JPS59161075A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS59161075A
JPS59161075A JP3442483A JP3442483A JPS59161075A JP S59161075 A JPS59161075 A JP S59161075A JP 3442483 A JP3442483 A JP 3442483A JP 3442483 A JP3442483 A JP 3442483A JP S59161075 A JPS59161075 A JP S59161075A
Authority
JP
Japan
Prior art keywords
heat
ohmic
electrode
ohmic electrode
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3442483A
Other languages
Japanese (ja)
Inventor
Toshio Nonaka
野中 敏夫
Hiroshi Nakamura
浩 中村
Nagayasu Yamagishi
山岸 長保
Yoshiaki Sano
佐野 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3442483A priority Critical patent/JPS59161075A/en
Publication of JPS59161075A publication Critical patent/JPS59161075A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain manufacture, through which the morphology of an ohmic electrode is improved and thermal stability and distribution in a wafer are enhanced while an improvement in reliabilty is also expected, by activating and annealing an active layer by an ion implantation and high-concentration N type source and drain layers while also activating and annealing a thin-film semiconductor material for the electrode. CONSTITUTION:A resist 8 is patterned in order to form a pattern for a heat- resistant ohmic electrode. Germanium or silicon as a thin-film semiconductor material 9 for a heat-resistant ohmic as the ohmic electrode is evapoated. An ions are implanted to shape a high-concentration N type to the thin-film semiconductor material 9 for the heat-resistant ohmic electrode, the resist 8 is lifted off, and the thin-film semiconductor material 9 for the heat-resistant ohmic electrode is patterned. An active layer 2, the high-concentration layer 5 and the ohmic material 9 by an As implantation layer are annealed simultaneouly in As pressure. Wiring patterns 7 are patterned, and an element is prepared.

Description

【発明の詳細な説明】 (技術分野) この発明は、耐熱性を有するダート電極およびオーミッ
ク電極をもつ化合物半導体素子の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a compound semiconductor element having a heat-resistant dart electrode and an ohmic electrode.

(従来技術) 従来法について、GaAs  電界効果トランジスタ(
GaAs FET )の場合について、第1図(a)〜
第1図(e)によシ説明する。第1図(a)において、
GaAs基板lに対し、FETの活性層2をイオン注入
した後に高融点メタルによる耐熱r −) 3 ヲレジ
スト4をマスクにパターンニングした後、オーミック接
触のための高濃度に不純物をドープした層5を形成する
ために、ダート電極およびレジスト4をマスクに第1図
(b)のようにイオン注入して形成する。
(Prior art) Regarding the conventional method, GaAs field effect transistor (
For the case of GaAs FET), Figure 1(a)~
This will be explained with reference to FIG. 1(e). In Figure 1(a),
After ion-implanting the active layer 2 of the FET into the GaAs substrate 1, patterning is performed using a high-melting point metal resist 4 as a mask, and then a layer 5 doped with impurities at a high concentration for ohmic contact is formed. To form this, a dart electrode and a resist 4 are formed by ion implantation using a mask as shown in FIG. 1(b).

この状態で活性層2およびオーミック用のイオン注入層
5の活性化をAs圧雰囲気中において約800℃で行う
In this state, the active layer 2 and the ohmic ion implantation layer 5 are activated at about 800° C. in an As pressure atmosphere.

次に、第1図(e)に示すようにAuGe/N1などの
オーミック電極6をパターンニングし、オーミック接触
を得るための熱処理合金化を約400C程度で行う。
Next, as shown in FIG. 1(e), an ohmic electrode 6 made of AuGe/N1 or the like is patterned and alloyed by heat treatment at about 400 C to obtain ohmic contact.

次ニ、配線金属7をパターンニングしてFETが作成さ
れる。
Next, the wiring metal 7 is patterned to create an FET.

以上のように、従来の製造方法においては、オーミック
接触を得るため、オーミック電極6を形成後的400℃
程度の処理を行う必要があシ、この際に表面の微少な温
度分布変化によ!1が一ルアツブなどの表面モホロジー
が悪くなる場合があった。
As described above, in the conventional manufacturing method, in order to obtain ohmic contact, the ohmic electrode 6 is heated at 400°C after forming the ohmic electrode 6.
It is necessary to perform a certain degree of treatment, and at this time, due to minute temperature distribution changes on the surface! In some cases, the surface morphology of 1.

この原因によシ、オーミック接触抵抗のバラツキが生じ
、素子の性能が不均一となる場合があった。
This may cause variations in ohmic contact resistance, resulting in non-uniform performance of the device.

したがって1.素子間の性能の均一性が要求される集積
回路を作成するためには、オーミック接触抵抗の均一性
は必須条件の一つであり、従来の製造方法によるオーミ
ック処理法の場合はこのオーミック接触抵抗の分布が問
題となることがしばしばあシ、素子の特性がバラツク原
因となっていた。
Therefore 1. In order to create integrated circuits that require uniformity of performance between elements, uniformity of ohmic contact resistance is one of the essential conditions. However, the distribution of the elements is often a problem, and the characteristics of the elements are the cause of variations.

(発明の目的) この発明は、上記従来の欠点を除去するためになされた
もので、電極のモホロジーを改善し、熱的安定性および
ウニへ内での分布を向上させるとともに、信頼性の向上
も期待される半導体の製造方法を提供することを目的と
する。
(Object of the Invention) This invention was made to eliminate the above-mentioned conventional drawbacks, and improves the morphology of the electrode, improves thermal stability and distribution within the sea urchin, and improves reliability. The purpose of this invention is to provide a method for manufacturing semiconductors that is expected to be used in the future.

(発明の構成) この発明の半導体素子の製造方法は、耐熱性を有するダ
ート電極とオーミック電極とを形成した後にイオン注入
による活性層および高濃度n型ソース、ドレイン層の活
性化アニール処理と同時に高濃度にn型にドープされた
オーミック電極の活性化アニールを行なうようにしたも
のである。
(Structure of the Invention) The method for manufacturing a semiconductor device of the present invention includes forming a heat-resistant dirt electrode and an ohmic electrode, and then simultaneously performing activation annealing of an active layer and a high concentration n-type source and drain layer by ion implantation. Activation annealing is performed on an ohmic electrode doped with n-type at a high concentration.

(実施例) 以下、この発明の半導体素子の製造方法の実施例につい
て図面に基づき説明する。第2図(a)〜第2図(d)
はその一実施例の工程説明図である。この第2図(a)
〜第2図(d)において、第1図(a)〜第1図(e)
と同一部分には同一符号を付して述べる。第2図(a)
は、第1図(a)、第1図(b)において示したように
GaAg基板lに対してFETの活性層2をイオン注入
した後、高融点メタルによる耐熱ゲート3をレジスト(
図示せず)全マスクにしてパターンニングした後、耐熱
ダート材料マスクによる高濃度領域5を形成したもので
あり、この時点までは耐熱ダート材料を用いた自己整合
(セルファライン)法によるものと同じである。
(Example) Hereinafter, an example of the method for manufacturing a semiconductor device of the present invention will be described based on the drawings. Figure 2(a) to Figure 2(d)
1 is a process explanatory diagram of one example. This figure 2 (a)
~ In Figure 2 (d), Figure 1 (a) ~ Figure 1 (e)
The same parts will be described with the same reference numerals. Figure 2(a)
As shown in FIGS. 1(a) and 1(b), after the active layer 2 of the FET is ion-implanted into the GaAg substrate 1, the heat-resistant gate 3 made of a high melting point metal is formed with a resist (
After patterning using the entire mask (not shown), a high concentration region 5 is formed using a heat-resistant dirt material mask, and up to this point, it is the same as the self-alignment (self-alignment) method using a heat-resistant dirt material. It is.

次に、第2図(b)に示すごとく耐熱オーミック′電極
用パターンをホトリソなどにより形成し、レソス)8e
ノ9ターンニンダスル。
Next, as shown in FIG. 2(b), a pattern for a heat-resistant ohmic electrode is formed by photolithography, etc.
No 9 turn nindasur.

さらに、オーミック電極としての耐熱オーミック材料9
としてのゲルマニウム(Ge)6るいはシリコン(Si
)を蒸着する。
Furthermore, heat-resistant ohmic material 9 as an ohmic electrode
germanium (Ge)6 or silicon (Si) as
) is deposited.

さらに、この耐熱オーミック材料に対し、高濃度n型と
なるようにA8をイオン注入した後、レジスト8をリフ
トオフし、第2図(e)のごとく、耐熱オーミック材料
9をノリーンニングする。
Furthermore, after ion-implanting A8 into this heat-resistant ohmic material to make it highly concentrated n-type, the resist 8 is lifted off, and the heat-resistant ohmic material 9 is subjected to no-leaning as shown in FIG. 2(e).

次に、第2図(e)の状態において、 As圧中におい
て活性層2および高濃度層5さらにAs打込み層による
オーミック材料9とを800℃程度の温度において同時
にアニールする。
Next, in the state shown in FIG. 2(e), the active layer 2, the high concentration layer 5, and the ohmic material 9 made of the As implanted layer are simultaneously annealed at a temperature of about 800° C. in an As pressure.

次に通常のノやターンニング方式、たとえばリフトオフ
法によシ配線パターン7をTi 1 p t/Auなど
によりパターンニングし素子は作成される。
Next, the wiring pattern 7 is patterned with Ti 1 p t/Au using a conventional turning method, such as a lift-off method, and an element is produced.

以上説明したように、この発明の実施例においてはダー
ト電極および、FETの活性層および高濃度層さらにオ
ーミック電極層を形成した後で、以上の各層のアニール
を同時工程によシー回で実施できる。
As explained above, in the embodiment of the present invention, after forming the dirt electrode, the active layer and high concentration layer of the FET, and the ohmic electrode layer, the annealing of each of the above layers can be performed in a simultaneous step. .

また、オーミック接触がアニール温度800℃程度とい
う高温によシ固相拡散を利用して処理されているため、
従来の合金化法によるオーミック電極と違いFETのr
−ト電極とと木にオーミック電極も耐熱性を有すること
などが利点である。
In addition, since the ohmic contact is processed using solid phase diffusion at a high annealing temperature of approximately 800°C,
Unlike ohmic electrodes made by conventional alloying methods, the r of FET
The advantage is that the ohmic electrode and the ohmic electrode also have heat resistance.

したがって、FET構造を構成しているオーミック電極
が従来のAuGe/Niなどを利用した合金化法による
ものよシ信頼性が向上することなどの微細化高集積化を
必要とされる化合物半導体素子の製造に対しては大きな
利点となる。
Therefore, the reliability of the ohmic electrodes constituting the FET structure is improved compared to the conventional alloying method using AuGe/Ni, etc., and is suitable for compound semiconductor devices that require miniaturization and high integration. This is a big advantage for manufacturing.

(発明の効果) 以上のように、この発明の半導体素子の製造方法によれ
ば、耐熱性を有するダート電極とオーミック電極とを形
成した後、イオン注入による活性層と高濃度n型ソース
、ドレイン層の活性化アニール処理と同時に高濃度にn
型ドープされたオーミック電極の活性化アニールをも行
なうようにしたので、耐熱性のあるダート電極およびオ
ーミック電極を有することになシ、高信頼性という点で
は大きな利点があり、化合物半導体における例えばQa
Aa I cの製作工程上に充分利用することができる
(Effects of the Invention) As described above, according to the method for manufacturing a semiconductor device of the present invention, after forming a heat-resistant dirt electrode and an ohmic electrode, an active layer is formed by ion implantation, a highly doped n-type source, and a drain. At the same time as the activation annealing of the layer, a high concentration of n.
Since activation annealing is also performed for the type-doped ohmic electrode, it is possible to have a heat-resistant dirt electrode and ohmic electrode, which has a great advantage in terms of high reliability, and is suitable for use in compound semiconductors, such as Qa
It can be fully utilized in the manufacturing process of Aa Ic.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ないし第1図(c)はそれぞれ従来の耐熱
ダート材料を用いた半導体素子の製造方法の工程説明図
、第2図(a)ないし第2図(d)はそれぞれこの発明
の半導体素子の製造方法の一実施例の工程説明図である
。 1・・・GaAs基板、2・・・FET活性層、3・・
・耐熱ダート、5・・・高濃度領域、6・・・オーミッ
ク電極、7・・・配線電極材料、8・・・レソスト、9
・・・耐熱オーミック材料。 特許出願人  沖電気工業株式会社 手続補正書 昭和58年1θ月25日 特許庁長官若杉和夫 殿 1、事件の表示 昭和58年特 許  願第34424   号2、発明
の名称 半導体素子の製造方法 3、補正をする者 事件との関係     特 許 出願人(029)沖電
気工業株式会社 4、代理人 5、補正命令の日付  昭和  年  月  日 (自
発)および図面の簡単な説明の欄 7、補正の内容 別紙の通り 7、 補正の内容 1)明細書の「2、特許請求の範囲」を別紙の通シ訂正
する。 2)明細書2頁7行「この状態で」を「その後、レジス
ト4を除去し、」と訂正する。 3)同4頁1行「電極の活」を「電極用の薄膜半導体材
料の活」と訂正する。 4)同4頁2行「を行なう」を「をも行なう」と訂正す
る。 5)同4頁18行[パターンを・・・・・・形成し、」
を「パターンを形成するために、」と訂正する。 6ン 同5頁1行「り材料」を「り用の薄膜半導体材料
」と訂正する。 7)同5頁3行、同頁6行各々「オーミック材料」を[
オーミック用の薄膜半導体材料」と訂正する。 8)同5頁12行r Ttlpt/Au J k r’
 Ti/Pt 」と訂正する。 9)同6頁14行「n型ドープ」を「n型にドープ」と
訂正する。 10)同6頁15行「電極の活性化」を1電極用の薄膜
半導体材料の活性化」と訂正する。 11)同6頁19行r GaAsIc jをr GaA
sICJと訂正する。 12)同7頁10行「ツク材料」を「ツク用の薄膜半導
体材料」と訂正する。 2t¥!j許請求の範囲 耐熱性を有するr−ト電極とオーミック電極とを形成し
た後に、イオン注入による活性層および高濃度n型ソー
ス、ドレイン層の活性化アニール処理と同時に高濃度に
n型にドープされたオーミック電極里の薄膜半導体材料
の活性化アニールも行うことを特徴とする化合物半導体
素子の製造方法。
1(a) to 1(c) are process explanatory diagrams of a method for manufacturing a semiconductor device using a conventional heat-resistant dart material, respectively, and FIGS. 2(a) to 2(d) are respectively illustrations of the process according to the present invention. FIG. 3 is a process explanatory diagram of an embodiment of a method for manufacturing a semiconductor device of FIG. 1... GaAs substrate, 2... FET active layer, 3...
・Heat-resistant dirt, 5... High concentration area, 6... Ohmic electrode, 7... Wiring electrode material, 8... Resosto, 9
...Heat-resistant ohmic material. Patent applicant: Oki Electric Industry Co., Ltd. Procedural amendment dated 1θ/25/1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office1, Indication of the case: Patent Application No. 34424, filed in 1982, 2, Name of the invention: Process for manufacturing semiconductor devices 3, Relationship with the case of the person making the amendment Patent Applicant (029) Oki Electric Industry Co., Ltd. 4, Agent 5, Date of amendment order Showa year, month, day (spontaneous), column 7 for a brief explanation of the drawings, contents of the amendment As shown in Attachment 7, Contents of the amendment 1) "2. Scope of Claims" of the specification will be corrected in the Attachment. 2) On page 2 of the specification, line 7, "in this state" is corrected to "after that, resist 4 is removed." 3) On page 4, line 1, "Activity of electrodes" is corrected to "Activity of thin film semiconductor materials for electrodes." 4) On page 4, line 2, ``to do'' is corrected to ``to do too.'' 5) Page 4, line 18 [forming a pattern...]
is corrected to "in order to form a pattern." 6. On page 5, line 1, ``materials'' is corrected to ``thin film semiconductor materials for silicone''. 7) "Ohmic materials" on page 5, line 3 and page 6, line [
"Thin film semiconductor material for ohmic applications". 8) Same page 5 line 12 r Ttlpt/Au J k r'
Ti/Pt” is corrected. 9) On page 6, line 14, "n-type doped" is corrected to "n-type doped." 10) ``Activation of electrode'' on page 6, line 15 is corrected to ``activation of thin film semiconductor material for one electrode''. 11) Same page 6 line 19 r GaAsIc j r GaA
Correct as sICJ. 12) On page 7, line 10, ``Tsuku materials'' is corrected to ``thin film semiconductor materials for tsuku''. 2 tons ¥! jClaims After forming a heat-resistant r-to-electrode and an ohmic electrode, the active layer and high-concentration n-type source and drain layers are activated by ion implantation annealing treatment and are doped with a high concentration of n-type at the same time. A method for manufacturing a compound semiconductor device, characterized in that activation annealing of the thin film semiconductor material of the ohmic electrode is also performed.

Claims (1)

【特許請求の範囲】[Claims] 耐熱性を有するダート電極とオーミック電極とを形成し
た後に、イオン注入による活性層および高濃度n型ソー
ス、ドレイン層の活性化アニール処理と同時に高濃度に
n型にドープされたオーミック電極の材料の活性化アニ
ールも行うことを特徴とする化合物半導体素子の製造方
法。
After forming a heat-resistant dirt electrode and an ohmic electrode, the active layer and the highly doped n-type source and drain layers are activated by annealing by ion implantation, and at the same time, the material of the ohmic electrode doped with a high concentration of n-type is processed. A method for manufacturing a compound semiconductor device, characterized in that activation annealing is also performed.
JP3442483A 1983-03-04 1983-03-04 Manufacture of semiconductor element Pending JPS59161075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3442483A JPS59161075A (en) 1983-03-04 1983-03-04 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3442483A JPS59161075A (en) 1983-03-04 1983-03-04 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPS59161075A true JPS59161075A (en) 1984-09-11

Family

ID=12413823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3442483A Pending JPS59161075A (en) 1983-03-04 1983-03-04 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS59161075A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133681A (en) * 1981-02-12 1982-08-18 Fujitsu Ltd Field-effect semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133681A (en) * 1981-02-12 1982-08-18 Fujitsu Ltd Field-effect semiconductor device

Similar Documents

Publication Publication Date Title
JPH02257618A (en) Semiconductor device and its manufacture
JPS59161075A (en) Manufacture of semiconductor element
JPS6077467A (en) Manufacture of field effect transistor
JPS6336579A (en) Schottky-gate field effect transistor
JPH01220439A (en) Manufacture of semiconductor device
JPS60120568A (en) Semiconductor device and manufacture thereof
JPS6037169A (en) Manufacture of mosfet
JPS6336577A (en) Manufacture of semiconductor device
JPH02291120A (en) Manufacture of gaas field-effect transistor
JPS59161022A (en) Manufacture of semiconductor element
JPS6169176A (en) Manufacture of semiconductor device
JPS5627923A (en) Manufacture of semiconductor device
JPS5933825A (en) Manufacture of semiconductor device
JPH01136376A (en) Manufacture of semiconductor element
JPH02211622A (en) Semiconductor device and manufacture thereof
JPS59193071A (en) Manufacture of semiconductor device
JPH0439772B2 (en)
JPS6060719A (en) Manufacture of compound semiconductor integrated circuit device
JPS6336578A (en) Manufacture of semiconductor device
JPS58131774A (en) Manufacture of gaas schottky barrier type field-effect transistor
JPH01112769A (en) Semiconductor device
JPS61196579A (en) Manufacture of semiconductor device
JPS6114742A (en) Manufacture of semiconductor device
JPS58153373A (en) Manufacture of semiconductor element
JPS61150277A (en) Manufacture of semiconductor device