JPH02291120A - Manufacture of gaas field-effect transistor - Google Patents

Manufacture of gaas field-effect transistor

Info

Publication number
JPH02291120A
JPH02291120A JP11151489A JP11151489A JPH02291120A JP H02291120 A JPH02291120 A JP H02291120A JP 11151489 A JP11151489 A JP 11151489A JP 11151489 A JP11151489 A JP 11151489A JP H02291120 A JPH02291120 A JP H02291120A
Authority
JP
Japan
Prior art keywords
layer
ion
implanted
region
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11151489A
Other languages
Japanese (ja)
Inventor
Tsutomu Tsuji
辻 力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11151489A priority Critical patent/JPH02291120A/en
Publication of JPH02291120A publication Critical patent/JPH02291120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce a contact resistance of a GaAs field-effect transistor in which an N<+> layer has been formed and to increase a mutual conductance by a method wherein, after ions of a group VI element have been implanted, a reactive ion etching treatment of the surface of an ion-implanted region is executed. CONSTITUTION:Si<+> ions 21 are implanted selectively into one surface of a semi- insulating GaAs crystal substrate 10; a first ion-implanted region 51 is formed. Then, a W5Si3 film 31 is applied to a gate electrode formation region of the first ion-implanted region; an SiO2 film 41 is applied selectively to its side faces. Then, S ions 23 are implanted selectively; a second ion-implanted region 52 is formed. Then, a reactive ion etching operation 24 of the second ion-implanted region is executed; a damage region 25 is formed. Lastly, an SiO2 film 42 is applied; it is heat-treated at 800 to 830 deg.C; an n-type active layer 13 and an N<+> layer 14 are formed; a source electrode 32 and a drain electrode 33 are formed. At the N<+> layer which has been manufactured by this method, an electron concentration is distributed highest at a crystal surface; the surface concentration at this time becomes about five times as high as that according to a conventional manufacturing method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高電子濃度のN+層を有する電子装置の製法、
特に高電子濃度,低抵抗のオーミック接触N+層を有す
るG a A sの電界効果トランジスタの製法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an electronic device having an N+ layer with high electron concentration;
In particular, the present invention relates to a method for manufacturing a GaAs field effect transistor having an ohmic contact N+ layer with high electron concentration and low resistance.

〔従来の技術〕[Conventional technology]

従来、この種のG a A s電界効果トランジスタは
、第3図(a)〜(e)に示すように比抵抗10’Ωc
m以上の半絶縁性G a A s結晶基板10の表面に
S1+のイオン注入21によりSi濃度が1017cm
−3第の第一のイオン注入層51を選択的に形成し、こ
の第一のイオン注入層51の表面のゲート電極形成領域
にたとえばWssi3のショッ1・キー金属層31を形
成し、さらにこのショットキー金属層31の側壁に幅0
. 2 μmのSi02膜41を被着したのち、ショッ
トキー金属層31とSin2膜41を注入マスクとして
高ドースのSi+を露出している第2のイオン注入層5
1を含む半絶縁性G a A s結晶基板10の表面に
イオン注入22をを し、さらにSiO2膜42で全面の被覆したのち800
℃20分間の熱処理を加えて活性層13と高電子濃度の
オーミック接触用のN+層12を形成し、次にゲートた
る前記のショットキー金属層31をはさむ一方の側のN
+層12上にAu系のソース電極32を、他方の側にド
レイン電極33を形成して製造されていた。
Conventionally, this type of GaAs field effect transistor has a resistivity of 10'Ωc as shown in FIGS. 3(a) to 3(e).
The Si concentration is 1017 cm by S1+ ion implantation 21 on the surface of the semi-insulating GaAs crystal substrate 10 with a diameter of 10 cm or more.
-3 A first ion implantation layer 51 is selectively formed, a Schottky metal layer 31 of Wssi3, for example, is formed in the gate electrode formation region on the surface of the first ion implantation layer 51, and further this The sidewall of the Schottky metal layer 31 has a width of 0.
.. After depositing a 2 μm Si02 film 41, a second ion-implanted layer 5 is formed which exposes a high dose of Si+ using the Schottky metal layer 31 and the Sin2 film 41 as an implantation mask.
Ion implantation 22 is performed on the surface of the semi-insulating GaAs crystal substrate 10 containing 1, and the entire surface is further covered with a SiO2 film 42.
C. for 20 minutes to form an N+ layer 12 for ohmic contact with the active layer 13 and a high electron concentration.
It was manufactured by forming an Au-based source electrode 32 on the + layer 12 and forming a drain electrode 33 on the other side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のG a A s電界効果トランジスタの
製法は、Si+のイオン注入でN+層を形成しているの
で、オーミック接触の接触抵抗が大きいと言う欠点があ
る。イオン注入したSi+の活性化には800〜830
℃の範囲の熱処理が最適であるが、得られるN+層の最
大の表面電子濃度は高さ4 X 1 0 17crrV
”で、このよりなN+層I2上に形成したソース及びド
レインのオーミック電極の接触抵抗はせいぜい0.4Ω
/ mm程度にしか低くならない。この結果、G a 
A s電界効果トランジスタで得られた相互コンダクタ
ンスg。は、ゲート長1.0μmの場合で8 0 m 
S /mm程度である。
The conventional manufacturing method of the GaAs field effect transistor described above has the disadvantage that the contact resistance of the ohmic contact is large because the N+ layer is formed by Si+ ion implantation. 800 to 830 for activation of ion-implanted Si+
Although a heat treatment in the range of °C is optimal, the maximum surface electron concentration of the resulting N+ layer is 4 x 10 17crrV in height.
”The contact resistance of the source and drain ohmic electrodes formed on this solid N+ layer I2 is at most 0.4Ω.
/ mm. As a result, G a
A s transconductance g obtained in a field effect transistor. is 80 m when the gate length is 1.0 μm.
It is about S/mm.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のG a A s電界効果トランジスタの製法は
、N形活性層形成の為のSi元素を用いた第一のイオン
注入工程と、N+層形成の為のS,Se,Teの六族元
素の第二のイオン注入工程と、この第二のイオン注入工
程の後に選択的にリアクティブイオンエッチングをおこ
なう工程と、さらに800℃〜830℃の熱処理をおこ
なう工程とを有している。
The manufacturing method of the GaAs field effect transistor of the present invention includes a first ion implantation step using a Si element to form an N-type active layer, and a step of implanting Group 6 elements of S, Se, and Te to form an N+ layer. The method includes a second ion implantation step, a step of selectively performing reactive ion etching after the second ion implantation step, and a step of further performing heat treatment at 800° C. to 830° C.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(f)は本発明の実施例の縦断面図であ
る。同図(a)に示した様に半絶縁性G a A s結
晶基板10の一表面に加速電圧100keV,ドース.
t3 X 1 0 ”cm−2で81+を選択的にイオ
ン注入21し、第一のイオン注入領域51を形成する。
FIGS. 1(a) to 1(f) are longitudinal sectional views of an embodiment of the present invention. As shown in FIG. 3A, one surface of the semi-insulating GaAs crystal substrate 10 is exposed to an accelerating voltage of 100 keV and a dose of 100 keV.
A first ion implantation region 51 is formed by selectively implanting 81+ ions at t3×10”cm−2.

次に第一のイオン注入領域のゲート電極形成領域にショ
ットキー金属たるW5S 1 3膜3lとその側面にS
iO2膜41を選択的に被着した様子を同図(b)に示
す。同図(c)では加速電圧5okeV,  ドース2
.5 X 1 0 ”cm−2でSを選択的にイオン注
入23し、第二のイオン注入領域52を形成する。この
ときW5Si3膜34やsio2膜41の厚さはSのイ
オン注入の際にSがWsSi3膜やSiO2膜直下まで
至らないような値(約3000人)が必要である。次に
リアクティブイオンエッチング24をガス圧0. 2 
P a ,印加電力100Wで第二のイオン注入領域に
対して5分問おこなう。
Next, in the gate electrode formation region of the first ion implantation region, there is a W5S13 film 3l, which is a Schottky metal, and an S
The state in which the iO2 film 41 is selectively deposited is shown in FIG. 2(b). In the same figure (c), the acceleration voltage is 5okeV, the dose is 2
.. A second ion implantation region 52 is formed by selectively implanting S ions 23 at 5×10” cm −2 .At this time, the thickness of the W5Si3 film 34 and the SIO2 film 41 is set to the same value as that during the S ion implantation. A value (approximately 3000) is required so that S does not reach directly under the WsSi3 film or SiO2 film.Next, reactive ion etching 24 is performed at a gas pressure of 0.2.
P a and applied power of 100 W are applied to the second ion implantation region for 5 minutes.

この結果、リアクティブイオンエッチングで発生した損
傷領域25を同図(d)に示す。最後に、同図(e)で
は厚さ3000人のSiCh膜42を被着して830℃
で20分間の熱処理をおこない、n形活性層13とN+
層14とを形成した様子を、同図(f)ではソース電極
32,ドレイン電極33を形成した様子を夫々示す。
As a result, a damaged region 25 caused by the reactive ion etching is shown in FIG. 2(d). Finally, in the same figure (e), a SiCh film 42 with a thickness of 3000 was deposited and heated to 830°C.
Heat treatment is performed for 20 minutes to form the n-type active layer 13 and N+
FIG. 3(f) shows the formation of the layer 14, and the formation of the source electrode 32 and drain electrode 33, respectively.

上述した実施例で得られたN4層のホール係数測定によ
る電子濃度分布101をSi+を用いて形成した従来の
N+層の電子濃度分布103と比較して第2図(a)に
示す。本発明の製法になるGaAs電界効果トランジス
タのN+層は結晶表面で電子濃度が最も高い分布をして
おり、このときの表面濃度は1.8 X 1 0 Ia
cm−3であった。この表面濃度は従来製法の約5倍で
、しかもSj4のイオン注入層では得られない程の高濃
度である。
FIG. 2(a) shows a comparison of an electron concentration distribution 101 of the N4 layer obtained in the above-mentioned example by measuring the Hall coefficient with an electron concentration distribution 103 of a conventional N+ layer formed using Si+. The N+ layer of the GaAs field effect transistor manufactured by the method of the present invention has the highest electron concentration distribution at the crystal surface, and the surface concentration at this time is 1.8 X 10 Ia.
cm-3. This surface concentration is about five times that of the conventional manufacturing method, and is a high concentration that cannot be obtained with the Sj4 ion implantation layer.

接触抵抗としてはO、09Ω/ mmを得た。この様な
G a A s電界効果トランジスタのg.nはゲート
長1,0μmで1. 1 0 m S /mmと増大さ
せることかできた。
The contact resistance was O, 09Ω/mm. g. of such a GaAs field effect transistor. n is 1.0 with a gate length of 1.0 μm. It was possible to increase it to 10 mS/mm.

次に本発明の他の実施例を本発明の一実施例と同様に第
1図を用いて説明する。まず、半絶縁性G a A s
結晶基板10の一表面に第一のイオン注入領域51を形
成する(同図(a))。また、w5Si3膜31とその
側面にSiCh膜41を選択的に被着する(同図(b)
)。次に、加速電圧100key,ドース量5. 5 
X 1 0 13cm−2でSeを選択的にイオン注入
23し、第二のイオン注入領域52を形成する様子を同
図(c)に示す。さらにリアクティブイオンエッチング
34を第一の実施例と同様におこない損傷領域25を形
成する(同図(d))。最後に830℃20分間の熱処
理をおこない、n形活性層13とN+14とを形成する
(同図(e))。
Next, another embodiment of the present invention will be described using FIG. 1 in the same manner as the embodiment of the present invention. First, semi-insulating Ga As
A first ion implantation region 51 is formed on one surface of the crystal substrate 10 (FIG. 2(a)). In addition, a SiCh film 41 is selectively deposited on the w5Si3 film 31 and its side surface (see figure (b)).
). Next, an acceleration voltage of 100 keys and a dose of 5. 5
FIG. 2C shows how Se is selectively implanted 23 at X 10 13 cm-2 to form a second ion implantation region 52. Furthermore, reactive ion etching 34 is performed in the same manner as in the first embodiment to form a damaged region 25 (FIG. 4(d)). Finally, a heat treatment is performed at 830° C. for 20 minutes to form an n-type active layer 13 and N+14 (FIG. 4(e)).

上述した実施例で得られたN+層の電子濃度分布102
をS]+を用いて形成した従来のN+層の電子濃度分布
103と比較して第2図(b)に示す。本発明の製法に
なるG a A s電界効果トランジスタのN+層は表
面濃度が9 X 1 0”cm ’であった。この表面
濃度は従来製法によるものに比較して25倍に増加した
。このときの接触抵抗は0.03Ω/ mmを得ること
ができた。この様なGaAs電界効果トランジスタのg
,,,はゲート長]0μmで1 2 5 m S /m
mであった。このようにSeを用いるとより高電子濃度
の分布とより小さな接触抵抗、及び高いgmの素子を得
ることができる。
Electron concentration distribution 102 of the N+ layer obtained in the above example
A comparison of the electron concentration distribution 103 of a conventional N+ layer formed using S]+ is shown in FIG. 2(b). The N+ layer of the GaAs field effect transistor produced by the method of the present invention had a surface concentration of 9 x 10"cm'. This surface concentration was increased 25 times compared to that produced by the conventional method. We were able to obtain a contact resistance of 0.03 Ω/mm.
,,, is the gate length] 125 mS/m at 0 μm
It was m. By using Se in this way, it is possible to obtain a device with a higher electron concentration distribution, lower contact resistance, and higher gm.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、六族元素のイオン注入
後にイオン注入領域表面にリアクティブイオンエッチン
グ処理を施すことによりイオン注入領域の表面濃度を5
〜25倍に増大させることができ、このようなN+層を
形成したGaAs電界効果トランジスタの接触抵抗を低
減でき、したがって相互コンダクタンスg.nを従来の
1.6〜2.0倍に増大できる効果がある。
As explained above, the present invention reduces the surface concentration of the ion implantation region to 5 by performing reactive ion etching treatment on the surface of the ion implantation region after ion implantation of Group 6 elements.
The contact resistance of GaAs field effect transistors formed with such an N+ layer can be increased by a factor of ~25, thus reducing the transconductance g. This has the effect of increasing n to 1.6 to 2.0 times the conventional value.

このような効果をもたらす六族元素のイオン注入とりア
クティブエッチング処理による影響が何によるものかは
充分にはわからないが、四族のSi元素では表面濃度が
増大するような本発明の効果を得ることはできないこと
、及びリアクティブエッチング処理をおこなうと効果が
大きいことから、G a A s結晶のAsの格子点に
入ってドナーになり易い六族のS,Se,Teはりアク
ティブイオンエッチング処理で生じるAsのGaAs結
晶表面からの離脱で形成されたAs空孔に入り易くなり
、その活性化が促進されるものと考えている。
Although it is not fully understood what is the effect of the ion implantation and active etching treatment of Group 6 elements that bring about this effect, it is possible to obtain the effect of the present invention in which the surface concentration increases for Group 4 Si elements. Because it is impossible to do this, and reactive etching has a great effect, the active ion etching process removes S, Se, and Te, which are members of group VI and tend to enter the lattice points of As in GaAs crystals and become donors. It is believed that As easily enters As vacancies formed by detachment from the GaAs crystal surface, and its activation is promoted.

従来からN+層の形成に六族元素のS,Se,Teのイ
オン注入がおこなわれているが、これら六族元素の活性
化にはSの場合で850〜900℃、Se,Teの場合
で900〜930℃の高温熱処理が不可欠であった。し
かしこの様な高温ではこれらの不純物の熱拡散も大きく
なるので微細な素子構造を得るには問題であった。しか
し本発明によればSやSeの活性化に必要な熱処理温度
により低いようなSiの活性化温度と同じ800〜83
0℃の温度範囲の熱処理でも、上述したような従来の熱
処理温度の場合と同じ程度の活性化率を有するN+層が
得られ、しかも低温処理の為に熱拡散が抑制できると云
う効果もある。
Conventionally, ion implantation of Group 6 elements S, Se, and Te has been carried out to form the N+ layer, but activation of these Group 6 elements requires 850 to 900°C for S and 850 to 900°C for Se and Te. High temperature heat treatment at 900-930°C was essential. However, at such high temperatures, the thermal diffusion of these impurities becomes large, which poses a problem in obtaining a fine device structure. However, according to the present invention, the temperature is 800 to 83, which is the same as the activation temperature of Si, which is lower due to the heat treatment temperature required for activation of S and Se.
Even with heat treatment in the temperature range of 0°C, an N+ layer with an activation rate comparable to that of the conventional heat treatment temperature described above can be obtained, and the low temperature treatment also has the effect of suppressing thermal diffusion. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の各実施例を説明する為
の、G a A s結晶ウェハーの縦断面図、第2図は
本発明の効果を説明するための図、第3図(a)〜(e
)は従来の製法を説明するための縦断面図である。 10・・・・・・半絶縁性G a A s結晶基板、1
2,14・・・・・・N+層、13・・・・・・活性層
、21,22・・・・・・s1+のイオン注入、23・
・・・・・S+又はSe+のイオン注入、24・・・・
・・リアクティブイオンエッチング、25・・・・・ダ
メージ層、31・・・・・W5Si3膜、32・・・・
ソース電極、33・・・・・・ドレイン電極、41.4
2・旧・・S102膜、51・・・・・・第一のイオン
注入層、52・・・・・・第二のイオン注入層、101
・旧・2.5X1013S +/ cntの分布、10
2−−5.5X1013Se/crllの分布、103
・・・・・・2.5×1o13sj+/c司の分布。 代理人 弁理士  内 原   晋 l9 1/)  j ヲ畏1ゴ5,ttη“
1(a) to (f) are longitudinal sectional views of a GaAs crystal wafer for explaining each embodiment of the present invention, FIG. 2 is a diagram for explaining the effects of the present invention, and FIG. Figure 3 (a) to (e)
) is a longitudinal sectional view for explaining a conventional manufacturing method. 10... Semi-insulating GaAs crystal substrate, 1
2, 14...N+ layer, 13...active layer, 21, 22...s1+ ion implantation, 23.
...S+ or Se+ ion implantation, 24...
... Reactive ion etching, 25 ... Damage layer, 31 ... W5Si3 film, 32 ...
Source electrode, 33...Drain electrode, 41.4
2. Old... S102 film, 51... First ion implantation layer, 52... Second ion implantation layer, 101
・Old・2.5X1013S +/cnt distribution, 10
2--Distribution of 5.5X1013Se/crll, 103
...Distribution of 2.5×1o13sj+/c Tsukasa. Agent Patent Attorney Susumu Uchihara 1/)

Claims (1)

【特許請求の範囲】[Claims] N形活性層形成の為のSi元素を用いた第一のイオン注
入工程と、N^+層形成の為の六族元素を用いた第二の
イオン注入工程と、前記第二のイオン注入工程の後のリ
アクティブエッチンダ工程と、さらに800℃〜830
℃の熱処理をおこなう工程とを含んでなることを特徴と
するGaAs電界効果トランジスタの製法。
A first ion implantation step using a Si element to form an N-type active layer, a second ion implantation step using a group 6 element to form an N^+ layer, and the second ion implantation step Reactive etching process after 800℃~830℃
A method for manufacturing a GaAs field effect transistor, comprising the step of performing heat treatment at .degree.
JP11151489A 1989-04-28 1989-04-28 Manufacture of gaas field-effect transistor Pending JPH02291120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11151489A JPH02291120A (en) 1989-04-28 1989-04-28 Manufacture of gaas field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11151489A JPH02291120A (en) 1989-04-28 1989-04-28 Manufacture of gaas field-effect transistor

Publications (1)

Publication Number Publication Date
JPH02291120A true JPH02291120A (en) 1990-11-30

Family

ID=14563244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11151489A Pending JPH02291120A (en) 1989-04-28 1989-04-28 Manufacture of gaas field-effect transistor

Country Status (1)

Country Link
JP (1) JPH02291120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585289A (en) * 1992-10-09 1996-12-17 Mitsubishi Denki Kabushiki Kaisha Method of producing metal semiconductor field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585289A (en) * 1992-10-09 1996-12-17 Mitsubishi Denki Kabushiki Kaisha Method of producing metal semiconductor field effect transistor

Similar Documents

Publication Publication Date Title
JPH02291120A (en) Manufacture of gaas field-effect transistor
JP3173114B2 (en) Thin film transistor
JP4104891B2 (en) Manufacturing method of semiconductor device
JPH05175232A (en) Thin film transistor and its manufacture
JPH03157941A (en) Manufacture of mis type semiconductor device
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
JPH01108772A (en) Manufacture of bipolar transistor
JPS63261879A (en) Manufacture of semiconductor device
JPS5826177B2 (en) Manufacturing method of semiconductor device
JPS62250673A (en) Manufacture of semiconductor device
JPS6336579A (en) Schottky-gate field effect transistor
JPH0247853B2 (en)
JPS61220472A (en) Manufacture of semiconductor device
JPS63124571A (en) Manufacture of semiconductor device
JPH0387034A (en) Manufacture of semiconductor device
JPS6085561A (en) Manufacture of semiconductor device
JPS5891630A (en) Manufacture of semiconductor device
JPH03175680A (en) Manufacture of semiconductor device
JPH02148851A (en) Manufacture of semiconductor device
JPH01132154A (en) Manufacture of complementary mos semiconductor device
JPS63179579A (en) Manufacture of compound semiconductor device
JPS6187378A (en) Manufacture of compound semiconductor device
JPS60126870A (en) Manufacture of field-effect transistor
JPS6265465A (en) Manufacture of insulated-gate type semiconductor device
JPS63185020A (en) Manufacture of compound semiconductor device