JPS58130572A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58130572A
JPS58130572A JP1164782A JP1164782A JPS58130572A JP S58130572 A JPS58130572 A JP S58130572A JP 1164782 A JP1164782 A JP 1164782A JP 1164782 A JP1164782 A JP 1164782A JP S58130572 A JPS58130572 A JP S58130572A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
electrode
band gap
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1164782A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuzawa
董 福沢
Nobutoshi Matsunaga
松永 信敏
Michiharu Nakamura
中村 道治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1164782A priority Critical patent/JPS58130572A/en
Publication of JPS58130572A publication Critical patent/JPS58130572A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To obtain the device which is operated at a high speed, in a heterojunction comprising a first semiconductor layer which does not include impurities and has a narrow band gap and a second semiconductor layer which is connected to the first layer and has a wide band gap, by sequentially increasing the impurity distribution in the second semiconductor layer in the order of the part beneath a gate electrode, the region between the gate electrode and an ohmic electrode, and the part beneath the ohmic electrode. CONSTITUTION:On a semiinsulating GaAs substrate 1, an undoped GaAs layer 2, which is the first semiconductor layer having the narrow band gap, is epitaxially grown. An undoped Ga0.7Al0.3 As layer 3, which is the second semiconductor layer having the wide band gap is grown on the layer 2. Then the entire surface is coated by an SiO2 film 4. A gate pattern 5 comprising Ti or W is provided on the central part of the surface of the film 4. A mask 12 for ion implantation is formed around the pattern 5, and Si ion implanting layers 6 and 7 are formed. The impurity distribution at this time is controlled so that it is different from each other beneath each electrode.

Description

【発明の詳細な説明】 本発明は、超高速コンピュータ用論理系子として、好適
な半導体装置の構造および、そのS遣方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a semiconductor device suitable for use as a logic system for an ultra-high-speed computer, and a method of using the semiconductor device.

従来のヘテ薗接合を有する高キヤリア移動度デバイスは
、半導体層に直接電極が接触するいわゆるMetal−
8emiconductor PET (〜4ES−F
ET)の形をとっている。このため、ゲート容量が大き
く、かつ、ゲート正バイアスを大きくすると、ゲート電
流が流れるという欠点があり、従ってゲートバイアスを
大きくするにつれ、素子電流が増加するというe4まし
い素子特性を有するにもかかわらず、シ目、トキ電極の
耐圧以下で使用しなければならなかった。たとえば、 
T、 Mimura他、Japanese Journ
al  of AppliedPhysics 第20
巻 5号 L317〜319頁(1981年)等にこの
種の半導体装置が開示されている。
A conventional high carrier mobility device with a heterojunction is a so-called Metal-Mobility device in which an electrode is in direct contact with a semiconductor layer.
8emiconductor PET (~4ES-F
ET). For this reason, if the gate capacitance is large and the gate positive bias is increased, the gate current will flow, and therefore, as the gate bias is increased, the device current will increase. First, it had to be used at a voltage lower than the withstand voltage of the electrode. for example,
T, Mimura et al., Japanese Journal
al of Applied Physics No. 20
This type of semiconductor device is disclosed in Vol. 5, L317-319 (1981).

本発明は不純物を実質的に含有しない狭バンドギャップ
を有する第1の半導体層(第1図2)とこれに接する広
バンドギャップを有する第2の半導体層(第1図3)に
よって形成されるヘテロ接合界面に生ずる2次元のキャ
リアを、キャリア制御手段で制御する型の半導体装置の
改良するものである。ヘテロ接合界面には広バンドギヤ
、プ半薄体層からキャリアが流れ込むポテンシャル井戸
が形成される。
The present invention is formed by a first semiconductor layer (FIG. 1, 2) having a narrow bandgap that does not substantially contain impurities and a second semiconductor layer (FIG. 1, 3) having a wide bandgap in contact therewith. This is an improvement of a type of semiconductor device in which two-dimensional carriers generated at a heterojunction interface are controlled by carrier control means. A potential well is formed at the heterojunction interface into which carriers flow from the wide band gear and semi-thin layer.

本発明の目的は、高キャリア移動妾トランジスタのシロ
ットキ電極を絶縁ゲートとすることで、ゲート容量の低
減及び、ゲートの正バイアスを大きくできることによる
素子電流の増加による高速化を可能とするものである。
An object of the present invention is to reduce the gate capacitance and increase the device current by increasing the positive bias of the gate by using an insulated gate as the Sirotchi electrode of the high carrier mobility transistor, thereby making it possible to increase the speed. .

この方式は、同時にゲート・ドレイン間および、ソース
・ドレイン間の耐圧を高める。本発明のもう一つの目的
は、グー1直下の半導体層の不純物をなくすことで、キ
ャリアに対するクーロン散乱を減少させることである。
This method simultaneously increases the breakdown voltage between the gate and drain and between the source and drain. Another object of the present invention is to reduce Coulomb scattering of carriers by eliminating impurities in the semiconductor layer directly below the goo 1.

本発明の特徴点の骨子は、前記第2の半導体層における
不純物の分布はゲート電極下、ゲート・オーミック電極
間領域、オーミック電極下の順に大なる分布にせしめ、
且ゲート電極と半導体層の間に絶縁膜を挿入せしめるこ
とである。
The gist of the feature of the present invention is that the impurity distribution in the second semiconductor layer increases in the following order: under the gate electrode, in the region between the gate and ohmic electrode, and under the ohmic electrode;
Another method is to insert an insulating film between the gate electrode and the semiconductor layer.

不純物のドープを階段状となしているのは、キャリアと
なる2次元電子ガスをゲート電極近傍にまで生ぜしめる
と共に、ゲートとソースおよびドレインとの間に対応す
る不純物濃度を低減せしめておくことによって、ソース
とドレイン間のパンチスルー防止の役割をもたせている
ものである。
The step-like impurity doping is achieved by generating a two-dimensional electron gas that serves as carriers close to the gate electrode, and by reducing the corresponding impurity concentration between the gate and the source and drain. , which has the role of preventing punch-through between the source and drain.

以下、実施例を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using Examples.

第1図に示す通り、半絶縁性GaAs基板1(面方位1
00)上に、分子線エピタキシ法(MBE法)でアンド
ープGaAa層2(厚さ0.1μm)(第1の侠バンド
ギヤ、プ半導体層に該当する)を成長し、さらにアンド
ープGa、、、Aj、、As  層3(厚さ0.05μ
m)(広いバンドギャップを有する第2半導体層に該当
する。)を成長する。次いで、MBE装置内の結晶成長
室から、同じMHI装置内の基板処理室へ、大気にさら
すことなく、移動させ、そこで、プラズーrcVD法に
より、5tO2膜4を厚さ100λ被着させる。しかる
後、Ti及びWをゲート金属として蒸着させ、リソグラ
フィ法により、ゲートパターン5を形成する(第1図(
a))。次いで、リソグラフィ法によシ、イオン打込用
マスク12をつくる。これによシ、素子のアイソレージ
、/を行なう。このマスク12を用いてシリコンイオン
を加速電圧10 keVで打込み、ドーズ量をI X 
10”cm−”  とする(第1図(b))。この時の
打込まれたイオンの厚さ方向の分布を第2図に示す。打
込層がきわめて薄いため、急峻な不純物分布となってい
る。次いで、マスク12を除去後、オーミック電極部の
み開口したマスク13を作シ、マスク13を用いて、酸
化嗅4をエツチングする。しかる後、シリコン・イオン
を加速電圧10keV で、ドーズ量lX1o l 2
 c m−2となるよう打込む(第1図(C))。
As shown in FIG. 1, a semi-insulating GaAs substrate 1 (plane orientation 1
00), an undoped GaAa layer 2 (thickness 0.1 μm) (corresponding to the first semiconductor layer) is grown by the molecular beam epitaxy method (MBE method), and further undoped GaAa layer 2 (corresponding to the first semiconductor layer) ,,As layer 3 (thickness 0.05μ
m) (corresponding to the second semiconductor layer having a wide bandgap). Next, it is moved from the crystal growth chamber in the MBE apparatus to the substrate processing chamber in the same MHI apparatus without being exposed to the atmosphere, where a 5tO2 film 4 with a thickness of 100λ is deposited by the Prazu rcVD method. Thereafter, Ti and W are deposited as gate metals, and a gate pattern 5 is formed by lithography (see FIG.
a)). Next, an ion implantation mask 12 is made by lithography. Accordingly, isolation of the element is performed. Using this mask 12, silicon ions are implanted at an acceleration voltage of 10 keV, and the dose is set to I
10"cm-" (Fig. 1(b)). The distribution of the implanted ions in the thickness direction at this time is shown in FIG. Since the implanted layer is extremely thin, it has a steep impurity distribution. Next, after removing the mask 12, a mask 13 with only the ohmic electrode portion opened is created, and the oxidized layer 4 is etched using the mask 13. After that, silicon ions were accelerated at an acceleration voltage of 10 keV and at a dose of lX1o l2.
Insert it so that it becomes cm-2 (Fig. 1 (C)).

5in2膜がないため、1回目に打込んだ場合よりもヘ
テロ接合近くにシリコンが打込まれる。本実施例の条件
では、ヘテロ接合界面から20nmのみが、ドナーイオ
ンが存在しない領域と表る。
Because there is no 5in2 film, the silicon is implanted closer to the heterojunction than in the first implant. Under the conditions of this example, only 20 nm from the heterojunction interface appears as a region where donor ions do not exist.

打込み後レジストマスク13を除去後、アニーリングを
行ない、打込んだイオンの活性化を行なう(第1図(d
))。しかるのちに、オーム性電極用のレジスト・マス
クを作シ、通常のリフトオフ法でオーム性電極を形成す
る(第1図(e))。以下、ボンディング・パッド、配
線等作製する。得られた素子のトランスコンダクタンス
gmは、77にで150On@/nm であり、又この
半導体素子を用いた21段のリング・オ、シレータの1
段あた)の遅延時間は、15n3であった。
After removing the resist mask 13 after implantation, annealing is performed to activate the implanted ions (see Fig. 1(d)).
)). Thereafter, a resist mask for the ohmic electrode is created, and the ohmic electrode is formed by a normal lift-off method (FIG. 1(e)). Below, bonding pads, wiring, etc. are manufactured. The transconductance gm of the obtained device was 150 On@/nm at 77 nm, and the transconductance gm of the 21-stage ring-o-silator using this semiconductor device was 150 On@/nm.
The delay time of the step (at the bottom) was 15n3.

第2図(e)に図示した9はへテロ接合界面に生じる2
次元電子ガス、10はこの2次元電子ガスが生じない領
域を示している。
9 shown in FIG. 2(e) is 2 generated at the heterojunction interface.
Dimensional electron gas 10 indicates a region where this two-dimensional electron gas is not generated.

狭バンドギャップを有する第1の半導体層の前記の第2
の手・幕体層との界面と反対に広バンドギヤ、プを有す
る第3の半導体層を設けても良い。
the second semiconductor layer of the first semiconductor layer having a narrow bandgap;
A third semiconductor layer having a wide band gear may be provided opposite to the interface with the hand/curtain layer.

又、この層は第2の半導体層と逆導電型の半導体層とし
ても良い。こうした例を次に説明する。第3図がこうし
た例の装置断面図である。11が新たに設けた第3の半
導体層である。第3図において第1図と同じ符号は同一
部位を示している。
Further, this layer may be a semiconductor layer of a conductivity type opposite to that of the second semiconductor layer. An example of this will be explained next. FIG. 3 is a sectional view of such an example device. 11 is a newly provided third semiconductor layer. In FIG. 3, the same symbols as in FIG. 1 indicate the same parts.

半絶縁性1np基板1(面方位100)上に、有機金属
熱分解(MO−CVD)法により、アンドープA−o4
81n(1,,2AB 層(厚さo、5μm)11.ア
ンドープGa、、、in、!13As層(厚さ0、1 
μrn ) 2 eアンドープAj、4. In(1,
1I2As層(厚さ0.057!m)3を形成し、その
上にSio。
Undoped A-o4 was deposited on a semi-insulating 1np substrate 1 (plane orientation 100) by metal organic pyrolysis (MO-CVD) method.
81n (1,,2 AB layer (thickness o, 5 μm) 11. Undoped Ga,,,in,!13As layer (thickness 0, 1
μrn ) 2 e undoped Aj, 4. In(1,
1I2As layer (thickness 0.057!m) 3 was formed, and Sio was formed thereon.

膜(厚さ10nm)を被着する。μ下のプロセスは、前
述した例と同じである。
A film (10 nm thick) is deposited. The process under μ is the same as the previous example.

本実施例で作製した素子は、広バンドギヤ、プ半募体の
、バッファ層11を有しているため、ゲートバイアスを
負の方向へ印加した場合の残留電流が極めて少ない事が
特長である。逆導電型の半導体層を用いても類似の効果
を得ることができる。
Since the device manufactured in this example has a buffer layer 11 made of a wide band gear and semicircular material, it is characterized in that residual current is extremely small when a gate bias is applied in the negative direction. Similar effects can be obtained by using semiconductor layers of opposite conductivity types.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1al〜(e)は、本発明の実施例たる半導体装
置の製造工程を示す装置断面図である。第2図は実施例
で示した装置における打込みイオンの深さ方向の分布を
示す図、第3図は、別な実施例を示す断面図である。 l:半絶縁性基板、2:アンドープ狭バンドギヤ、プ層
、3:アンドープ広バンドギヤツプ層。 4:絶縁膜、5:ゲート電極、6:第1打込層、7;第
2打込層、8:オーム性電極、9:ヘテロ界面に生じる
2次元電子ガス、10:2次元電子ガスが生じない領域
、11:広バンドギヤツプ半導体層、12及び13:フ
ォトレジストマスク。 367 亮2 面 0  10  、’(7304030 表如力〜うの距flllLcnだ) −
FIGS. 1A to 1E are cross-sectional views of a semiconductor device according to an embodiment of the present invention, showing the manufacturing process thereof. FIG. 2 is a diagram showing the distribution of implanted ions in the depth direction in the apparatus shown in the embodiment, and FIG. 3 is a sectional view showing another embodiment. 1: Semi-insulating substrate, 2: Undoped narrow band gap layer, 3: Undoped wide band gap layer. 4: Insulating film, 5: Gate electrode, 6: First implantation layer, 7: Second implantation layer, 8: Ohmic electrode, 9: Two-dimensional electron gas generated at the hetero interface, 10: Two-dimensional electron gas Non-occurring regions, 11: wide bandgap semiconductor layer, 12 and 13: photoresist mask. -

Claims (1)

【特許請求の範囲】 1、不純物を実質的に含有せず且狭バンドギャップを有
する第1の半導体層と、これに接する広バンドギャップ
を有する第2の半導体層からなるペテロ接合界面に生じ
る2次元キャリアガスを、キャリア制御手段によって制
御する半導体装置において、前記第2の半導体層におけ
る不純物の分布が、ゲート電極下、ゲート電極・オーミ
ック電極間領域、オーミック電極下の順に大きくなり、
かつゲート電極と半・募体層との間に絶縁膜を持つこと
を特徴とする半導体装置。 2、特許請求の範囲第1項記載の半導体装置において、
第1の半導体層に第2の半導体層と逆導電型又は実質的
に不純物を含有しない広バンドギャップを有する第3の
半導体層を有することを特徴とする半導体装置。
[Scope of Claims] 1. Occurrence at the Peter junction interface between a first semiconductor layer that does not substantially contain impurities and has a narrow bandgap, and a second semiconductor layer that is in contact with this and has a wide bandgap. In a semiconductor device in which a dimensional carrier gas is controlled by a carrier control means, the impurity distribution in the second semiconductor layer increases in the following order: under the gate electrode, in the region between the gate electrode and the ohmic electrode, and under the ohmic electrode;
A semiconductor device further comprising an insulating film between the gate electrode and the semi-active layer. 2. In the semiconductor device according to claim 1,
A semiconductor device characterized in that the first semiconductor layer includes a third semiconductor layer having a conductivity type opposite to that of the second semiconductor layer or having a wide bandgap that does not substantially contain impurities.
JP1164782A 1982-01-29 1982-01-29 Semiconductor device Pending JPS58130572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1164782A JPS58130572A (en) 1982-01-29 1982-01-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1164782A JPS58130572A (en) 1982-01-29 1982-01-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58130572A true JPS58130572A (en) 1983-08-04

Family

ID=11783738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1164782A Pending JPS58130572A (en) 1982-01-29 1982-01-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58130572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556895A (en) * 1982-04-28 1985-12-03 Nec Corporation Field-effect transistor having a channel region of a Group III-V compound semiconductor and a Group IV semiconductor
JPH04233771A (en) * 1990-07-31 1992-08-21 American Teleph & Telegr Co <Att> Field-effect transistor and its manuacture
JPH0513444A (en) * 1991-10-23 1993-01-22 Hitachi Ltd Field-effect transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556895A (en) * 1982-04-28 1985-12-03 Nec Corporation Field-effect transistor having a channel region of a Group III-V compound semiconductor and a Group IV semiconductor
JPH04233771A (en) * 1990-07-31 1992-08-21 American Teleph & Telegr Co <Att> Field-effect transistor and its manuacture
JPH0513444A (en) * 1991-10-23 1993-01-22 Hitachi Ltd Field-effect transistor

Similar Documents

Publication Publication Date Title
US4797721A (en) Radiation hardened semiconductor device and method of making the same
JPH0259624B2 (en)
JPH0324782B2 (en)
US4764796A (en) Heterojunction field effect transistor with two-dimensional electron layer
JPS58130572A (en) Semiconductor device
JP2550013B2 (en) Field effect transistor
JPS6027173A (en) Field effect transistor and manufacture thereof
JPH0212927A (en) Manufacture of mesfet
JPS61248570A (en) Mesfet device and manufacture thereof
JP2541260B2 (en) Manufacturing method of semiconductor device
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JP2708492B2 (en) Method for manufacturing semiconductor device
GB2168847A (en) Semiconductor devices
JPS60134479A (en) Semiconductor device
JP2796303B2 (en) Method for manufacturing semiconductor integrated circuit
JPH028454B2 (en)
JPS60136264A (en) Manufacture of semiconductor device
JPH02234442A (en) Manufacture of field effect type semiconductor device
JPS59197176A (en) Manufacture of junction gate field-effect transistor
JPS63281473A (en) Field-effect semiconductor device and manufacture thereof
JPS60117676A (en) Semiconductor device
JPH03292743A (en) Manufacture of field-effect transistor
JPS60140875A (en) Semiconductor device
JPS58147168A (en) Manufacture of semiconductor device
JPS59113671A (en) Manufacture of field effect transistor