JPS60150676A - Integrated circuit - Google Patents

Integrated circuit

Info

Publication number
JPS60150676A
JPS60150676A JP778884A JP778884A JPS60150676A JP S60150676 A JPS60150676 A JP S60150676A JP 778884 A JP778884 A JP 778884A JP 778884 A JP778884 A JP 778884A JP S60150676 A JPS60150676 A JP S60150676A
Authority
JP
Japan
Prior art keywords
gaas
implanted
heat treatment
ions
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP778884A
Other languages
Japanese (ja)
Inventor
Kenichi Kikuchi
健一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP778884A priority Critical patent/JPS60150676A/en
Priority to CA000471025A priority patent/CA1224885A/en
Priority to EP85300214A priority patent/EP0149541A3/en
Publication of JPS60150676A publication Critical patent/JPS60150676A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Abstract

PURPOSE:To reduce dispersion in a chip of threshold voltage, and to prepare an integrated circuit easily by using a field-effect transistor, in which the ions of an N type impurity are implanted to a GaAs semi-insulating semiconductor substrate containing a neutral impurity and the N type impurity is activated through heat treatment at a high temperature to form an operating layer, as a constitutional element. CONSTITUTION:The ions of <28>Si as an N type impurity are implanted to a surface section 11 in a GaAs semi-insulating semiconductor substrate 10 containing In as a neutral impurity. A striped pattern 12 coating the position of a gate electrode is formed, and the ions of <28>Si are implanted to sections 13, 14 while using the pattern 12 as a mask. The resist mask 12 is removed, an silicon nitride film is deposited on a crystal surface, and an ion implanted layer is activated through heat treatment in an N2 atmosphere while employing the silicon nitride film as a protective film. The silicon nitride film is removed, and a source electrode 16, a drain electrode 17 and a gate electrode 18 are formed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はGaAs を半導体結晶として用いた電界効果
トランジスタを構成素子とする集積回路の特性の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to improvements in the characteristics of integrated circuits whose constituent elements are field effect transistors using GaAs as a semiconductor crystal.

〔背景技術〕[Background technology]

集積回路の動作速度を向上することは工業上きわめて重
要である。その有力な手段として半導体結晶に電子移動
度がSt の5〜6倍大きいGaAsを用いる研究が広
く行われている。その構成素子としては接合型電界効果
トランジスタまたはショットキゲート型電界効果トラン
ジスタのいずれかが通常用いられる。
Increasing the operating speed of integrated circuits is of great industrial importance. As a promising means for achieving this goal, research is being widely conducted using GaAs, which has an electron mobility 5 to 6 times higher than that of St, as a semiconductor crystal. As its constituent elements, either a junction field effect transistor or a Schottky gate field effect transistor is usually used.

より一般的に用いられているショットキゲート型電界効
果l・ランジスクについてその断面構造を第1図および
第2図に示す。ここで1はGaAs 半絶縁性基板結晶
、2.20.21.22はn型動作層、3はゲート電極
、4はソース電極、5はドレイン電極である。
The cross-sectional structure of the more commonly used Schottky gate field effect l-landisk is shown in FIGS. 1 and 2. Here, 1 is a GaAs semi-insulating substrate crystal, 2, 20, 21, and 22 are n-type active layers, 3 is a gate electrode, 4 is a source electrode, and 5 is a drain electrode.

第1図は動作層2が平坦な構造例、第2図は直列抵抗を
低減するために動作層の1部20,22をゲー、ト電極
8の真下の動作層21よりも厚さを厚くまたは不純物濃
度をより大きくした例である。
FIG. 1 shows an example of a structure in which the active layer 2 is flat, and FIG. 2 shows a structure in which one part 20, 22 of the active layer is gated to reduce the series resistance, and the thickness is thicker than the active layer 21 directly below the gate electrode 8. Alternatively, this is an example in which the impurity concentration is increased.

このような電界効果トランジスタの基本的な特性i!支
の一つは閾値電圧vthであり、次の第1式で与えられ
る。
The basic characteristics of such a field effect transistor i! One of the supporting factors is the threshold voltage vth, which is given by the following first equation.

N Vth = V13−−a” (1) 2ε ここでvb はビルトイン電圧、εは半導体結晶の誘電
率、qは電荷宏量、Jetはそれぞれゲート電匝頁下部
分の動作層の厚さとその電子濃度である。電界効果トラ
ンジスタを複数個同一チップに形成した集積回路にふ・
いては、このVthがデツプ上のすべてのトランジスタ
につい−C1ある一定の許容1直以内の値であることが
、動作するために必要である。この許容(直は回路方式
、集積度で異なるが、例えば直接結合方式(DCF L
 )にてl Kビットメモリを作成するにはvthの標
準偏差はおよそ30mv 以内である必要がある。
N Vth = V13--a” (1) 2ε Here, vb is the built-in voltage, ε is the dielectric constant of the semiconductor crystal, q is the amount of charge, and Jet is the thickness of the active layer at the bottom of the gate capacitor and its electrons, respectively. This is the concentration.
In order to operate, this Vth must be within a certain tolerance of -C1 for all transistors on the deep circuit. This tolerance (direct) differs depending on the circuit system and degree of integration, but for example, the direct coupling method (DCF L
), the standard deviation of vth needs to be within about 30 mv.

従来は第1図あるいは第2図の1の半絶縁性GaAs 
結晶基板として深い準位を形成するクロムまたは酸素、
あるいはクロムと酸素を両者とも不純物として添加した
結晶、あるいは不純物を添加せず引」二げ法にて成長し
た結晶を用い、この結晶にn型不純物例えばSt+をイ
オン注入した後に800〜850’Cの高温中にて熱処
理を行い活性化して2.20.21,22の動作層を形
成していたが、このような従来の方法では閾値電圧vt
hのチップ内のばらつきが大きく標準偏差はJ、oom
v以」二となるのが通常であり、そのためGaAs 結
晶を用いて集積回路を作成することはきわめて困難であ
った。
Conventionally, semi-insulating GaAs as shown in Fig. 1 or 2 was used.
Chromium or oxygen forming deep levels as a crystal substrate,
Alternatively, use a crystal to which both chromium and oxygen are added as impurities, or a crystal grown by the pull-down method without adding any impurities, and after ion-implanting an n-type impurity, such as St+, at 800-850°C. The active layers 2, 20, 21, and 22 were formed by heat treatment and activation at high temperatures, but in such conventional methods, the threshold voltage vt
There is large variation within the chip of h, and the standard deviation is J,oom
It is normal for the GaAs crystal to be less than 2, and therefore it has been extremely difficult to create integrated circuits using GaAs crystals.

〔発明の開示〕[Disclosure of the invention]

本発明は以上に述べた困難を克服するためになされたも
のである。第1式から明らかな工うに、閾値電圧vth
のばらつきを小さくするためには電子濃度Nの均一性が
充分に良好である必要がある。
The present invention has been made to overcome the above-mentioned difficulties. As is clear from the first equation, the threshold voltage vth
In order to reduce the variation in the electron concentration N, the uniformity of the electron concentration N needs to be sufficiently good.

電子濃度Nは次の第2式のようになる。The electron concentration N is expressed by the following second equation.

N=ηND+NDo−NAo(2) ここで、ND はイオン注入で添加されるn型不純物の
濃度、ηは活性化率、NDoは結晶中に最初から存在す
るn型準位および高温熱処理等のプロセス中で発生する
欠陥等によるn型準位の総和、NAOは結晶中に最初か
ら存在するP型準位およびプロセス中で発生するP型準
位の総和である。従ってNのばらつきを小さくし、故に
閾値vthのばらつきを少なくするためには結晶中にも
ともと含まれているn型、P型の準位密度を小さくシ、
かつデバイス作成プロ七ス中に発生するn型P型の準位
密度を小さくシ、またこれらの密度を均一とする必要が
ある。本発明はかかる観点からなされたものであり、I
nを適量GaAs 結晶中に添加することにより、結晶
の欠陥密度を低減し、もともと結晶中に含まれるn型、
P型の準位密度を小さくするとともにデバイス作成プロ
七ス特に高温熱処理によって発生する欠陥を抑制し、高
温熱処理中の欠陥によってエンハンスメントされる各種
不純物の異常拡散を抑圧し、かかるが故に電子濃度の均
一化を図り、閾値vthの均一化を達成せんとするもの
である。
N=ηND+NDo−NAo (2) Here, ND is the concentration of n-type impurity added by ion implantation, η is the activation rate, and NDo is the n-type level existing in the crystal from the beginning and processes such as high-temperature heat treatment. The sum of n-type levels due to defects etc. generated in the crystal, NAO, is the sum of the P-type levels existing in the crystal from the beginning and the P-type levels generated during the process. Therefore, in order to reduce the variation in N and therefore the variation in the threshold value vth, the density of the n-type and p-type levels originally contained in the crystal should be reduced.
In addition, it is necessary to reduce the n-type and p-type level densities generated during the device fabrication process, and to make these densities uniform. The present invention has been made from this point of view, and I
By adding an appropriate amount of n into the GaAs crystal, the defect density of the crystal can be reduced, and the n-type and
In addition to reducing the P-type level density, it suppresses defects that occur during device fabrication process, especially during high-temperature heat treatment, suppresses abnormal diffusion of various impurities that are enhanced by defects during high-temperature heat treatment, and therefore reduces the electron concentration. The purpose is to achieve uniformity of the threshold values vth.

以下に本発明による実施例につき説明する。Examples according to the present invention will be described below.

第8図(a)〜第3図(d)は本実施例による集積回路
の電界効果トランジスタ部分の各工程における断面構造
を示したものである。本発明は特定のトランジスタ構造
に限定されることなく広く適用できるが、ここでは具体
的−例を示す。
FIGS. 8(a) to 3(d) show the cross-sectional structure of the field effect transistor portion of the integrated circuit according to this embodiment at each step. Although the present invention is widely applicable without being limited to a particular transistor structure, a specific example will be shown here.

第3図(、)の10に用いた基板は、LEC法(液体封
止式チョクラルスキー法)により成長した結晶である。
The substrate used in 10 of FIG. 3(, ) is a crystal grown by the LEC method (liquid-filled Czochralski method).

高圧引上炉内のpBNルツボに単体Ga + I n 
+As を士ットし、高温、高圧下でGaAs 多結晶
を合成後、Inを含むGaAs 融液より、Inを含む
半絶縁性GaAs 単結晶を引き上げる。結晶径は2″
〜3″りで、その先端から後端に向けて、約500μm
の厚さに切り出し後、約50μmの荒研磨及び約30/
l mの仕上げ研摩を施したウェハーである。用いたウ
ェハーは3〜6 X 10”cfi−8のIn を含む
半絶縁性GaAs ウェハーである。
Single Ga + I n in a pBN crucible in a high-pressure pulling furnace
+As, and after synthesizing a GaAs polycrystal at high temperature and high pressure, the semi-insulating GaAs single crystal containing In is pulled from the GaAs melt containing In. Crystal diameter is 2″
~3" length, approximately 500 μm from the tip to the rear end.
After cutting to a thickness of about 50μm, rough polishing and about 30mm
This is a wafer that has undergone final polishing of 1 m. The wafers used were semi-insulating GaAs wafers containing 3-6 x 10'' cfi-8 In.

この半絶縁性結晶lOにQ 8 S 1イオンを50 
KeVにて11の表面部分に1.5x、IO+p+ ド
ーズ/cmsイオン注入を行った。次に第3図(b)に
示すようにフォトレジストを1μmの厚さに結晶表面上
に塗布し、通常の露光現像を行うことにより、ゲート電
極位置をおおうストライプ状パターン12を形成した。
50 Q 8 S 1 ions are added to this semi-insulating crystal lO.
A 1.5x IO+p+ dose/cms ion implantation was performed on the surface portion of 11 at KeV. Next, as shown in FIG. 3(b), a photoresist was applied to a thickness of 1 μm on the crystal surface, and conventional exposure and development was performed to form a striped pattern 12 covering the gate electrode position.

このパターン12をマスクとして Siイオンを180
 KeVにて13、l 4.の部分にlXl013ド一
ズ↓cm”イオン注入を行った。この13.140部分
のみにさらにイオン注入を加えたのはゲート・ソース間
およびゲート・ドレイン間の直列抵抗を低減するために
行ったもので、本発明の閾値Vthのばらつきが小さい
という特長をよりよく生かせる直接結合回路方式(DC
FL)においては、Vtbをほぼ0.1V に設定する
ため、この13.14部分へのイオン注入増加を行わな
いと、13、l 4.の結晶表面の高密度の表面準位に
よる空乏効果によって、13.14部分がきわめて高抵
抗となり充分にトランジスタとして機能しない。
Using this pattern 12 as a mask, apply 180 Si ions to
13 at KeV, l 4. 1Xl013 dos ↓cm" ion implantation was performed in the 13.140 part. Further ion implantation was performed only in this 13.140 part to reduce the series resistance between the gate and source and between the gate and drain. A direct coupling circuit method (DC
FL), since Vtb is set to approximately 0.1V, unless ion implantation is increased to this 13.14 portion, 13, l4. Due to the depletion effect due to the high density of surface states on the crystal surface, the 13.14 portion becomes extremely high in resistance and does not function satisfactorily as a transistor.

次にレジストマスク12を除去した後、プラズマCVD
法にてNH,ガス、5cH4ガスおよびキャリアガスと
してN2ガスを用い、結晶表面にシリコン窒化膜を12
ooXの厚さ堆積した。このシリコン窒化膜を保護膜と
してN2雰囲気中にて800°C20分の熱処理を行い
、イオン注入層の活性化に行った。その後シリコン窒化
膜を除去し、第3図(C)に示すごと<16のソース電
極、17のドレイン電”a k AuGe /N i 
にてリフトオフ法によって形成し、N2 雰囲気中にて
430゛c5分間の合金処理を行った。次にリフトオフ
法にて、4000AのTi、500AのMo8000A
のAu からなる3層金属Ti/Mo/Auより成るゲ
ート電極を第3図(d)のごとく形成した。
Next, after removing the resist mask 12, plasma CVD
Using NH, gas, 5cH4 gas and N2 gas as a carrier gas, a silicon nitride film was deposited on the crystal surface for 12 minutes.
A thickness of ooX was deposited. Using this silicon nitride film as a protective film, heat treatment was performed at 800° C. for 20 minutes in a N2 atmosphere to activate the ion implantation layer. After that, the silicon nitride film is removed, and as shown in FIG.
The alloy was formed by the lift-off method at 430°C for 5 minutes in a N2 atmosphere. Next, using the lift-off method, 4000A Ti, 500A Mo8000A
A gate electrode consisting of a three-layer metal Ti/Mo/Au consisting of Au was formed as shown in FIG. 3(d).

このようにして作成したショットキゲート型電界効果l
・ランジスタの閾値Vthは0.1v であり、その標
準)116差は20 mVであり、きわめてばらつきの
小さいものが得られた。このようにvthのばらつきを
小さくすることは、集積回路を作成する上で本質的に必
要とされることであり、この結果数千ゲート以上の集積
回路を容易に作成することが可能となった。
Schottky gate field effect created in this way
- The threshold value Vth of the transistor was 0.1 V, and the standard)116 difference was 20 mV, resulting in extremely small variation. Reducing the variation in vth in this way is essentially required when creating integrated circuits, and as a result, it has become possible to easily create integrated circuits with several thousand gates or more. .

このように、 vthのばらつきの小さい集積回路を容
易に作成する技術は従来は知られておらず、きわめて困
難であった。本発明はGaAs を用いた高速の高集積
度集積回路を容易に作成する技術であり、工業上の価値
の大きいものである。
As described above, a technique for easily producing an integrated circuit with small variations in vth was not known in the past and was extremely difficult. The present invention is a technology for easily producing a high-speed, highly integrated circuit using GaAs, and is of great industrial value.

【図面の簡単な説明】 第1図および第21g目よ従来のショットキゲート型電
界効果トランジスタの(11¥造を示す図、第3図(a
)、(b)、(C)及び(d)は本発明の一実施例とし
ての集積回路の電界効果トランジスタの構造を作るプロ
セスを説明するための図である。 1.6.10・・・GaAs 半絶縁性結晶基板2.2
0.21.22.13.14.15・・・n型動作層 3.18・・・ゲート電極 4・、16・・・ソース電極 5.17・・・ ドレイン電極 11・・・GaAs 半絶縁性結晶基板表面】2・・・
パターン・マスク 7?1目 大2図 芳3図(0> 1 大3図(1)) 2 7?3図(d) 5
[Brief explanation of the drawings] Figures 1 and 21g are diagrams showing the structure of a conventional Schottky gate field effect transistor (11), Figure 3 (a)
), (b), (C), and (d) are diagrams for explaining a process for making a structure of a field effect transistor of an integrated circuit as an embodiment of the present invention. 1.6.10...GaAs semi-insulating crystal substrate 2.2
0.21.22.13.14.15...N-type active layer 3.18...Gate electrode 4, 16...Source electrode 5.17...Drain electrode 11...GaAs semi-insulating sexual crystal substrate surface】2...
Pattern mask 7? 1 large 2 figures Yoshi 3 figures (0> 1 large 3 figures (1)) 2 7? 3 figures (d) 5

Claims (3)

【特許請求の範囲】[Claims] (1)中性不純物を含むGaAs 半絶縁性半導体基板
にn型不純物をイオン注入した後、高温熱処理を行うこ
とにより活性化して動作層を形成した電界効果トランジ
スタをその構成素子として用いたことを特徴とする集積
回路。
(1) GaAs containing neutral impurities After ion-implanting n-type impurities into a semi-insulating semiconductor substrate, it is activated by performing high-temperature heat treatment to form an active layer, and a field-effect transistor is used as its constituent element. Features integrated circuits.
(2)中性不純物としてJl t−IQl?crn−a
 〜3xl O+*、m−aの濃度で含むGaAs 半
絶縁性半導体基板を用いたことを特徴とする特許請求範
囲第1項記載の集積回路。
(2) Jl t-IQl as a neutral impurity? crn-a
The integrated circuit according to claim 1, characterized in that a GaAs semi-insulating semiconductor substrate containing GaAs at a concentration of ~3xl O+*, m-a is used.
(3)n型不純物として、Si+・Se+、S+ 等の
イオンをイオン注入した後、800°C20分間の熱処
理を行うことを特徴とする特許請求範囲第1項記載の集
積回路。
(3) The integrated circuit according to claim 1, wherein after implanting ions such as Si+, Se+, S+, etc. as n-type impurities, a heat treatment is performed at 800° C. for 20 minutes.
JP778884A 1984-01-18 1984-01-18 Integrated circuit Pending JPS60150676A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP778884A JPS60150676A (en) 1984-01-18 1984-01-18 Integrated circuit
CA000471025A CA1224885A (en) 1984-01-18 1984-12-27 Integrated circuit and method for producing it
EP85300214A EP0149541A3 (en) 1984-01-18 1985-01-11 Gaas integrated circuit device and method for producing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP778884A JPS60150676A (en) 1984-01-18 1984-01-18 Integrated circuit

Publications (1)

Publication Number Publication Date
JPS60150676A true JPS60150676A (en) 1985-08-08

Family

ID=11675397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP778884A Pending JPS60150676A (en) 1984-01-18 1984-01-18 Integrated circuit

Country Status (1)

Country Link
JP (1) JPS60150676A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834980A (en) * 1981-08-25 1983-03-01 Sumitomo Electric Ind Ltd Schottky gate field effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834980A (en) * 1981-08-25 1983-03-01 Sumitomo Electric Ind Ltd Schottky gate field effect transistor

Similar Documents

Publication Publication Date Title
US5312766A (en) Method of providing lower contact resistance in MOS transistors
US4797721A (en) Radiation hardened semiconductor device and method of making the same
US4489480A (en) Method of manufacturing field effect transistors of GaAs by ion implantation
US5296386A (en) Method of providing lower contact resistance in MOS transistor structures
US6271069B1 (en) Method of making an article comprising an oxide layer on a GaAs-based semiconductor body
JPS62245627A (en) Liquid phase epitaxy
JPH02228042A (en) Manufacture of thin film semiconductor device
KR0156156B1 (en) Method of fabricating semiconductor device
JPS60150676A (en) Integrated circuit
US5496742A (en) Method for manufacturing semiconductor device enabling gettering effect
JPS60150677A (en) Integrated circuit
JPS59182574A (en) Field-effect transistor
EP0149541A2 (en) GaAs integrated circuit device and method for producing it
US20050233530A1 (en) Enhanced gate structure
JPH0590602A (en) Semiconductor memory cell and manufacture thereof
JPS63142865A (en) Manufacture of semiconductor device
Robinson et al. A fully-self-aligned joint-gate CMOS technology
JPH0219622B2 (en)
JPS58130572A (en) Semiconductor device
JPS59138363A (en) Semiconductor device and manufacture thereof
JPH0661234A (en) Production of semiconductor device
JPH0352238A (en) Manufacture of compound semiconductor device
JPH01243418A (en) Manufacture of semiconductor device
JPH077152A (en) Gallium antimonide field effect transistor
JPH05226366A (en) Manufacture of semiconductor device