JPS60150677A - Integrated circuit - Google Patents

Integrated circuit

Info

Publication number
JPS60150677A
JPS60150677A JP778984A JP778984A JPS60150677A JP S60150677 A JPS60150677 A JP S60150677A JP 778984 A JP778984 A JP 778984A JP 778984 A JP778984 A JP 778984A JP S60150677 A JPS60150677 A JP S60150677A
Authority
JP
Japan
Prior art keywords
integrated circuit
implanted
ions
silicon nitride
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP778984A
Other languages
Japanese (ja)
Inventor
Kenichi Kikuchi
健一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP778984A priority Critical patent/JPS60150677A/en
Priority to CA000471025A priority patent/CA1224885A/en
Priority to EP85300214A priority patent/EP0149541A3/en
Publication of JPS60150677A publication Critical patent/JPS60150677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Abstract

PURPOSE:To prepare an integrated circuit containing a differential amplifying section, threshold voltage thereof hardly disperses, easily by using a field-effect transistor, in which the ions of an N type impurity are implanted to a neutral impurity GaAs semi-insulating semiconductor substrate and activated through heat treatment at a high temperature to form an operating layer, as a constitutional element. CONSTITUTION:The ions of <28>Si as an N type impurity are implanted to a surface section 11 in a GaAs semi-insulating semiconductor substrate 10 containing In as a neutral impurity. A striped pattern 12 coating the position of a gate electrode is formed, and the ions of <28>Si are implanted to sections 13, 14 while using the pattern 12 as a mask. The resist mask 12 is removed, an silicon nitride film is deposited on a crystal surface, and an ion implanted layer is activated through heat treatment in an N2 atmosphere while employing the silicon nitride film as a protective film. The silicon nitride film is removed, and a source electrode 16, a drain electrode 17 and the gate electrode 18 are shaped. An integrated circuit using a differential amplifying section constituted by an FET prepared in this manner as an element as a fundamental circuit is manufactured.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はGaAs を半導体結晶として用いた電界効果
トランジスタを構成素子とする集積回路の特性の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to improvements in the characteristics of integrated circuits whose constituent elements are field effect transistors using GaAs as a semiconductor crystal.

〔背景技術〕[Background technology]

集積回路の動作速度を向上することは工業上きわめて重
要である。その有力な手段として半導体結晶に電子移動
度がSt の5〜6倍大きいGaAsを用いる研究が広
く行われている。その構成素子としては接合型電界効果
トランジスタまたはショットキゲート型電界効果トラン
ジスタのいずれかが通常用いられる。
Increasing the operating speed of integrated circuits is of great industrial importance. As a promising means for achieving this goal, research is being widely conducted using GaAs, which has an electron mobility 5 to 6 times higher than that of St, as a semiconductor crystal. As its constituent elements, either a junction field effect transistor or a Schottky gate field effect transistor is usually used.

より一般的に用いられているショットキゲート型電界効
果トランジスタについて、その断面構造を第1図および
第2図に示す。ここで、1はGaAs半絶縁性基板結晶
、2.20.21.22はn型動作層、3はゲート電極
、4はソース電極、5はドレイン電極である。
The cross-sectional structure of a more commonly used Schottky gate field effect transistor is shown in FIGS. 1 and 2. Here, 1 is a GaAs semi-insulating substrate crystal, 2, 20, 21, and 22 are n-type active layers, 3 is a gate electrode, 4 is a source electrode, and 5 is a drain electrode.

第1図は動作層2が平坦な溝造例、第2図は直列抵抗を
低減するために動作層の1部20,22をゲート型)、
tA3の真下の動作層21よりも厚さを厚くまたは不純
物濃度をより大きくした例である。
Fig. 1 shows an example of groove formation in which the active layer 2 is flat, and Fig. 2 shows an example in which a part of the active layer 20, 22 is gated to reduce series resistance.
This is an example in which the thickness is thicker or the impurity concentration is higher than that of the active layer 21 directly below tA3.

このような電界効果トランジスタの基本的な特性量の一
つは閾値電圧vthであり、次の第1式で与えられる。
One of the basic characteristic quantities of such a field effect transistor is the threshold voltage vth, which is given by the following first equation.

N vth = vb −一α2(1) 2ε ここで、Vb はビルトイン電圧、εは半導体結晶の誘
電率、qは電荷宏量、 N 、 nはそれぞれゲート電
極真下部分の動作層の厚さとその電子濃度である。電界
効果トランジスタを次数個同−チツブに形成した集積回
路においては、このvthがチップ上のすべてのトラン
ジスタについて、ある一定の許容値以内の値であること
が動作するために必要である。この許容値は回路方式、
集積度で異なるが、特に差動増幅回路の対になるトラン
ジスタ間では、きわめて良く特性が一致していることが
必要で、vthの差異は数mV 以内であることが要求
される。
N vth = vb - -α2(1) 2ε Here, Vb is the built-in voltage, ε is the dielectric constant of the semiconductor crystal, q is the amount of charge, N and n are the thickness of the active layer directly below the gate electrode and its electrons, respectively. It is concentration. In an integrated circuit in which several orders of field effect transistors are formed on the same chip, it is necessary for all transistors on the chip to have a value of vth within a certain tolerance value in order to operate. This tolerance value depends on the circuit system,
Although they differ depending on the degree of integration, it is necessary that the characteristics match extremely well, especially between transistors forming a pair of differential amplifier circuits, and the difference in vth is required to be within several mV.

従来は第1図あるいは第2図の1の半絶縁性GaAs 
結晶基板として深い準位を形成するクロムまたは酸素あ
るいはクロムと酸素を両者とも不純物として添加した結
晶、あるいは不純物呑七千国i′ を添加せず引上げ法 にて成長した結晶を用い、この結晶にn型不純物例えば
Si”をイオン注入した後に800〜850°Cの高温
中にて熱処理を行い活性化して2.20.21.22の
動作層を形成していたが、このような従来の方法では閾
値電圧vthのチップ内のばらつきが大きく標準偏差は
100mV以上となるのが通常であり、そのため、Ga
As 結晶を用いて集積回路を作成することはきわめて
困難であった。特にvthの特性ばらつきが小さいこと
を要求される差動増幅器の作成は困ガ[であった。
Conventionally, semi-insulating GaAs as shown in Fig. 1 or 2 was used.
Using chromium or oxygen to form a deep level as a crystal substrate, or a crystal to which both chromium and oxygen are added as impurities, or a crystal grown by the pulling method without adding impurities, this crystal is The active layer of 2.20.21.22 was formed by ion-implanting an n-type impurity, such as Si'', and then performing heat treatment at a high temperature of 800 to 850°C to form the active layer. In the case of Ga
It has been extremely difficult to create integrated circuits using As crystals. In particular, it has been difficult to create a differential amplifier that requires small variations in vth characteristics.

従来の方法でvthのばらつきが大きくなることの大き
な原因は転位が10000#IA/c7n2以上の高密
度で結晶中に存在し、ミクロな不純物密度の分布ひいて
はミクロな電子濃度の不均一さをもたらすためであり、
差動増幅器の対をなす二ヶのトランジスタを数10μm
以内に近接して作成しても、ミクロな電子濃度の不均一
さのために、対のトランジスタ同志のvthの差異は十
分には小さくならず、50mV以上の差異があるのが通
常であり、そのためオフ七ットを生じ、実用されるまで
には至っていなかった。
A major reason for the large variation in vth in the conventional method is that dislocations exist in the crystal at a high density of 10,000 #IA/c7n2 or more, which leads to microscopic impurity density distribution and microscopic nonuniform electron concentration. It is for the sake of
The two transistors forming a pair of differential amplifiers are several tens of μm thick.
Even if they are made close to each other, the difference in vth between paired transistors is not sufficiently small due to microscopic non-uniformity in electron concentration, and there is usually a difference of 50 mV or more. As a result, there were some off-cuts, and it was never put into practical use.

〔発明の開示〕[Disclosure of the invention]

本発明は以上に述べた困難を克服するためになされたも
のである。
The present invention has been made to overcome the above-mentioned difficulties.

以下、本発明について述べる。第1式から明らかなよう
に閾値電圧vthのばらつきを小さくするためには電子
濃度Nの均一性が充分に良好である必要がある。
The present invention will be described below. As is clear from the first equation, the uniformity of the electron concentration N needs to be sufficiently good in order to reduce the variation in the threshold voltage vth.

電子濃度Nは次の第2式のようになる。The electron concentration N is expressed by the following second equation.

N = r)Nn + NDO−NA□ (2)ここで
、NDはイオン注入で添加されるn型不純物の濃度、η
は活性化率、Nn□は結晶中に最初から存在するn型準
位および高温熱処理等のプロセス中で発生する欠陥等に
よるn型準位の総和、NA。
N = r) Nn + NDO-NA□ (2) Here, ND is the concentration of n-type impurity added by ion implantation, η
is the activation rate, and Nn□ is the sum of the n-type level existing in the crystal from the beginning and the n-type level due to defects generated during processes such as high-temperature heat treatment, and NA.

は結晶中に最初から存在するP型準位およびプロセス中
で発生するP型準位の総和である。従ってNのばらつき
を小さくシ、故に閾値vthのばらっきを少なくするた
めには結晶中にもともと含まれているn型、P型の準位
密度を小さくシ、かつデバイス作成プロセス中に発生す
るn型P型の準位密度を小さくシ、またこれらの密度を
均一とする必要がある。本発明はかかる観点からなされ
たものであり、Inを適量GaAs 結晶中に添加する
ことにより、結晶の転位等の欠陥密度を低減し、もとも
と結晶中に含まれるn型、P型の準位密度を小さくする
とともにデバイス作成プロセス特に高温熱処理によって
発生する欠陥を抑制し、高温熱処理中の欠陥によってエ
ンハンスメントされる各種不純物の異常拡散を抑圧し、
かかるが故に電子濃度の均一化を図り、閾値vthの均
一化を達成せんとするものである。
is the sum of the P-type level existing in the crystal from the beginning and the P-type level generated during the process. Therefore, in order to reduce the variation in N, and therefore the variation in threshold value vth, it is necessary to reduce the density of n-type and p-type levels originally contained in the crystal, and to reduce the density of the n-type and p-type levels that are generated during the device fabrication process. It is necessary to make the n-type and p-type level densities small and to make these densities uniform. The present invention has been made from this viewpoint, and by adding an appropriate amount of In to a GaAs crystal, the density of defects such as dislocations in the crystal can be reduced, and the density of n-type and p-type levels originally contained in the crystal can be reduced. It also suppresses defects that occur during the device fabrication process, especially high-temperature heat treatment, and suppresses abnormal diffusion of various impurities that are enhanced by defects during high-temperature heat treatment.
Therefore, an attempt is made to make the electron concentration uniform and to make the threshold value vth uniform.

以下に本発明による実施例につき説明する。Examples according to the present invention will be described below.

第3図(a)〜第8図(d)は本実施例による集積回路
の電界効果トランジスタ部分の各工程における断面構造
を示したものである。本発明は特定のトランジスタ構造
に限定されることなく広く適用できるが、ここでは具体
的−例を示す。第3図(、)の10に用いた基板はLE
C法(液体封止式チョクラルスキー法)により成長した
結晶である。高圧引上炉内のpBNルツボに単体Ga 
* I n w As を七ットし、高温、高圧下でG
aAs 多結晶を合成後、In を含むにaAs 融液
より、In を含む半絶縁性GaAs 単結晶を引き上
げる。結晶径は2″〜3″〆で、その先端から後端に向
けて、約500μmの厚さに切り出し後、約50μmの
荒研磨及び約30μmの仕上げ研摩を施したウェハーで
ある。用いたウェハーは3〜6 X IQ19an−8
のIn を含む半絶縁性GaAs ウェハーである。こ
の半絶縁性結晶lOに28 Stイオンを50 KeV
にて11の表面部分に3.0X1012 ドーズ/ C
m” イオン注入を行った。
FIGS. 3(a) to 8(d) show the cross-sectional structure of the field effect transistor portion of the integrated circuit according to this embodiment at each step. Although the present invention is widely applicable without being limited to a particular transistor structure, a specific example will be shown here. The board used for 10 in Figure 3(,) is LE
This is a crystal grown by method C (liquid-filled Czochralski method). Single Ga is placed in a pBN crucible in a high-pressure pulling furnace.
*I n w As and G at high temperature and high pressure.
After synthesizing the aAs polycrystal, the semi-insulating GaAs single crystal containing In is pulled from the In-containing aAs melt. The crystal diameter is 2" to 3", and the wafer is cut to a thickness of about 500 μm from the tip to the back, and then roughly polished to about 50 μm and finished polished to about 30 μm. The wafer used was 3-6×IQ19an-8
It is a semi-insulating GaAs wafer containing In. 28 St ions were applied to this semi-insulating crystal lO at 50 KeV.
3.0X1012 dose/C on the surface area of 11 at
m” ion implantation was performed.

次に第3図(b)に示すようにフォトレジストを1μm
の厚さに結晶表面上に塗布し、通常の露光現イ象を行う
ことにより、ゲート電極位置をおおうストライプ状パタ
ーン12を形成した。このパターン12をマスクとして
1111Ssイオンを180 KeVにて13.14の
部分にI X 1013 ドーズl閉2 イオン注入を
行った。この13,14の部分のみにさらにイオン注入
を加えたのはゲート・ソース間およびゲート・ドレイン
間の直列抵抗を低減するために行なったもので、この1
3.14部分へのイオン注入増加を行わないと、13.
14の結晶表面の高密度の表面準位による空乏効果によ
って、13.14部分が高抵抗となり、充分にトランジ
スタとして機能しない。
Next, as shown in Figure 3(b), apply a photoresist to a thickness of 1 μm.
A striped pattern 12 covering the gate electrode position was formed by coating the crystal surface to a thickness of 100 mL and performing a normal exposure phenomenon. Using this pattern 12 as a mask, 1111Ss ions were implanted into a portion of 13.14 at 180 KeV at a dose of Ix1013. Further ion implantation was added only to these portions 13 and 14 in order to reduce the series resistance between the gate and source and between the gate and drain.
If ion implantation is not increased in the 3.14 portion, 13.
Due to the depletion effect due to the high density of surface states on the crystal surface of 14, the 13 and 14 portions have a high resistance and do not function satisfactorily as a transistor.

次にレジストマスク12を除去した後、プラズマCVD
法にてNHsガス、5cH4ガスおよびキャリアガスと
して、Ngガスを用い、結晶表面にシリコン窒化膜を1
20OAの厚さ堆積した。このシリコン窒化膜を保護膜
として、N2雰囲気中にて800℃20分の熱処理を行
いイオン注入層の活性化を行った。その後シリコン窒化
膜を除去し、第3図(C)に示すとと(16のソース電
極、17のドレイン電極をAuGe/Ni にてリフト
オフ法によって形成し、N2雰囲気中にて430C5分
間の合金処理を行った。次にリフトオフ法にて400O
AのTi、 500AのMo3000AのAuからなる
3層金属T i /Mo/Au より成るゲート電極を
第3図(d)のごとく形成した。このようにして作成し
たショットキゲート型電界効果トランジスタの閾値vt
hは一〇、5vであり、その標準偏差は2インチウェー
ッ1全体で20mV であり、きわめてばらつきの小さ
いものが得られた。
Next, after removing the resist mask 12, plasma CVD
Using NHs gas, 5cH4 gas, and Ng gas as a carrier gas, a silicon nitride film was deposited on the crystal surface using the method.
A thickness of 20 OA was deposited. Using this silicon nitride film as a protective film, heat treatment was performed at 800° C. for 20 minutes in an N2 atmosphere to activate the ion implantation layer. Thereafter, the silicon nitride film was removed, and as shown in FIG. Next, the lift-off method was performed at 400O.
A gate electrode made of a three-layer metal Ti/Mo/Au consisting of Ti of A and Mo of 500 A and Au of 3000 A was formed as shown in FIG. 3(d). Threshold value vt of the Schottky gate field effect transistor created in this way
h was 10.5 V, and its standard deviation was 20 mV for the entire 2-inch wafer 1, with extremely small variations.

以上に述べた方法によって、第4図に示した差動増幅部
を基本回路とする集積回路を作成した。
By the method described above, an integrated circuit having the differential amplifier section shown in FIG. 4 as a basic circuit was created.

ここでQl−Qs は対をなすトランジスタでいずれも
ゲート長1.0μm1 ゲート幅50μmでトランジス
タの互いの間隔を5μmの近傍に位置するよう作成した
。このとき対のトランジスタQl、Q2のVthの差異
は、結晶中の欠陥密度が小さいため、このような近傍同
志のvthの差異は充分小さくなり、5 mV 以下と
なった。
Here, Ql-Qs are a pair of transistors, both of which have a gate length of 1.0 .mu.m and a gate width of 50 .mu.m, and are formed so that the distance between the transistors is approximately 5 .mu.m. At this time, the difference in Vth between the pair of transistors Ql and Q2 is because the defect density in the crystal is small, so the difference in Vth between adjacent transistors is sufficiently small to be 5 mV or less.

このようにvthのばらつきの小さい差動増幅部を含む
集積回路を容易に作成する技術は従来は知られておらず
、きわめて困蛾であった。本発明はGaAs を用いた
高速の差動増幅部を含む集積回路を容易に作成する技術
であり、工業上の価値の大きいものである。
Conventionally, a technique for easily producing an integrated circuit including a differential amplifier section with such small variations in vth was unknown and extremely difficult. The present invention is a technology for easily producing an integrated circuit including a high-speed differential amplifier using GaAs, and is of great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、従来のショトキゲート型電界効果
トランジスタの構造を示す図、第3図(、)(b)、(
C)及び(d)は本発明の一実施例としての集積回路の
電界効果トランジスタの構造を作るプロセスを説明する
ための図、第4図は本発明のものを用いた差動増幅部を
基本回路とする集積回路を示す図である。 1.6・・・GaAs 半絶縁性結晶基板2.20.2
1,22=n型動作層 3・・・ゲート電極 4・・・ソース電極゛ 5・・・ ドレイン電極 lO・・・GaAs 半絶縁性結晶基板11・・・Ga
As 半絶・縁性結晶基板の表面12・・・パターン・
マスク 13.14.15・・・n型動作層 16・・・ソース電極 17・・・ドレイン電極 18・・・ゲート電極 W1図 官2図 *3関(q) 7?3図(b) 2 W3図(C’)
Figures 1 and 2 are diagrams showing the structure of a conventional Schottky gate field effect transistor, and Figures 3 (,) (b), (
C) and (d) are diagrams for explaining the process of creating the structure of a field effect transistor of an integrated circuit as an embodiment of the present invention, and Figure 4 is a diagram illustrating a basic differential amplifier section using the structure of the present invention. FIG. 2 is a diagram showing an integrated circuit as a circuit. 1.6...GaAs semi-insulating crystal substrate 2.20.2
1, 22=n-type operating layer 3...Gate electrode 4...Source electrode 5...Drain electrode lO...GaAs Semi-insulating crystal substrate 11...Ga
As Semi-insulating/insulating crystal substrate surface 12...pattern...
Mask 13.14.15...N-type active layer 16...Source electrode 17...Drain electrode 18...Gate electrode W1 Figure 2 Figure *3 Seki (q) 7?3 Figure (b) 2 W3 diagram (C')

Claims (3)

【特許請求の範囲】[Claims] (1)中性不純物を含むGaAs 半絶縁性半導体基板
にn型不純物をイオン注入した後、高温熱処理を行うこ
とにより活性化して動作層を形成した電界効果トランジ
スタをその構成素子として用いた差動増幅部をその回路
内に含むことを特徴とする集積回路。
(1) GaAs containing neutral impurities After ion-implanting n-type impurities into a semi-insulating semiconductor substrate, it is activated by high-temperature heat treatment to form an active layer. An integrated circuit comprising an amplifier section within the circuit.
(2)中性不純物としてInを1011cm−8−8x
 10 ”cm−8の濃度で含むGaAs 半絶縁性半
導体基板を用いたことを特徴とする特許請求範囲第1項
記載の集積回路。
(2) In as a neutral impurity 1011cm-8-8x
The integrated circuit according to claim 1, characterized in that a semi-insulating semiconductor substrate containing GaAs at a concentration of 10"cm-8 is used.
(3)n型不純物として% S i+* S e +*
 S+等のイオンをイオン注入した後、800°C20
分間の熱処理を行うことを特徴とする特許請求範囲第1
項記載の集積回路。
(3) % S i + * S e + * as n-type impurity
After implanting ions such as S+, heat at 800°C20
Claim 1 characterized in that the heat treatment is performed for 1 minute.
Integrated circuits as described in Section.
JP778984A 1984-01-18 1984-01-18 Integrated circuit Pending JPS60150677A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP778984A JPS60150677A (en) 1984-01-18 1984-01-18 Integrated circuit
CA000471025A CA1224885A (en) 1984-01-18 1984-12-27 Integrated circuit and method for producing it
EP85300214A EP0149541A3 (en) 1984-01-18 1985-01-11 Gaas integrated circuit device and method for producing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP778984A JPS60150677A (en) 1984-01-18 1984-01-18 Integrated circuit

Publications (1)

Publication Number Publication Date
JPS60150677A true JPS60150677A (en) 1985-08-08

Family

ID=11675423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP778984A Pending JPS60150677A (en) 1984-01-18 1984-01-18 Integrated circuit

Country Status (1)

Country Link
JP (1) JPS60150677A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834980A (en) * 1981-08-25 1983-03-01 Sumitomo Electric Ind Ltd Schottky gate field effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834980A (en) * 1981-08-25 1983-03-01 Sumitomo Electric Ind Ltd Schottky gate field effect transistor

Similar Documents

Publication Publication Date Title
US4505023A (en) Method of making a planar INP insulated gate field transistor by a virtual self-aligned process
US4489480A (en) Method of manufacturing field effect transistors of GaAs by ion implantation
JPS5915388B2 (en) semiconductor equipment
JPS5833716B2 (en) Shotsutoki - Hekigata Denkai Kouka Transistor No. Seizouhouhou
JPS5851575A (en) Manufacture of semiconductor device
JPS62245627A (en) Liquid phase epitaxy
JPS60150677A (en) Integrated circuit
US3885993A (en) Method for production of p-channel field effect transistors and product resulting therefrom
JPS60150676A (en) Integrated circuit
JPS6157714B2 (en)
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
JPS59138363A (en) Semiconductor device and manufacture thereof
JPH0352238A (en) Manufacture of compound semiconductor device
JPS6332273B2 (en)
EP0149541A2 (en) GaAs integrated circuit device and method for producing it
JPS6347982A (en) Semiconductor device
JPS6159781A (en) Manufacture of semiconductor device
JPS596054B2 (en) Method for manufacturing semiconductor devices
JPS58145161A (en) Manufacture of semiconductor device
JPS60136264A (en) Manufacture of semiconductor device
JPS5843575A (en) Formation of active layer in field effect transistor
JPS6318677A (en) Iii-v compound semiconductor device
JPS59193070A (en) Manufacture of schottky gate field effect transistor
JPS6091664A (en) Manufacture of semiconductor device
JPH0449627A (en) Manufacture of compound semiconductor device