JPS60140763A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60140763A
JPS60140763A JP58250665A JP25066583A JPS60140763A JP S60140763 A JPS60140763 A JP S60140763A JP 58250665 A JP58250665 A JP 58250665A JP 25066583 A JP25066583 A JP 25066583A JP S60140763 A JPS60140763 A JP S60140763A
Authority
JP
Japan
Prior art keywords
film
gate electrode
mask
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58250665A
Other languages
Japanese (ja)
Inventor
Kazuhiko Tsuji
和彦 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58250665A priority Critical patent/JPS60140763A/en
Publication of JPS60140763A publication Critical patent/JPS60140763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To control a distance between a gate electrode and a high impurity- concentration region easily while obtaining a drain region, etc. through double diffusion by diffusing and forming a shallow low impurity-concentration region to the surface layer section of a semiconductor substrate on both sides of the gate electrode while using the gate electrode shaped on the substrate as a mask, oxidizing the gate electrode and diffusing and forming the deep high impurity- concentration region while employing an oxide film shaped on the side wall of the gate electrode as a mask. CONSTITUTION:A gate oxide film 12, a polycrystalline Si film 13, an SiO2 film 14 and an oxidation-resistance film 15 are laminated and applied on a P type Si substrate 11, the laminated films are formed to a predetermined pattern, and the films 15 and 14 are removed to expose the film 13. N<-> type implantation layers 16 are shaped through ion implantation while using the film 13 as a mask, and an SiO2 film 17 is formed extending over the surfaces of the implantation layers 16 from a side wall under the film 13 through heat treatment in a high-temperature high-pressure oxygen atmosphere. N type ions are implanted while using the films 13 and 17 as masks, and deep N<+> type source region 18 and drain region 19 coupled with previously formed shallow implantation layers 16 are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置、特に高密度、高集積な半導体装置
に有用な微細素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing fine elements useful for semiconductor devices, particularly for high-density, highly integrated semiconductor devices.

従来例の構成とその問題点 半導体装置は最近ますます高密度化、高性能化される傾
向にあり、そのために微細構造の半導体装置の開発に対
する要望が高まっている。従来一般にM OS型半導体
装置のソースおよびドレインは基板と反対導電型の所定
の一種類の不純物を拡散して形成される。ソースおよび
ドレイン間距離すなわちゲート長が微細になり特に2μ
m以下の短チャネルMO8においてはソース、ドレイン
間の電流をしゃ断するためのゲート電圧が高くなるとと
もに、薄いゲート酸化膜を通してドレイン領域から高い
エネルギーを持った電子(ホットエレクトロン)が注入
され、ソース、ドレイン間の電流を制御するためのゲー
ト電圧を変化させるという問題があった。かかる問題を
解決するためにソース、ドレイン領域に二重に不純物を
拡散する。
Conventional Structures and Problems Semiconductor devices have recently become more densely packed and have higher performance, and as a result, there has been an increasing demand for the development of semiconductor devices with fine structures. Conventionally, the source and drain of a MOS type semiconductor device are generally formed by diffusing a predetermined type of impurity having a conductivity type opposite to that of the substrate. The distance between the source and drain, that is, the gate length, has become finer, especially 2μ.
In the short channel MO8 of less than m, the gate voltage to cut off the current between the source and the drain becomes high, and high energy electrons (hot electrons) are injected from the drain region through the thin gate oxide film, and the source, There was a problem in changing the gate voltage to control the current between the drains. In order to solve this problem, impurities are doubly diffused into the source and drain regions.

すなわちゲート電極と接するところにはホットエレクト
ロン効果およびショートチャネル効果を防止するため低
濃度の不純物拡散層を形成し、その他のところにはソー
ス、ドレイン領域の抵抗を下げるため、高濃度の不純物
層を重ねて形成する方法が提案されている。
In other words, a low concentration impurity diffusion layer is formed in the area in contact with the gate electrode to prevent hot electron effects and short channel effects, and a high concentration impurity layer is formed in other areas to lower the resistance of the source and drain regions. A method of forming layers in layers has been proposed.

以下第1図および第2図を用いて上述した二重拡散層を
有するMO3型半導体装置の製造方法を説明する。第1
図において、−導電型たとえばP型半導体基板1上にゲ
ート酸化膜2および多結晶硅素膜などのゲート電極3を
形成した後、それらをマスクとして、リンかどの基板と
反対導電型の不純物を低濃度に拡散して不純物拡散層4
を形成する(A)。
A method of manufacturing the MO3 type semiconductor device having the double diffusion layer described above will be explained below with reference to FIGS. 1 and 2. 1st
In the figure, after forming a gate oxide film 2 and a gate electrode 3 such as a polycrystalline silicon film on a semiconductor substrate 1 of -conductivity type, e.g., P-type, using them as a mask, impurities of the opposite conductivity type to the substrate in the phosphorus corner are reduced. Impurity diffusion layer 4
(A).

次に二酸化硅素膜などの絶縁膜6を全面に形成した後、
エツチング速度が垂直方向にのみ速い、いわゆる異方性
を有するドライエツチング方法により、絶縁膜5を食刻
する。このとき、ゲート電極パターンの端部では、前記
絶縁膜6の基板1表面からの膜厚が厚いだめ、基板1の
平担部の前記絶縁膜5を食刻して、前記半導体基板1を
露出後も前記ゲート電極パターンの端部に前記絶縁膜6
の一部6が残留する。ゲート電極3′および絶縁膜6を
マスクとしてひ素などの不純物を高濃度に拡散して低抵
抗不純物層7を形成する(B)。次に層間絶縁膜8およ
び金属配線9を形成する(C)。
Next, after forming an insulating film 6 such as a silicon dioxide film on the entire surface,
The insulating film 5 is etched by a so-called anisotropic dry etching method in which the etching rate is high only in the vertical direction. At this time, since the insulating film 6 is thick from the surface of the substrate 1 at the end of the gate electrode pattern, the insulating film 5 on the flat part of the substrate 1 is etched to expose the semiconductor substrate 1. After that, the insulating film 6 is also formed on the edge of the gate electrode pattern.
Part 6 remains. Using the gate electrode 3' and the insulating film 6 as a mask, an impurity such as arsenic is diffused at a high concentration to form a low resistance impurity layer 7 (B). Next, interlayer insulating film 8 and metal wiring 9 are formed (C).

かかる方法では、高濃度不純物層7とゲート電極3′と
の距離はゲート酸化膜とゲート電極の厚さの合計、絶縁
膜5の厚さ、および異方性エツチング量により決定され
るため、前記距離を任意の長さに再現性良く形成するこ
とは困難であった。
In this method, the distance between the high concentration impurity layer 7 and the gate electrode 3' is determined by the total thickness of the gate oxide film and the gate electrode, the thickness of the insulating film 5, and the amount of anisotropic etching. It was difficult to form the distance to an arbitrary length with good reproducibility.

また別の方法として第2図に示すように、ゲート電極3
および前記ゲート電極上に形成した感光性樹脂膜あるい
は絶縁膜1oをマスクに高濃度不純物層7を形成する(
A)。次に前記ゲート電極3のmll壁を食刻して、ゲ
ート電極3′のパターンl〕を狭くしだ後(B)、上部
の絶縁膜10を除去し、ゲート電極パターン3Iをマス
クに低濃度不純物層4を形成する方法がある(C)。か
かる方法ではゲート電極31と高濃度拡散層の距離は、
ゲート電極3の側壁め食刻量で決定されるため、再現性
良く、形成することが困難であるという問題点があった
As another method, as shown in FIG.
Then, a high concentration impurity layer 7 is formed using the photosensitive resin film or insulating film 1o formed on the gate electrode as a mask (
A). Next, after etching the mll wall of the gate electrode 3 to make the pattern 1 of the gate electrode 3' narrower (B), the upper insulating film 10 is removed, and a low concentration layer is formed using the gate electrode pattern 3I as a mask. There is a method of forming the impurity layer 4 (C). In this method, the distance between the gate electrode 31 and the high concentration diffusion layer is
Since it is determined by the etching amount of the side wall of the gate electrode 3, there is a problem that it is difficult to form it with good reproducibility.

発明の目的 本発明はこのような従来の欠点に鑑み、ゲート電極と高
濃度拡散領域の距離の制御が容易で、再現性良く形成す
ることが可能な二重拡散ドインを有する半導体装置の製
造方法を提供することを目的とする。
Purpose of the Invention In view of these conventional drawbacks, the present invention provides a method for manufacturing a semiconductor device having a double diffusion doin, which allows easy control of the distance between the gate electrode and the high concentration diffusion region, and which can be formed with good reproducibility. The purpose is to provide

発明の構成 本発明は多結晶シリコンゲート電極パターンをマスクと
して、低濃度不純物層を基板に形成した後、前記不純物
層の拡がりよりも多結晶シリコンの酸化速度の方が速い
高圧酸化雰囲気中等で前記多結晶シリコン電極パターン
の側壁を酸化した後前記酸化後の電極パターンおよび酸
化側壁をマスクとして、高濃度不純物層を基板に形成し
て、ソース、ドレインを形成することを特徴とするもの
である。
Structure of the Invention The present invention involves forming a low concentration impurity layer on a substrate using a polycrystalline silicon gate electrode pattern as a mask, and then forming the impurity layer in a high-pressure oxidizing atmosphere or the like in which the oxidation rate of the polycrystalline silicon is faster than the spread of the impurity layer. The method is characterized in that after the sidewalls of the polycrystalline silicon electrode pattern are oxidized, a high concentration impurity layer is formed on the substrate using the oxidized electrode pattern and the oxidized sidewalls as a mask to form the source and drain.

実施例の説明 本発明の一実施例を第3図にもとすいて説明する〇 一導電型たとえばP型半導体基板11上にゲート酸化膜
12、多結晶硅素膜13、二酸化硅素膜14、耐酸化性
膜16を順に形成する(A)。次に、多層膜に所定のパ
ターンを形成した後、基板と反対導電型不純物たとえば
砒素をイオン注入法々どで注入し低濃度の不純物層16
を形成する申)。前記基板を高温高圧酸素雰囲気中で処
理し、前記多結晶硅素膜13の側壁に二酸化硅素膜17
を形成する。このとき、多結晶硅素膜パターン巾片側で
は側壁酸化硅素膜厚の約腸に相当する量だけ細く々す、
丑だ多結晶硅素膜と側壁酸化硅素膜との合計パターン巾
は、酸化前の多結晶硅素膜パターン巾より広くなる。こ
の工程で形成される膜17の膜厚は制御性良く形成でき
る。次にゲート電極となる多結晶硅素膜パターン13と
側壁酸化硅素膜17をマスクとして基板と反対導電型不
純物たとえばリンを注入し、ソース、ドレイン18.1
9を形成する(C)、次に、耐酸化性膜15を除去しく
D)、半導体基板上の二酸化硅素膜20に開孔部を形成
し、配線層21を形成して、半導体装置を形成する(E
)。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. The oxidizable film 16 is sequentially formed (A). Next, after forming a predetermined pattern on the multilayer film, an impurity of a conductivity type opposite to that of the substrate, such as arsenic, is implanted using an ion implantation method to form a low concentration impurity layer 16.
The Monkey that forms the Monkey). The substrate is treated in a high-temperature, high-pressure oxygen atmosphere to form a silicon dioxide film 17 on the sidewall of the polycrystalline silicon film 13.
form. At this time, the polycrystalline silicon film pattern width is narrowed on one side by an amount equivalent to approximately the thickness of the sidewall silicon oxide film.
The total pattern width of the polycrystalline silicon film and the sidewall silicon oxide film is wider than the polycrystalline silicon film pattern width before oxidation. The thickness of the film 17 formed in this step can be formed with good controllability. Next, using the polycrystalline silicon film pattern 13 that will become the gate electrode and the sidewall silicon oxide film 17 as a mask, impurities of the opposite conductivity type to the substrate, such as phosphorus, are implanted, and the source and drain 18.1
(C) Next, the oxidation-resistant film 15 is removed.D) An opening is formed in the silicon dioxide film 20 on the semiconductor substrate, and a wiring layer 21 is formed to form a semiconductor device. Do (E
).

第2の実施例を第4図にもとすいて説明する。The second embodiment will be explained with reference to FIG. 4.

−導電型半導体基板11上に二酸化硅素膜12、多結晶
硅素膜13および耐酸化性膜15を順に形成する(A)
。前記三層膜に所定のパターンを形成する(B)。
- Sequentially forming a silicon dioxide film 12, a polycrystalline silicon film 13, and an oxidation-resistant film 15 on a conductive semiconductor substrate 11 (A)
. A predetermined pattern is formed on the three-layer film (B).

次に高温酸素雰囲気中で前記多結晶硅素膜パターン13
側壁および露出半導体基板上に二酸化硅素膜17を形成
し、多結晶硅素膜パター/13と側壁酸化硅素膜17を
マスクとして、基板と反対導電型不純物層を高濃度に形
成しソース、ドレイン18.19を形成する。次に側壁
酸化硅素膜17を除去し、前記多結晶硅素膜パターン1
3をマスクに基板と反対導電型不純物層16を低濃度に
形成する(D)。このとき耐酸化性膜15を残して不純
物層形成時のマスクとして使用してもよいことはいうま
でもない。次に全面に二酸化硅素膜などの層間絶縁膜3
0を形成し、開孔部を形成したのち配線層21を形成し
、(E)に示すMO8型導体装置を形成する。
Next, the polycrystalline silicon film pattern 13 is placed in a high temperature oxygen atmosphere.
A silicon dioxide film 17 is formed on the sidewalls and the exposed semiconductor substrate, and using the polycrystalline silicon film pattern/13 and the sidewall silicon oxide film 17 as a mask, a high concentration impurity layer of the opposite conductivity type to that of the substrate is formed to form the source, drain 18. form 19. Next, the sidewall silicon oxide film 17 is removed, and the polycrystalline silicon film pattern 1 is removed.
3 as a mask, an impurity layer 16 of a conductivity type opposite to that of the substrate is formed at a low concentration (D). It goes without saying that at this time, the oxidation-resistant film 15 may be left and used as a mask when forming the impurity layer. Next, an interlayer insulating film 3 such as a silicon dioxide film is applied to the entire surface.
0 and after forming an opening, a wiring layer 21 is formed to form an MO8 type conductor device shown in (E).

発明の効果 本発明の方法では、従来例と異なり高濃度不純物層とゲ
ート電極との距離は多結晶ゲート電極の側壁酸化砒素膜
で決定されるため、酸化条件の制御により、前記側壁酸
化砒素膜の膜厚を任意に再現性良く形成できる。また、
特に第2の実施例では、低濃度不純物層をゲート電極を
マスクとじて形成するため、不純物層とゲート電極の重
なりが少なく、特性の良い半導体装置が得られる。
Effects of the Invention In the method of the present invention, unlike conventional methods, the distance between the high concentration impurity layer and the gate electrode is determined by the sidewall arsenic oxide film of the polycrystalline gate electrode. The film thickness can be formed arbitrarily with good reproducibility. Also,
In particular, in the second embodiment, since the low concentration impurity layer is formed using the gate electrode as a mask, there is little overlap between the impurity layer and the gate electrode, and a semiconductor device with good characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(C)、第2図(A)〜(c)は従来ノ
二重拡散層を有するMOS トランジスタの製造工程断
面図、第3図(A)〜(E)、第4図(A)〜(E)は
同トランジスタの本発明の実施例の製造工程断面図であ
る。 11・・・・・半導体基板、13・・・・・・多結晶硅
素膜パターン、16・・・・・・不純物層、17・・・
・・・側壁酸化硅素膜、18.19・・・・・・ソース
、ドレイン領域。 代理人の氏名 弁理士 中 尾 敏 男 はが1名6 8デ 第3図 11;
Figures 1 (A) to (C) and Figures 2 (A) to (c) are cross-sectional views of the manufacturing process of a conventional MOS transistor having a double diffusion layer; Figures 3 (A) to (E); 4(A) to (E) are sectional views showing the manufacturing process of the embodiment of the present invention of the same transistor. 11... Semiconductor substrate, 13... Polycrystalline silicon film pattern, 16... Impurity layer, 17...
...Side wall silicon oxide film, 18.19...Source, drain region. Name of agent Patent attorney Toshio Nakao 1 person 6 8 Figure 3 11;

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成したゲート電極の所定のパターンを
マスクとして前記半導体基板に低濃度不純物層を形成す
る工程と、前記ゲート電極を酸化する工程と、前記ゲー
ト電極およびゲート電極の側壁に形成したゲート電極の
酸化膜をマスクとして高濃度不純物層を形成する工程と
を含むことを特徴とする半導体装置の製造方法。
a step of forming a low concentration impurity layer on the semiconductor substrate using a predetermined pattern of the gate electrode formed on the semiconductor substrate as a mask; a step of oxidizing the gate electrode; and a gate formed on the gate electrode and the sidewalls of the gate electrode. 1. A method of manufacturing a semiconductor device, comprising: forming a highly concentrated impurity layer using an oxide film of an electrode as a mask.
JP58250665A 1983-12-27 1983-12-27 Manufacture of semiconductor device Pending JPS60140763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58250665A JPS60140763A (en) 1983-12-27 1983-12-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58250665A JPS60140763A (en) 1983-12-27 1983-12-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60140763A true JPS60140763A (en) 1985-07-25

Family

ID=17211221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58250665A Pending JPS60140763A (en) 1983-12-27 1983-12-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60140763A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418683A (en) * 1977-07-13 1979-02-10 Hitachi Ltd Manufacture of semiconductor device
JPS5418684A (en) * 1977-07-13 1979-02-10 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418683A (en) * 1977-07-13 1979-02-10 Hitachi Ltd Manufacture of semiconductor device
JPS5418684A (en) * 1977-07-13 1979-02-10 Hitachi Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US6821858B2 (en) Semiconductor devices and methods for manufacturing the same
JPH02100326A (en) Manufacture of mos type semiconductor device high in breakdown strength
KR950011020B1 (en) Semiconductor device and its making method
JPH0147016B2 (en)
JPH0268930A (en) Manufacture of semiconductor device
JPS60140763A (en) Manufacture of semiconductor device
JPS5986265A (en) Mos type semiconductor device
JPH029134A (en) Manufacture of semiconductor device
JPS603157A (en) Manufacture of semiconductor device
JPS61208271A (en) Manufacture of mis type semiconductor device
JPH04255233A (en) Semiconductor device and manufacture thereof
JPS6154661A (en) Manufacture of semiconductor device
JPS62273774A (en) Manufacture of field-effect transistor
JPH0226034A (en) Manufacture of semiconductor device
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH06104276A (en) Semiconductor device and manufacture thereof
JPH04297037A (en) Semiconductor device and manufacture thereof
JPH0212012B2 (en)
JPH03145137A (en) Manufacture of semiconductor device
JPS61280670A (en) Manufacture of semiconductor device
JPS6074681A (en) Manufacture of semiconductor device
JPH04278586A (en) Manufacture of semiconductor device
JPS59124143A (en) Manufacture of semiconductor integrated circuit
JPH02278737A (en) Manufacture of semiconductor device
JPS58180062A (en) Manufacture of semiconductor device