JPS59113671A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS59113671A
JPS59113671A JP22431982A JP22431982A JPS59113671A JP S59113671 A JPS59113671 A JP S59113671A JP 22431982 A JP22431982 A JP 22431982A JP 22431982 A JP22431982 A JP 22431982A JP S59113671 A JPS59113671 A JP S59113671A
Authority
JP
Japan
Prior art keywords
insulating film
photoresist
mask
electrode
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22431982A
Other languages
Japanese (ja)
Inventor
Akiyoshi Tamura
彰良 田村
Takeshi Konuma
小沼 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22431982A priority Critical patent/JPS59113671A/en
Publication of JPS59113671A publication Critical patent/JPS59113671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Weting (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce the region for surface depletion layer minimizing the parasitic resistance such as source resistance, drain resistance etc. by a method wherein N<+> type ion implantation, a source electrode and a drain electrode are self-matched using a tapered insulating film as a mask. CONSTITUTION:An N type region 5 to be an active layer is formed on a semiinsulating substrate 1 by means of implanting ion such as Si etc. at the dose corresponding to the specified threshold value voltage of MESFET using a photoresist 3 as a mask. An insulating film 11 is etched to be tapered using another photoresist 12 as a mask. Furthermore an N<+> type region 4 is formed by means of implanting ion at higher dose. The insulating film 11 on the element forming part is partly etched using a photoresist mask 13 to expose an N<+> type region 4. AuGe/Ni etc. are vacuum evaporated to form a source electrode 7 and a drain electrode 8 while the resist 13 is removed and lifted off and then annealed at an optimum temperature to come into ohmic contact. Next another resist 15 is removed to form a photoresist on the insulating film 15 then a metal is formed and the photoresist is removed by means of lift off process to form a gate electrode 9.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体電界効果トランジスタの製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a compound semiconductor field effect transistor.

従来例の構成とその問題点 第1図(al〜(fIは、従来のヒ化ガリウムショット
キーバリアゲート電界効果トランジスタ(以下GaAs
M:ESFETとよぶ)の製造工程を示したものである
。まず第1図(a)に示すごとく半絶縁性GaAS基板
1上に、Si3N4,5i02等の絶縁膜2を形成し、
フォトレジスト3をマスクとして、オーミック接触抵抗
軽減のためオーミック注入用の窓をエツチングで開口す
る。次に同図(b)に示すとと(Si等のイオンを高ド
、−ズ量で注入し、1型領域4を形成する。次に同図(
C1に示すごとく同様のフォトレジスト法を用いて能動
層形成のための窓を開口し、FETの所望のしきい値電
圧に応じだドーズ量のイオンを注入し、活性層となるN
型領域6を形成する。次に同図(d)に示すごとくレジ
スト3.絶縁膜2を除去後、基板全面に新だにS i3
N4等の絶縁膜6を堆積しイオン注入領域活性化のため
、s o o ’c〜850 ’Cでアニールを行なう
Structure of a conventional example and its problems Figure 1 (al~(fI is a conventional gallium arsenide Schottky barrier gate field effect transistor (hereinafter referred to as GaAs
M: This is a diagram showing the manufacturing process of ESFET. First, as shown in FIG. 1(a), an insulating film 2 of Si3N4, 5i02, etc. is formed on a semi-insulating GaAS substrate 1,
Using the photoresist 3 as a mask, a window for ohmic implantation is opened by etching to reduce ohmic contact resistance. Next, as shown in FIG. 5B, ions such as Si are implanted at a high dose to form type 1 region 4.Next, as shown in FIG.
As shown in C1, a window for forming the active layer is opened using a similar photoresist method, and ions are implanted at a dose depending on the desired threshold voltage of the FET to form a N layer that will become the active layer.
A mold region 6 is formed. Next, as shown in FIG. 3(d), resist 3. After removing the insulating film 2, a new layer of Si3 is deposited on the entire surface of the substrate.
An insulating film 6 of N4 or the like is deposited, and annealing is performed at SO'C to 850'C to activate the ion implantation region.

次に同図(e)に示すごとくリフトオフ法を用いてソー
ス電極7.ドレイン電極8を形成し、適当な温度でアニ
ールしてオーミック接触を得る。次に同図(f)に示す
ごとく同様のリフトオフ法を用いてゲート電極9を形成
して工程が終了する。
Next, as shown in FIG. 7(e), a lift-off method is used to remove the source electrode 7. A drain electrode 8 is formed and annealed at a suitable temperature to obtain ohmic contact. Next, as shown in FIG. 3(f), a gate electrode 9 is formed using a similar lift-off method, and the process is completed.

第2図は、こうして形成した従来のGaAsMESFE
Tの構造断面図を示したものである。前記従来の製造方
法では、ゲート電極9に対してN4領域4及びソース電
極7.ドレイン電極8が自己整合になっていないために
、ゲート電極9とソース電極7間、及びゲート電極9と
ドレイン電極8間のN型領域が長くなり、そのためここ
に形成される表面空乏層10も広い範囲にわたって形成
されることになる。そのためソース抵抗、ドレイン抵抗
等の寄生抵抗が増大し、高周波ノイズ特性の劣化、伝達
コンダクタンスの減少を及ぼす。特にエンハンスメント
型FETのように、活性層となるN型領域5が薄くなる
と大きな問題となる。
Figure 2 shows the conventional GaAs MESFE thus formed.
A structural cross-sectional view of T is shown. In the conventional manufacturing method, the N4 region 4 and the source electrode 7. Since the drain electrode 8 is not self-aligned, the N-type regions between the gate electrode 9 and the source electrode 7 and between the gate electrode 9 and the drain electrode 8 become long, and therefore the surface depletion layer 10 formed there also becomes long. It will be formed over a wide area. As a result, parasitic resistances such as source resistance and drain resistance increase, resulting in deterioration of high frequency noise characteristics and reduction in transfer conductance. This becomes a big problem, especially when the N-type region 5 serving as the active layer becomes thin, as in an enhancement type FET.

本発明はこのような従来の問題に鑑み、表面空乏層の影
響をほとんど除去し、ソース抵抗、ドレイン抵抗等の寄
生抵抗の少ないMESFETの製造方法を提供するもの
である。
In view of these conventional problems, the present invention provides a method for manufacturing a MESFET that almost eliminates the influence of the surface depletion layer and has low parasitic resistances such as source resistance and drain resistance.

発明の構成 本発明は、ゲート電極に対して、オーミック炉型領域及
び、ソース電極、ドレイン電極を自己整合するように構
成してゲート電極とソース電極間ド゛ およびシート電極と虐レイン電極間を短かくして表面空
乏層のできる領域をきわめて小さくし、ソース抵抗、ド
レイン抵抗等の寄生抵抗の少ないMli:5FET  
を製造可能とするものである。
Structure of the Invention The present invention has an ohmic furnace type region, a source electrode, and a drain electrode configured to be self-aligned with respect to the gate electrode, thereby forming a gap between the gate electrode and the source electrode and a gap between the sheet electrode and the drain electrode. Mli:5FET has a short length to minimize the area where the surface depletion layer is formed, and has low parasitic resistance such as source resistance and drain resistance.
This makes it possible to manufacture

実施例 第3図(a)〜(j)は、本発明の一実施例におけるM
ESFETの製造工程を示すものである。
Embodiment FIGS. 3(a) to 3(j) show M in an embodiment of the present invention.
It shows the manufacturing process of ESFET.

第3図Fa+に示すごとく、半絶縁性基板1に、フォト
レジスト3をマスクとして、Si等のイオンをMESF
ETの所望のしきい値電圧に応じたドーズ量で注入して
、能動層となるN型領域5を形成する。
As shown in FIG. 3 Fa+, ions such as Si are applied to the semi-insulating substrate 1 using the photoresist 3 as a mask.
The N-type region 5, which will become an active layer, is formed by implanting at a dose depending on the desired threshold voltage of the ET.

次にフォトレジストをア七トン等で除去後、同図(b)
に示すごとく、Si3N4等の絶縁膜11を半絶縁性G
aAs基板1上に堆積する。次に同図(C)に示すごと
く、フォトレジスト12をマスクとして、絶縁膜11を
CF4の等方性ドライエツチング装置等を用いてエツチ
ングし、テーノく−を持つようにする。
Next, after removing the photoresist with A-7T, etc., the same figure (b) is shown.
As shown in FIG.
Deposit on an aAs substrate 1. Next, as shown in FIG. 3C, using the photoresist 12 as a mask, the insulating film 11 is etched using a CF4 isotropic dry etching device or the like, so that it is etched into a pattern.

この場合、フォトレジスト12で覆われていない絶縁膜
はイオン注入後のアニール保護膜として利用するために
すべてエツチングしないで残しておく。
In this case, all of the insulating film not covered with the photoresist 12 is left unetched in order to be used as an annealing protective film after ion implantation.

次に同図(dlに示すごとく、高ドーズ量でイオン注入
を行ないN″型領領域4形成する。この場合イオンは絶
縁膜11の薄い部分は通過するが、フォトレジスト3で
覆われた部分は通過しないとする。
Next, as shown in the same figure (dl), ions are implanted at a high dose to form the N'' type region 4. In this case, the ions pass through the thin part of the insulating film 11, but the part covered with the photoresist 3 Assume that it does not pass.

次にフォトレジストを除去後、同図(elに示すごとく
800℃〜850℃でアニールを行ない、イオン注入領
域を活性化させる。なお絶縁膜11は、アニールの保護
膜として作用する。次に、同図(flに示すごとく、フ
ォトマスク13を用いて素子形成部分の絶縁膜11を一
定量エソチングを行ないW型頭域4を露出させる。次に
同図(g)に示すごとく垂直に、ソース電極7.ドレイ
ン電極8としてAuGe/Ni等を真空蒸着し、レジス
ト13を除去しリフトオフして適当な温度でアニールし
て、オーミック接触を得る。この場合、領域6上の絶縁
膜11上には電極金属が分離して堆積する。次に同図(
h)に示すごとく垂直に5iO7等の絶縁膜14をスパ
ッタ法等を用いて堆積する。この絶縁膜14と絶縁膜1
1とは材質が異なシ、選択的にエツチングすることが可
能なものとする。この場合も絶縁膜11上に絶縁膜14
が分離して堆積する。
Next, after removing the photoresist, annealing is performed at 800° C. to 850° C. as shown in FIG. As shown in the figure (fl), a certain amount of the insulating film 11 in the element formation area is etched using a photomask 13 to expose the W-shaped head region 4. Next, as shown in the figure (g), the source Electrode 7. AuGe/Ni or the like is vacuum-deposited as the drain electrode 8, and the resist 13 is removed, lifted off, and annealed at an appropriate temperature to obtain ohmic contact.In this case, on the insulating film 11 on the region 6, The electrode metal separates and deposits.Next, the same figure (
As shown in h), an insulating film 14 of 5iO7 or the like is vertically deposited using a sputtering method or the like. This insulating film 14 and insulating film 1
It is assumed that the material is different from 1 and can be selectively etched. In this case as well, the insulating film 14 is placed on the insulating film 11.
is separated and deposited.

次に同図(1)に示すごとく、素子形成部分の絶縁膜1
1をフォトレジスト15をマスクとしてOF4のドライ
エツチングを行ない選択的に除去する。
Next, as shown in the same figure (1), the insulating film 1 of the element forming part
1 is selectively removed by dry etching the OF4 using the photoresist 15 as a mask.

この場合、絶縁膜14は絶縁膜11のテーパーのだめに
、ソース電極7.ドレイン電極8より内側にオフセント
されている。このオフセット量Xは、テーパーの角度に
より調節できる。次に、レジメト15を除去し、絶縁膜
15上にフォトレジスト     −(図示せず)を形
成し、全面に金属を形成し、リフトオフ法を用いてフォ
トレジストを除去し、第3図(j)に示すごとく、ゲー
ト電極9を形成して工程を終了する。絶縁膜14のオフ
セット量Xのため、ゲート電極9はソース電極7.ドレ
イン電極8と短絡しない。
In this case, the insulating film 14 is connected to the taper of the insulating film 11 and the source electrode 7. It is offset inward from the drain electrode 8. This offset amount X can be adjusted by adjusting the taper angle. Next, the regimen 15 is removed, a photoresist (not shown) is formed on the insulating film 15, metal is formed on the entire surface, and the photoresist is removed using a lift-off method, as shown in FIG. 3(j). As shown in FIG. 3, a gate electrode 9 is formed and the process is completed. Due to the offset amount X of the insulating film 14, the gate electrode 9 is closer to the source electrode 7. There is no short circuit with the drain electrode 8.

以上の本実姉例の方法はゲート電極9に対してN」領域
4及びソース電極7.ドレイン電極8が自己整合してお
り、そのためゲート電極9とソース電極7′の間隔、ゲ
ート電極9とドレイン電極8の間隔を短くでき、この間
隔の領域に形成される表面空乏層の影響がきわめて少な
くなり、ソース抵抗、ドレイン抵抗等の寄生抵抗が減少
し、高周波ノイズ特性、伝達コンダクタンスが向上する
The above method according to the present example is based on the N'' region 4 and the source electrode 7 with respect to the gate electrode 9. The drain electrode 8 is self-aligned, so the distance between the gate electrode 9 and the source electrode 7' and the distance between the gate electrode 9 and the drain electrode 8 can be shortened, and the influence of the surface depletion layer formed in the region of this distance is extremely small. Parasitic resistances such as source resistance and drain resistance are reduced, and high frequency noise characteristics and transfer conductance are improved.

以上は、イオン注入後のアニールにおいて、絶縁膜11
を渫護膜(キャップ)として利用する工程について説明
しだが、AsH1雰囲気中でAs圧ヲカケてアニールす
るキャップレスアニール法ヲ用いる場合には、第3図f
(1)において、絶縁膜11を残さないで、GaAg基
板1が露出するまでエツチングを行ない、その後、耐領
域4をイオン注入し、フォトレジスト除去後、キャップ
レスアニールをすればよい。又、絶縁膜11としてSi
3N4 。
The above describes the process for annealing the insulating film 11 after ion implantation.
We will explain the process of using the film as a protective film (cap), but when using the capless annealing method in which the As pressure is released and annealed in an AsH1 atmosphere, the process shown in Fig. 3 f
In (1), etching is performed until the GaAg substrate 1 is exposed without leaving the insulating film 11, then ions are implanted into the resistive region 4, and after removing the photoresist, capless annealing is performed. In addition, as the insulating film 11, Si
3N4.

絶縁膜14として5i02につい説明したが、絶縁膜1
1が絶縁膜14に対して選択的にエツチング可能な組合
せであればよいことは勿論である。
Although 5i02 has been described as the insulating film 14, the insulating film 1
Of course, it is only necessary that 1 be a combination in which the insulating film 14 can be selectively etched.

第4図(a) 、 (b)は従来の第1図に示した従来
の製造工程で作っだMESFET  (ゲート長1/!
、m、  ゲート幅2oμm、ゲート電極、ソース電極
間隔。
Figures 4(a) and 4(b) show MESFETs (gate length 1/!) manufactured using the conventional manufacturing process shown in Figure 1.
, m, gate width 2oμm, gate electrode, source electrode spacing.

ゲート電極、ドレイン電極間隔共に1μm)の静特性(
同図(a))と、本発明の実砲例の第3図の製造工程で
作ったMESFET  (ゲート長1μm、ゲート幅2
0μm)の静特性(同図(b))とを比較したものであ
る。活性層のN型領域4およびこの1型領域のイオン注
入条件とし、てそれぞれ加速電圧120KeV  、ド
ーズ量3 X 1o12ctn−2,加速電圧170K
eV、ドーズ量5X10  Cff   とした。2つ
のMESFET のソース抵抗Rs、伝達コンダクタン
スgm (ソース、ドレイン電圧2V、 ソース。
The static characteristics of the gate electrode and drain electrode spacing (both 1 μm) (
The MESFET (gate length 1 μm, gate width 2
0 μm) (FIG. 2(b)). The ion implantation conditions for the N-type region 4 and this 1-type region of the active layer are respectively an acceleration voltage of 120 KeV, a dose of 3 x 1o12ctn-2, and an acceleration voltage of 170K.
eV, and the dose was set to 5×10 Cff. The source resistance Rs and transfer conductance gm of the two MESFETs (source, drain voltage 2V, source.

ゲート電圧ρV)を測定すると、従来例の第4図(a)
のものはRS= 54Ω+ g ””” 、8”l)s
本発明の実砲例の第4図(b)ノものはRs=11Ω、
 gn+=2.s;esmvとなり、ソース抵抗が減少
し伝達コンダクタンスが増大した。
When the gate voltage ρV) is measured, the conventional example is shown in Fig. 4(a).
The one is RS = 54Ω + g ”””, 8”l)s
In the actual gun example of the present invention shown in FIG. 4(b), Rs=11Ω,
gn+=2. s;esmv, the source resistance decreased and the transfer conductance increased.

発明の効果 以上の説明より明らかなように、本発明の電界効果トラ
ンジスタの製造方法は、テーパーのついた絶縁膜をマス
クとして、1型イオン注入、ソース電極、ドレイン電極
をゲート電極に自己整合させているので、FETの表面
空乏層のできる領域を小さくでき、したがって表面空乏
層の影響を極めて小さくすることができ、ソース抵抗、
ドレイン抵抗の寄生抵抗のきわめて少ない電界効果トラ
ンジスタを得ることができる。
Effects of the Invention As is clear from the above explanation, the method for manufacturing a field effect transistor of the present invention involves implanting type 1 ions using a tapered insulating film as a mask, and self-aligning the source electrode and drain electrode with the gate electrode. As a result, the area where the surface depletion layer of the FET is formed can be made small, and the influence of the surface depletion layer can therefore be minimized, and the source resistance,
A field effect transistor with extremely low parasitic resistance of the drain resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(2L)〜(口は従来の電界効果トランジスタの
製造工程を示す断面図、第2図は従来の電界効果トラン
ジスタの構造を示す断面図、第3図fa1〜(j)は本
発明の一実癩例における電界効果トランジスタの製造工
程を示す断面図、第4図(a) 、 [b)はそれぞれ
従来の製造工程と本発明の製造工程で作った電界効果ト
ランジスタの静特性を示す図である。 1・・・・・・半絶縁性GaAs基板、3・・・・・・
フォトレジスト膜、4・・・・・・N+形層、5・・・
・・・N型層、7・・・・・・ソース電極、8・・・・
・・ドレイン電極、9・・・・・・ゲート金属、11・
・・・・・絶縁膜、14・・・・・・絶縁膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 @ b 第3図 第 1 図 第 2rlA 第3図 第3図 第4図 ソース ド′トLlli作り
Figures 1 (2L) to (2L) - (The opening is a sectional view showing the manufacturing process of a conventional field effect transistor, Figure 2 is a sectional view showing the structure of a conventional field effect transistor, and Figure 3 fa1 to (j) are sectional views showing the manufacturing process of a conventional field effect transistor. A cross-sectional view showing the manufacturing process of a field effect transistor in a case of leprosy, FIGS. 4(a) and 4(b) show the static characteristics of field effect transistors manufactured by the conventional manufacturing process and the manufacturing process of the present invention, respectively. It is a diagram. 1... Semi-insulating GaAs substrate, 3...
Photoresist film, 4...N+ type layer, 5...
... N-type layer, 7... Source electrode, 8...
...Drain electrode, 9...Gate metal, 11.
...Insulating film, 14...Insulating film. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 @ b Figure 3 Figure 1 Figure 2rlA Figure 3 Figure 3 Figure 4 Making source dot Llli

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性基板上に形成されたN型能動層上に、第1の絶
縁膜を形成する第1の工程と、上記第1の絶縁膜をテー
パーを持つようにエツチングする第2の工程と、上記テ
ーパーを持った第1の絶縁膜をマスクとして前記半絶縁
性基板にN型の不純物をイオン注入してイオン注入層を
形成する第3の工程と、前記イオン注入層をアニール後
、前記テーパーを持った第1の絶縁膜をマスクとして、
ソース電極、ドレイン電極を形成する第4の工程と、第
2の絶縁膜を上記テーパーを持った第1の絶縁膜をマス
クとして形成する第6の工程と、前記テーパーを持った
第1の絶縁膜を選択的にエツチングする第6の工程と、
前記第2の絶縁膜をマ
a first step of forming a first insulating film on an N-type active layer formed on a semi-insulating substrate; a second step of etching the first insulating film so as to have a taper; a third step of ion-implanting N-type impurities into the semi-insulating substrate using the tapered first insulating film as a mask to form an ion-implanted layer; and after annealing the ion-implanted layer, the tapered Using the first insulating film with as a mask,
a fourth step of forming a source electrode and a drain electrode; a sixth step of forming a second insulating film using the tapered first insulating film as a mask; and a sixth step of forming a second insulating film using the tapered first insulating film as a mask. a sixth step of selectively etching the film;
The second insulating film is
JP22431982A 1982-12-20 1982-12-20 Manufacture of field effect transistor Pending JPS59113671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22431982A JPS59113671A (en) 1982-12-20 1982-12-20 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22431982A JPS59113671A (en) 1982-12-20 1982-12-20 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS59113671A true JPS59113671A (en) 1984-06-30

Family

ID=16811883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22431982A Pending JPS59113671A (en) 1982-12-20 1982-12-20 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS59113671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256174A (en) * 1988-04-06 1989-10-12 Sumitomo Electric Ind Ltd Formation of gate electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135679A (en) * 1982-02-08 1983-08-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field effect transistor
JPS58135678A (en) * 1982-02-08 1983-08-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135679A (en) * 1982-02-08 1983-08-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field effect transistor
JPS58135678A (en) * 1982-02-08 1983-08-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256174A (en) * 1988-04-06 1989-10-12 Sumitomo Electric Ind Ltd Formation of gate electrode

Similar Documents

Publication Publication Date Title
US4670090A (en) Method for producing a field effect transistor
JPH02253632A (en) Manufacture of field effect transistor
JPS63263770A (en) Gaas mesfet and manufacture of the same
JPH02148738A (en) Manufacture of field effect transistor
JPS62136883A (en) Manufacture of self-aligning field effect transistor
JP2901905B2 (en) Method of manufacturing field effect transistor having self-aligned LDD structure with T-type gate
JPS59113671A (en) Manufacture of field effect transistor
JPH07273129A (en) Schottky gate type field effect transistor and its fabrication
JPS60144980A (en) Semiconductor device
JP3139208B2 (en) Method for manufacturing field effect transistor
JPS6057980A (en) Manufacture of semiconductor device
JPS5893290A (en) Manufacture of schottky barrier field effect transistor
JPH06232168A (en) Field effect transistor and its manufacture
JPH028454B2 (en)
JP3035969B2 (en) Method for manufacturing compound semiconductor device
JPS6272175A (en) Manufacture of semiconductor device
JPS616870A (en) Manufacture of field-effect transistor
JPS59161877A (en) Manufacture of compound semiconductor device
JPS6329420B2 (en)
JPS63142872A (en) Manufacture of self-alignment type field-effect transistor
JPH0434824B2 (en)
JPS6261370A (en) Gaas field effect semiconductor device
JPS59195874A (en) Manufacture of field-effect transistor
JPH01161873A (en) Manufacture of semiconductor device
JPH0439772B2 (en)