JPS58131774A - Manufacture of gaas schottky barrier type field-effect transistor - Google Patents
Manufacture of gaas schottky barrier type field-effect transistorInfo
- Publication number
- JPS58131774A JPS58131774A JP1324182A JP1324182A JPS58131774A JP S58131774 A JPS58131774 A JP S58131774A JP 1324182 A JP1324182 A JP 1324182A JP 1324182 A JP1324182 A JP 1324182A JP S58131774 A JPS58131774 A JP S58131774A
- Authority
- JP
- Japan
- Prior art keywords
- source
- drain
- region
- effect transistor
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 230000005669 field effect Effects 0.000 title claims description 8
- 230000004888 barrier function Effects 0.000 title claims description 6
- 238000005468 ion implantation Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000000137 annealing Methods 0.000 abstract description 10
- 150000002500 ions Chemical class 0.000 abstract description 8
- 239000002184 metal Substances 0.000 abstract description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 4
- 150000002739 metals Chemical class 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 8
- 229910052681 coesite Inorganic materials 0.000 abstract 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract 4
- 239000000377 silicon dioxide Substances 0.000 abstract 4
- 235000012239 silicon dioxide Nutrition 0.000 abstract 4
- 229910052682 stishovite Inorganic materials 0.000 abstract 4
- 229910052905 tridymite Inorganic materials 0.000 abstract 4
- 229910017401 Au—Ge Inorganic materials 0.000 abstract 1
- 238000009826 distribution Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
- H01L21/3245—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering of AIIIBV compounds
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕、
この発明はGaA*ショットキ障壁型電界効果トツンジ
スタ(GaAs 88 F Fj T )の製造一方法
に関する◎〔発明の技術的背景〕
G1Aa結晶は電子の移動度及び飽和速度が81のそれ
に比べて高いため、超高速成いはマイクル波素子用の半
導体材料として適している・iイクロ波素子の内でもJ
IK GmAs 88FITFi実用化が進んでシシ、
最近ではこれt主構成要素としtGaAaICの研究開
発も盛んに行われて−る・これらの素子のウェハ製造技
術としては、エピタキシャル成長法が採用されてIたが
、最近ではイオン注入法が主mKeりつつある。以下現
在性われているイオン注入法によるGaAs 8 B
FI!の製造方法について述べる口
まず、第1図(イ)に示すように通常Gaps ’88
F E Tは、Crドープ半絶縁性基体(1)上に8
i等の態形不純物のイオン(りを注入し、イオン注入層
(31を形成する0次に第1図(ロ)に示すように、イ
オン注入層(3)上のソース及びドレイン予定の両領域
を除いた他の部分t、7オトレジスト膜或い#1sto
、等の絶縁j[14で覆い、ソース予定領域(5)及び
ドレイン予定領域(6)に選択的にn形不純物イオン(
71t %イオン注入層(3)よシも高濃度に且り課〈
注入する。次に絶縁膜α4tエツチングにより除去し、
その後人s1含む雰囲気中で電気的に十分活性化させる
ための熱処理を織す0熱処理によってイオン注入層(3
1Fi88FBTの動作層(3′)に、イオン注入層(
s)、(6)ti夫々ソース領斌(5’)及びドレイン
領域(6つとなる。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a GaA* Schottky barrier field effect transistor (GaAs 88 F Fj T ). Since the mobility and saturation speed are higher than that of 81, ultrahigh-speed formation is suitable as a semiconductor material for microwave devices.
IK GmAs 88FITFi is being put into practical use,
Recently, research and development of tGaAa ICs, which use this as the main component, has been actively conducted. Epitaxial growth has been adopted as the wafer manufacturing technology for these devices, but recently ion implantation has become the main component. It's coming. GaAs 8 B by the currently available ion implantation method
FI! I will not talk about the manufacturing method of Gaps '88, as shown in Figure 1 (A).
FET is 8 on a Cr-doped semi-insulating substrate (1).
Next, as shown in FIG. Other parts except the area t, 7 photoresist film or #1sto
, etc., and selectively inject n-type impurity ions (
The 71t% ion implantation layer (3) is also highly concentrated.
inject. Next, the insulating film α4T is removed by etching,
Thereafter, the ion-implanted layer (3
An ion implantation layer (
s), (6)ti, respectively, the source region (5') and drain region (six).
次いで電極金属を被着し、これ金合金化熱処理によりオ
ーム性接触として、ソース電極(8)及びドレイン電極
+9) 1に形成する0次にゲート金属を被着し、リフ
トオフ技術を用いて、パターニングを行い、ショットキ
接触としてゲート電極αGを形成し、同図(clに示す
構造のGmA@88FBT t−得る。Next, an electrode metal is deposited, which is then heat-treated for gold alloying to form an ohmic contact, and a gate metal is deposited on the source electrode (8) and drain electrode +9) 1, and patterned using a lift-off technique. A gate electrode αG is formed as a Schottky contact, and a GmA@88FBT t- having the structure shown in the same figure (cl) is obtained.
この製造方法の特徴は、イオン注入法金用いてソース領
域及びドレイン領域に高電子濃度且つ厚いn形導′題1
を形成することによって、ソース及びドレイン各電極の
コンタクト抵抗、或iはソース抵抗を低減できることで
あるoしかし88FITの動作層の形成及びソース領域
、ドレイン領域の形成に夫々イオン注入を行うため、F
l!T製造工程が複雑になる0またコンタクト抵抗を低
減するためには、ソース電極及びドレイン電極と接触す
る0aAs表面の電子濃度を高める必要があり、また厚
い導電層?得るためにはイオンの加速エネルギを何種類
か変えて注入するいわゆる多段イオン注入を行わなくて
はならず、この場合にはイオン注入工@に多くの時間を
要する欠点がある。The feature of this manufacturing method is that the source and drain regions are made with high electron concentration and thick n-type conductive material using ion implantation method.
The contact resistance of the source and drain electrodes, or the source resistance, can be reduced by forming the 88FIT.
l! In addition, in order to reduce the contact resistance, it is necessary to increase the electron concentration on the As surface that contacts the source and drain electrodes, which complicates the T manufacturing process, and also requires a thick conductive layer. In order to obtain this, it is necessary to perform so-called multi-stage ion implantation in which ions are implanted with different acceleration energies, and in this case, the ion implantation process has the disadvantage of requiring a lot of time.
この電発明は上記の欠点を除去し、ソース抵抗が小さく
高周波特性の改善され九〇aAsショットキ障壁型電界
効果ト2ンジスタ會、複雑な工程を伴うことなく製造す
る方法tIl供するにある口〔発明の概要〕
即ちこの発明はG1ムSシ1ットキ障壁型電界効果トラ
ンジスタをイオン注入法によって製造する(際し、ソー
ス予定領域及びドレイン予定領域の絢イオン注入層上に
のみ絶縁膜を被着させた状態でムsを含む雰囲気lス中
で熱処理することt%黴とするものである。This invention eliminates the above-mentioned drawbacks and provides a method for manufacturing a 90aAs Schottky barrier field effect transistor with small source resistance and improved high frequency characteristics without involving complicated processes. [Summary] That is, this invention manufactures a G1 barrier type field effect transistor by an ion implantation method (at this time, an insulating film is deposited only on the ion-implanted layer in the intended source region and the intended drain region). The mold is then heat-treated in a gas-containing atmosphere to reduce mold by t%.
以下この発明の実施例について図面會参照してv;LW
Aする◎まず始めに縞2図に、120 keVの加速エ
ネルギでドース量3.5X’I 912cmm−2の8
1イオンt1Crド一プ半絶縁性GmAm基体に注入し
、850C15分間のアニールをアルシン(AaHl)
雰囲気中で行った場合の電子濃度分布を示す0図でGa
As基体表面に8io、膜を被着してアニールを行うi
わゆる嘆つきアニールによる電子濃度分布なυは、膜な
しアニールによる電子濃度分布(2)に比べ、電子濃度
が高く且つその分布は拡がっている。CrドープGaA
s基体を高温アニールすると、Crの再分布が起ること
はよく知られているo4!に8kOt膜つきアニー、ル
の場合にはこの効果が著しく 、GmAm基体表面近傍
に於いてCr原子の減少した領域が生じる。上記現象は
イオン注入し九〇aAm基体にアニールを施した場合も
同様に起シ、もともと基体内に含まれている残貿ドナの
影響で膜つきアニールによる電子濃度分布は第2図at
+の曲線に示すようになる。The embodiments of this invention will be described below with reference to the drawings.
Do A ◎ First, on the stripe diagram 2, a dose of 3.5X'I 912 cm-2 with an acceleration energy of 120 keV is applied.
1 ion implanted into a tCr-doped semi-insulating GmAm substrate and annealed at 850C for 15 minutes to arsine (AaHl).
Ga
A film of 8 io is deposited on the surface of the As substrate and annealed.
The electron concentration distribution υ due to the so-called slow annealing has a higher electron concentration and a wider distribution than the electron concentration distribution (2) due to the filmless annealing. Cr-doped GaA
It is well known that Cr redistribution occurs when a s substrate is annealed at high temperatures o4! In the case of annealing with an 8 kOt film, this effect is remarkable, and a region where Cr atoms are reduced appears near the surface of the GmAm substrate. The above phenomenon occurs similarly when ions are implanted and annealed to a 90A Am substrate; due to the influence of residual donors originally contained in the substrate, the electron concentration distribution due to film annealing is as shown in Figure 2.
It becomes as shown in the + curve.
一方注入層特性の均一性、再現性に関しては、膜質によ
ってその特性が大きく変る膜つきアニールよりも膜なし
アニールによる方が秀れるのである。On the other hand, regarding the uniformity and reproducibility of the characteristics of the injection layer, annealing without a film is superior to annealing with a film, whose characteristics vary greatly depending on the film quality.
第2図の特徴を利用して8BFgT(D動作層、には均
一性に秀れた膜なしアニールとし、また高濃度且つ厚い
導電層が要求されるソース及びドレイン領域には膜り龜
アニールとするようにアニールを施したGmAm 88
FWTの製造方法例について第3図イ〜ハ會用いて述べ
る・
第3図イに於いてCrドープ牛絶縁性龜ムS基体(11
に8Nイオン偉)を120に@Vのエネ゛ルギでド′−
ス量3.5X10”a+−2注入し1イオン注入層(3
)を形成する。Utilizing the characteristics shown in Figure 2, film-less annealing with excellent uniformity is applied to the 8BFgT (D active layer), and film-less annealing is applied to the source and drain regions, which require a high concentration and thick conductive layer. GmAm 88 annealed to
An example of the manufacturing method of FWT will be described using Fig. 3 A to C. In Fig. 3 A, a Cr-doped cow insulating pin
8N ion weight) to 120 with @V energy
1 ion implantation layer (3
) to form.
次に第3図口に示すよう−にイオン注入層(3)上にc
vn sto、t−被着しフォトエツチングによシソー
ス予定領域(5)及びドレイン予定領域(6)上に8i
01膜(341χ(342) t−残し、他′會除去す
る◎次いでA$を含む雰囲気中で850℃15分間のア
ニールを行い、第3図口に示すように動作層(3′)及
びソース領′−(5′)、ドレイン領域(6′)が形成
される0次’IfC5iO1膜(341)、(342)
を除去し、新たK 8i0tl[’ie前記基体上全面
に被着する・しかる後常法に従って7オトレジスト膜を
マスクとするフォトエツチングによりソース及びドレイ
/電極用開孔を設け、オーム性接触する金属、例えばA
u −Goを蒸着する〇その後、す7トオフ法を用いて
前記オーム性金属をソース領域及びドレイン領域上のみ
に残す。次に適当な条件、例えば400℃10分間熱処
理を行い、オーム性接触する金属を合金化して第3図(
c)に示すように、ソース電極(8)及びドレイン電極
(9)を形成する。続いて、再びフォトエツチングによ
りフォトレジスト膜をマスクとして所定のゲート電極用
開孔を設けた後、ゲート金属、例えば入/1蒸着し、続
いてり7トオ7法を用いてゲート電極01t−形成する
0以上工程により伽ムSシ■ットキ障壁型電界効果トラ
ンジスタを得ることができる0この実施例では絶縁膜に
5tot膜を用いたが、8i、N、膜でもよく、また基
体としてC「ドープのGaAs基体を用いたが、Feド
ープの(3mAm基体を用いる場合にも適用できる〇
〔発明の効果〕
以上述べたようにこの発明によれば、GaAmショット
キ障壁型電界効果トランジスタの製造を複雑な工程tm
いることなく、ソース及びドレインのコンタクト抵抗或
いはソース抵抗を低減できるGaAmショットキ障m型
電界効果トランジスタの製造方法を提供できる0Next, as shown in Figure 3, c is placed on the ion implantation layer (3).
vn sto, t-deposited and photoetched 8i on the intended source area (5) and intended drain area (6).
01 film (341χ(342) t) is left and the other film is removed. ◎Next, annealing is performed at 850°C for 15 minutes in an atmosphere containing A$ to form the active layer (3') and the source layer as shown in the opening in Figure 3. Zero-order 'IfC5iO1 films (341), (342) in which region'-(5') and drain region (6') are formed.
8i0tl['ie] is deposited on the entire surface of the substrate. Then, holes for the source and drain/electrode are formed by photo-etching using the photoresist film as a mask according to a conventional method, and metals for ohmic contact are formed. , for example A
Deposit u-Go. Then, use a step-off method to leave the ohmic metal only on the source and drain regions. Next, heat treatment is performed under appropriate conditions, for example, at 400°C for 10 minutes, to alloy the metals in ohmic contact, as shown in Figure 3 (
As shown in c), a source electrode (8) and a drain electrode (9) are formed. Next, a predetermined opening for the gate electrode is formed by photoetching again using the photoresist film as a mask, and then a gate metal, for example, 1/1 is deposited, and then the gate electrode 01t is formed using the 7-to-7 method. A barrier-type field effect transistor can be obtained by the steps of 0 or more. In this example, a 5tot film was used as the insulating film, but an 8i, N, film may also be used, and a carbon-doped substrate may be used. Although a GaAs substrate of Process tm
It is possible to provide a method for manufacturing a GaAm Schottky m-type field effect transistor in which the contact resistance of the source and drain or the source resistance can be reduced without the need for
第1図はイオン注入法による従来のGaAs8BFET
の製造工程順に得られる生成品断面図、第2図はイオン
注入層を別O鵞膜つ龜アニール及び膜なしアニールを行
った場合の各電子濃度分布を示す曲線図、第3図はこの
発明に係るGaAs8BPIT製造工程順に得られる生
成品断面図である0
第3図で
(1)・・・半絶縁性GaAm基体 (21、(71・
・・n形不純物イオン(3)・・・イオン注入層
(141、(341) 、(342)・・・絶縁膜(
5) 、(61・・・高濃度イオン注入層 (3′)・
・・動作層(5′)・・・ソース領域 (6′)・
・・ドレイン領域(8)・・・ソース電極 (9)
・・・ドレイン電極Q(1・・・ゲート電極
代理人弁理士 井 上 −男Figure 1 shows a conventional GaAs8BFET manufactured by ion implantation.
Figure 2 is a cross-sectional view of the product obtained in the order of the manufacturing process, Figure 2 is a curve diagram showing each electron concentration distribution when the ion-implanted layer is annealed with a separate film and annealed without a film, and Figure 3 is a curve diagram showing the electron concentration distribution of the ion-implanted layer. This is a cross-sectional view of a product obtained in the order of the GaAs8BPIT manufacturing process related to (1)...Semi-insulating GaAm substrate (21, (71)
...N-type impurity ion (3)...Ion implantation layer
(141, (341), (342)...Insulating film (
5) , (61...high concentration ion implantation layer (3')
...Active layer (5')...Source region (6')...
...Drain region (8) ...Source electrode (9)
...Drain electrode Q (1...Gate electrode patent attorney Inoue -Male)
Claims (1)
ン注入法によって製造するに際し、半絶縁性基板表面に
イオン注入を施した後ソース予定領域及びドレイン予定
領域の両イオン注入層上にのみ絶縁膜を被着させた状態
でムsYr含む雰囲気ガス中で熱処理することtII#
黴とするG1ムSショットキ障壁型電界効果トランジス
タの製造方法・When manufacturing a GaAm Schottky barrier field effect transistor by the ion implantation method, after ion implantation was performed on the surface of a semi-insulating substrate, an insulating film was deposited only on both the ion implantation layers in the intended source and drain regions. Heat treatment in an atmospheric gas containing Yr in the state tII#
Manufacturing method of G1 S Schottky barrier field effect transistor using mold
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1324182A JPS58131774A (en) | 1982-02-01 | 1982-02-01 | Manufacture of gaas schottky barrier type field-effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1324182A JPS58131774A (en) | 1982-02-01 | 1982-02-01 | Manufacture of gaas schottky barrier type field-effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58131774A true JPS58131774A (en) | 1983-08-05 |
Family
ID=11827697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1324182A Pending JPS58131774A (en) | 1982-02-01 | 1982-02-01 | Manufacture of gaas schottky barrier type field-effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58131774A (en) |
-
1982
- 1982-02-01 JP JP1324182A patent/JPS58131774A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5833716B2 (en) | Shotsutoki - Hekigata Denkai Kouka Transistor No. Seizouhouhou | |
JPS5851575A (en) | Manufacture of semiconductor device | |
JPS58131774A (en) | Manufacture of gaas schottky barrier type field-effect transistor | |
JPS5851573A (en) | Semiconductor device | |
JPS60144980A (en) | Semiconductor device | |
JPH0494136A (en) | Field effect transistor and its manufacture | |
JPS60136264A (en) | Manufacture of semiconductor device | |
JPS6050966A (en) | Manufacture of field effect transistor | |
JPH028457B2 (en) | ||
JPS63179579A (en) | Manufacture of compound semiconductor device | |
JPS63304665A (en) | Semiconductor device | |
JPS59135774A (en) | Manufacture of semiconductor device | |
JPH0352238A (en) | Manufacture of compound semiconductor device | |
JPS59191384A (en) | Manufacture of semiconductor device | |
JPS6086871A (en) | Manufacture of field effect transistor | |
JPS6261370A (en) | Gaas field effect semiconductor device | |
JPS63157474A (en) | Manufacture of semiconductor device | |
JPS60245220A (en) | Formation of ohmic electrode on gallium arsenide | |
JPH02291120A (en) | Manufacture of gaas field-effect transistor | |
JPS62291070A (en) | Manufacture of semiconductor device | |
JPS61220472A (en) | Manufacture of semiconductor device | |
JPS59161877A (en) | Manufacture of compound semiconductor device | |
JPS6396914A (en) | Manufacture of semiconductor device | |
JPS59113671A (en) | Manufacture of field effect transistor | |
JPS63142872A (en) | Manufacture of self-alignment type field-effect transistor |