography technology to form the gate electrode 24. shall be.

次に、第1図(c)に示すように、ゲート電極24をマ
スクとしてSi+イオン2つを再び注入しく100ke
V、3 X 1013C1lづ)、ゲート電極24の両
側にn゛型層23を設ける。
Next, as shown in FIG. 1(c), two Si+ ions are implanted again using the gate electrode 24 as a mask.
N-type layers 23 are provided on both sides of the gate electrode 24.

次に、第1図(d)に示すように、全面に5i02膜1
1を厚さ約2000人波着した後、ウェーハ全体を水素
(+12)雰囲気中で800°C510分アニールして
注入イオンを活性化させる。
Next, as shown in FIG. 1(d), a 5i02 film 1 is applied to the entire surface.
1 to a thickness of about 2,000 layers, the entire wafer is annealed at 800° C. for 510 minutes in a hydrogen (+12) atmosphere to activate the implanted ions.

次に、第1図(e)に示すように、全面に第1のホトレ
ジスト層12を塗布したのちエツチングし、ホトレジス
ト・層12及びゲート電極24の上面及び側面の5i0
2膜11を除去してゲート電極2/1の上面32と1j
jl1面の上部33を露出させる。
Next, as shown in FIG. 1(e), a first photoresist layer 12 is coated on the entire surface and etched, and the upper and side surfaces of the photoresist layer 12 and the gate electrode 24 are etched.
2 film 11 is removed and the upper surface 32 and 1j of the gate electrode 2/1 are removed.
The upper part 33 of the jl1 surface is exposed.

次に、第1図(f)に示すように、第1のホトレジスト れ500人、1000人の厚さに順次蒸着しTiAu膜
31全31する。
Next, as shown in FIG. 1(f), a first photoresist is sequentially deposited to a thickness of 500 and 1000 to form a TiAu film 31.

次に、第1図(g)に示すように、全面に第2のホ)・
レジス)へKJ13を塗布したのちエツチングすること
によりTiAu膜13の頭部及び側面部の1部を露出さ
せる。
Next, as shown in Figure 1 (g), the second ho)
After applying KJ13 to the resist (resist), a portion of the head and side portions of the TiAu film 13 are exposed by etching.

次に、第1図(h )に示すように、露出したTiA+
+膜31上に人uめっき25を施こし、更に不要ととな
った第2のホトレジスト層13及びT i A u膜3
1を除去することにより、低抵抗を有するT字型のゲー
I〜電極が得られる。
Next, as shown in FIG. 1(h), the exposed TiA+
+ Human U plating 25 is performed on the + film 31, and the second photoresist layer 13 and T i A u film 3 that are no longer needed are further removed.
By removing 1, a T-shaped gate electrode with low resistance is obtained.

次に、第1図(i)に示すように、n+型層23上にソ
ース及びドレイン電極26.27を形成することにより
、GaAs  MESFETの基本構造が実現できる。
Next, as shown in FIG. 1(i), by forming source and drain electrodes 26 and 27 on the n+ type layer 23, the basic structure of a GaAs MESFET can be realized.

n+型層23があるためにソース抵抗及びトレイン抵抗
は十分低減されていることは言を待たない。
Needless to say, the source resistance and train resistance are sufficiently reduced due to the presence of the n+ type layer 23.

このように本実施例によれば、第1図(g)にみられる
ように、めっき用給電電極としてのTi^11膜31は
SiO□膜11上に形成されているため、TiAu膜3
1全31As導電層に影響を与えずに十分上・ソチング
処理できる。また、例えTiAu膜31全31かなエツ
チング残りがあったとしても、S!02WAを除去すれ
ば完全に除去することができる。
According to this embodiment, as shown in FIG. 1(g), since the Ti^11 film 31 serving as the power supply electrode for plating is formed on the SiO□ film 11, the TiAu film 3
1. Sufficient top-soching treatment can be performed without affecting the entire 31As conductive layer. Also, even if there is etching residue on all 31 of the TiAu films, S! It can be completely removed by removing 02WA.

尚、上記実施例においては、金属めっきとして^Uを用
いた場合について説明したが、Ni等他の金属であって
もよい。
In the above embodiment, the case where ^U was used as the metal plating was explained, but other metals such as Ni may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ゲート電極の上面に金属
めっきを施すための給電電極としての金属膜を、誘電体
膜を介して形成することにより、金属膜の除去が下地の
導電層に損傷を与えることなく完全に行なえるため、ゲ
ート電極抵抗及びソース寄生抵抗か小さく、性能の高い
半導体装置の製造方法が得られる。
As explained above, the present invention forms a metal film as a power supply electrode for applying metal plating on the upper surface of the gate electrode through a dielectric film, so that removal of the metal film damages the underlying conductive layer. Since this process can be carried out completely without imparting any lag, it is possible to obtain a method for manufacturing a semiconductor device with low gate electrode resistance and low parasitic source resistance, and high performance.

図面の「m甲、な9(2明 第1図(a)〜(i)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図は本
発明の対象とする半導体装置の構造を説明するための断
面図、第3図(a)〜(d)は従来の半導体装置の製造
方法を説明するためσ)工程順に示した半導体チップの
断面図である。
Figures 1 (a) to (i) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention, and Figure 2 is a cross-sectional view of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention. 3(a) to 3(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the conventional manufacturing method of a semiconductor device. .

10・・・ホトレジストマスク、11・・・SiO□膜
、12・・第1のホ)〜レジスト層、13・・・第2の
ホ)・レジス[〜層、1.3A・・・ホトレジスト層、
21・・・半絶縁性基板、22・・・n型層、23・・
・n+型層、24・・・ゲート電極、25・・・^Uめ
っき層、26・・・ソース電極、27・・伴レイン電極
、31・・・T i A u膜、32・・・上面、33
・・・側面の上部。
DESCRIPTION OF SYMBOLS 10... Photoresist mask, 11... SiO□ film, 12... First e)~resist layer, 13... Second e) resist [~ layer, 1.3A... Photoresist layer ,
21... Semi-insulating substrate, 22... N-type layer, 23...
・n+ type layer, 24...gate electrode, 25...^U plating layer, 26...source electrode, 27...co-rain electrode, 31...T i Au film, 32... top surface , 33
...Top of the side.

、・ −゛,・ −゛

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性基板中に不純物を選択的にイオン注入し第1導
電型不純物層を形成する工程と、前記第1導電型不純物
層上の所定領域に高融点金属よりなるゲート電極を形成
する工程と、前記ゲート電極をマスクとして不純物をイ
オン注入し前記半絶縁性基板中に第1導電型高濃度不純
物層を形成する工程と、全面に誘電体膜を形成したのち
熱処理し、前記注入イオンを活性化する工程と、全面に
第1のホトレジスト層を形成したのち前記ゲート電極上
の第1のホトレジスト層と前記誘電体膜とをエッチング
し前記ゲート電極の上面及び側面の上部を露出させる工
程と、前記第1のホトレジスト層を除去したのち前記ゲ
ート電極の上面を含む全面に金属膜を形成する工程と、
全面に第2のホトレジスト層を形成したのちエッチング
し前記ゲート電極上部の前記金属膜を露出させる工程と
、前記金属膜の露出面に金属のめっきを行う工程と、前
記第2のホトレジスト層及び第2のホトレジスト層下の
前記金属膜を除去する工程とを含むことを特徴とする半
導体装置の製造方法。
a step of selectively ion-implanting impurities into a semi-insulating substrate to form a first conductivity type impurity layer; and a step of forming a gate electrode made of a refractory metal in a predetermined region on the first conductivity type impurity layer. , implanting impurity ions using the gate electrode as a mask to form a first conductivity type high concentration impurity layer in the semi-insulating substrate; and after forming a dielectric film on the entire surface, heat treatment is performed to activate the implanted ions. forming a first photoresist layer over the entire surface, and then etching the first photoresist layer on the gate electrode and the dielectric film to expose the upper surface and side surfaces of the gate electrode; forming a metal film on the entire surface including the upper surface of the gate electrode after removing the first photoresist layer;
forming a second photoresist layer on the entire surface and then etching it to expose the metal film above the gate electrode; plating the exposed surface of the metal film with metal; and forming the second photoresist layer and the second photoresist layer. 2. A method for manufacturing a semiconductor device, comprising the step of removing the metal film under the photoresist layer.
JP16861186A 1986-07-16 1986-07-16 Method for manufacturing semiconductor device Expired - Lifetime JPH0626221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16861186A JPH0626221B2 (en) 1986-07-16 1986-07-16 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16861186A JPH0626221B2 (en) 1986-07-16 1986-07-16 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6323368A true JPS6323368A (en) 1988-01-30
JPH0626221B2 JPH0626221B2 (en) 1994-04-06

Family

ID=15871265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16861186A Expired - Lifetime JPH0626221B2 (en) 1986-07-16 1986-07-16 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0626221B2 (en)

Also Published As

Publication number Publication date
JPH0626221B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
JPS6310589B2 (en)
JPS62136883A (en) Manufacture of self-aligning field effect transistor
JPS5999717A (en) Manufacture of semiconductor device
US4700455A (en) Method of fabricating Schottky gate-type GaAs field effect transistor
JPS6292481A (en) Manufacture of semiconductor device
JPS6323368A (en) Manufacture of semiconductor device
JPS6160591B2 (en)
JP2624656B2 (en) Method of manufacturing GaAs field effect transistor
KR100219064B1 (en) Method of manufacturing mosfet of semiconductor device
JP3139208B2 (en) Method for manufacturing field effect transistor
JP2889240B2 (en) Compound semiconductor device and method of manufacturing the same
JPS6142963A (en) Manufacture of semiconductor device
JPS6077467A (en) Manufacture of field effect transistor
JPS62291070A (en) Manufacture of semiconductor device
JPS63179579A (en) Manufacture of compound semiconductor device
JPH01251667A (en) Manufacture of field effect transistor
JPH0425030A (en) Manufacture of semiconductor device
JPS59194476A (en) Manufacture of semiconductor device
JPS6050966A (en) Manufacture of field effect transistor
JPH04359468A (en) Compound semiconductor device and manufacture thereof
JPS6237971A (en) Manufacture of schottky barrier gate type field effect transistor
JPH05217937A (en) Manufacture of semiconductor device
JPS59195874A (en) Manufacture of field-effect transistor
JPS6112084A (en) Manufacture of semiconductor device
JPS6037169A (en) Manufacture of mosfet