JPH06104276A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH06104276A
JPH06104276A JP24908192A JP24908192A JPH06104276A JP H06104276 A JPH06104276 A JP H06104276A JP 24908192 A JP24908192 A JP 24908192A JP 24908192 A JP24908192 A JP 24908192A JP H06104276 A JPH06104276 A JP H06104276A
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
concentration diffusion
diffusion layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24908192A
Other languages
Japanese (ja)
Inventor
Hiroaki Nakaoka
弘明 中岡
Yoshiaki Kato
義明 加藤
Mizuki Segawa
瑞樹 瀬川
Takashi Nakabayashi
隆 中林
Atsushi Hori
敦 堀
Yoji Masuda
洋司 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24908192A priority Critical patent/JPH06104276A/en
Publication of JPH06104276A publication Critical patent/JPH06104276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To lower resistance of a low concentration diffusion layer to become a source and a drain while improving reliability in a MOS transistor of an LDD structure having a gate electrode consisting of a polycrystalline silicon layer and a high melting point metal layer. CONSTITUTION:A gate insulating film 2 is formed on a one conductivity type semiconductor substrate 1 and a gate electrode 6 consisting of a polycrystalline silicon layer 4 and a high melting point metal layer 5 is formed on the gate insulating film 2. Then, a first insulation film 11 and a second insulation film 7 are formed on the gate electrode 6 while being laminated, and the second insulation film 7 and a third insulation film 9 are formed on the side of the gate electrode 6 while being laminated, besides the other conductivity type low concentration diffusion layer 8 having the gate electrode 6 as a mask and the other conductivity type high concentration diffusion layer 10 having the third insulation film 9 as a mask overlapping a part of a low concentration diffusion layer 8 is formed on the semiconductor substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高集積度高信頼性の半
導体装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly integrated and highly reliable semiconductor device and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、半導体装置の高密度化にともなっ
て高速化や低消費電力化のためにゲ−ト電極上の多結晶
シリコン層のシ−ト抵抗やコンタクト抵抗の低抵抗化が
望まれている。そのために、ゲ−ト電極上の多結晶シリ
コン層の上に高融点金属層を堆積させた構造が用いられ
ている。
2. Description of the Related Art In recent years, as the density of semiconductor devices has increased, it has been desired to reduce the sheet resistance and contact resistance of the polycrystalline silicon layer on the gate electrode in order to achieve higher speed and lower power consumption. It is rare. Therefore, a structure in which a refractory metal layer is deposited on the polycrystalline silicon layer on the gate electrode is used.

【0003】以下に従来の半導体装置について説明す
る。図4は従来の半導体装置の要部断面図であり、ゲ−
トパタ−ニングを行った後のNチャンネルトランジスタ
の断面を示している。図4に示すようにP型シリコン基
板1の上にゲート酸化膜3を介して多結晶シリコン層4
と高融点金属層5からなるゲート電極6が形成されてい
る。P型シリコン基板1にはゲート電極6をマスクとし
てイオン注入により低濃度拡散層8が形成されている。
ゲート電極6の外側にはサイドウォ−ル9をマスクとし
てイオン注入により高濃度拡散層10が形成されてい
る。
A conventional semiconductor device will be described below. FIG. 4 is a sectional view of a main part of a conventional semiconductor device.
The cross section of the N-channel transistor after performing the patterning is shown. As shown in FIG. 4, a polycrystalline silicon layer 4 is formed on the P-type silicon substrate 1 via a gate oxide film 3.
And a gate electrode 6 composed of the refractory metal layer 5 is formed. A low concentration diffusion layer 8 is formed on the P-type silicon substrate 1 by ion implantation using the gate electrode 6 as a mask.
A high-concentration diffusion layer 10 is formed outside the gate electrode 6 by ion implantation using the side wall 9 as a mask.

【0004】このようなNチャンネルMOSトランジス
タは以下のようにして形成される。まずP型シリコン基
板1の上にゲート酸化膜3を介して多結晶シリコン層4
と高融点金属層5を堆積した後フォトレジストをマスク
として多結晶シリコン層4と高融点金属層5をエッチン
グしてゲ−ト電極6を形成する。次にゲート電極6をマ
スクとしてりんイオンまたはひ素イオンをP型シリコン
基板1の表面に注入し低濃度拡散層8を形成する。次に
P型シリコン基板1の表面に酸化膜を堆積しエッチバッ
ク法を用いて酸化膜をエッチングし、サイドウォ−ル9
を形成する。次にP型シリコン基板1の表面にサイドウ
ォ−ル9をマスクとしてひ素イオンを注入し高濃度拡散
層10を形成した後、活性化熱処理を行いトランジスタ
が完成する。
Such an N channel MOS transistor is formed as follows. First, the polycrystalline silicon layer 4 is formed on the P-type silicon substrate 1 via the gate oxide film 3.
After depositing the refractory metal layer 5, the polycrystalline silicon layer 4 and the refractory metal layer 5 are etched using the photoresist as a mask to form the gate electrode 6. Next, phosphorus ions or arsenic ions are implanted into the surface of the P-type silicon substrate 1 using the gate electrode 6 as a mask to form a low concentration diffusion layer 8. Next, an oxide film is deposited on the surface of the P-type silicon substrate 1 and the oxide film is etched by using the etch back method to remove the sidewall 9
To form. Next, arsenic ions are implanted on the surface of the P-type silicon substrate 1 using the side wall 9 as a mask to form a high concentration diffusion layer 10, and then activation heat treatment is performed to complete the transistor.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、浅い接合を得ようとすると低濃度拡散層
8の活性化を高濃度拡散層10の形成後に行うために低
濃度拡散層8の活性化に十分な温度、時間がかけられ
ず、一方高濃度拡散層10の形成前に低濃度拡散層8の
活性化を行うと膜はがれや異常酸化が発生するという課
題を有していた。
However, in the above conventional structure, when the shallow junction is to be obtained, the activation of the low concentration diffusion layer 8 is performed after the formation of the high concentration diffusion layer 10, so that the low concentration diffusion layer 8 is activated. There is a problem that activation is not performed at a sufficient temperature and for a long time, and when the low concentration diffusion layer 8 is activated before the formation of the high concentration diffusion layer 10, film peeling or abnormal oxidation occurs.

【0006】本発明は上記の従来の課題を解決するもの
で、高融点金属層がはがれることなく低濃度拡散層の十
分な活性化を行うことのできる半導体装置およびその製
造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a semiconductor device and a manufacturing method thereof capable of sufficiently activating a low-concentration diffusion layer without peeling off a refractory metal layer. To aim.

【0007】[0007]

【課題を解決するための手段】この目的を達成するする
ために本発明の半導体装置は、ゲート電極上には第1の
絶縁膜と第2の絶縁膜が積層して形成されており、ゲー
ト電極の側面には第2の絶縁膜と第3の絶縁膜が積層し
て形成されており、かつ半導体基板にはゲート電極をマ
スクとし低濃度拡散層の一部に重なる他方導電型の低濃
度拡散層と第3の絶縁膜をマスクとする他方導電型の高
濃度拡散層が形成されている構成を有している。
In order to achieve this object, a semiconductor device of the present invention has a gate electrode in which a first insulating film and a second insulating film are laminated to form a gate. A second insulating film and a third insulating film are laminated on the side surface of the electrode, and the other conductivity type low concentration layer is formed on the semiconductor substrate using the gate electrode as a mask to overlap a part of the low concentration diffusion layer. The high-concentration diffusion layer of the other conductivity type is formed using the diffusion layer and the third insulating film as a mask.

【0008】また本発明の半導体装置の製造方法は、一
方導電型の半導体基板上にゲート酸化膜を介して多結晶
シリコン層を堆積した後多結晶シリコン層上に高融点金
属層を堆積する工程と、高融点金属層上に第1の絶縁膜
を堆積する工程と、第1の絶縁膜、高融点金属層および
多結晶シリコン層をパターニングしてゲート電極を形成
する工程と、ゲート電極の上部および側面に薄い第2の
絶縁膜を堆積する工程と、ゲート電極をマスクとして他
方導電型の低濃度拡散層を形成し活性化熱処理を行う工
程と、ゲート電極の側面に第3の絶縁膜を形成する工程
と、第3の絶縁膜をマスクとして他方導電型の高濃度拡
散層を形成する工程とを有する。
In the method of manufacturing a semiconductor device of the present invention, a step of depositing a polycrystalline silicon layer on a first conductivity type semiconductor substrate via a gate oxide film and then depositing a refractory metal layer on the polycrystalline silicon layer. A step of depositing a first insulating film on the refractory metal layer, a step of patterning the first insulating film, the refractory metal layer and the polycrystalline silicon layer to form a gate electrode, and an upper part of the gate electrode. And a step of depositing a thin second insulating film on the side surface, a step of forming the other conductivity type low-concentration diffusion layer using the gate electrode as a mask and performing activation heat treatment, and a step of forming a third insulating film on the side surface of the gate electrode. And a step of forming a high-concentration diffusion layer of the other conductivity type using the third insulating film as a mask.

【0009】[0009]

【作用】この構成によって、低濃度拡散層の活性化が低
濃度拡散層形成の直後に膜はがれなしに行うことがで
き、高融点金属層をむき出しにせずにサイドウォ−ル形
成ができる。
With this structure, the activation of the low-concentration diffusion layer can be performed immediately after the formation of the low-concentration diffusion layer without film peeling, and the side wall can be formed without exposing the refractory metal layer.

【0010】[0010]

【実施例】以下本発明の一実施例における半導体装置に
ついて、図面を参照しながら説明する。図1は本発明の
同半導体装置の要部断面図である。図1に示すようにP
型シリコン基板1の上にLOCOS酸化膜2およびゲー
ト酸化膜3を介して形成された多結晶シリコン層4と高
融点金属層5からなるゲート電極6が形成されている。
ゲート電極6上には第1の絶縁膜11と第2の絶縁膜7
が積層して形成されており、ゲート電極6の側面には第
2の絶縁膜7と第3の絶縁膜9が積層して形成されてい
る。またP型シリコン基板1にはゲート電極6をマスク
としてN型の低濃度拡散層8が形成され、さらに第3の
絶縁膜9をマスクとしてN型の高濃度拡散層10が形成
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of an essential part of the semiconductor device of the present invention. As shown in FIG.
A gate electrode 6 made of a refractory metal layer 5 and a polycrystalline silicon layer 4 formed via a LOCOS oxide film 2 and a gate oxide film 3 is formed on a type silicon substrate 1.
A first insulating film 11 and a second insulating film 7 are formed on the gate electrode 6.
Are laminated and formed, and the second insulating film 7 and the third insulating film 9 are laminated and formed on the side surface of the gate electrode 6. An N-type low-concentration diffusion layer 8 is formed on the P-type silicon substrate 1 using the gate electrode 6 as a mask, and an N-type high-concentration diffusion layer 10 is formed using the third insulating film 9 as a mask.

【0011】次に本発明の一実施例における半導体装置
の製造方法について、図面を参照しながら説明する。図
2(a)〜(c)には同製造方法の前半工程の工程断面図、
図3(a)〜(c)は同製造方法の後半工程の工程断面図で
ある。
Next, a method of manufacturing a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings. 2A to 2C are process cross-sectional views of the first half of the manufacturing method,
3A to 3C are process cross-sectional views of the latter half process of the manufacturing method.

【0012】まず図2(a)に示すように、P型シリコン
基板1の上にLOCOS酸化膜2を約700nm およびゲー
ト酸化膜3を約20nmそれぞれ所定の領域に形成する。次
に図2(b)に示すように、減圧CVD法により多結晶シ
リコン層4を250nm 堆積する。その上に高融点金属層5
を200nm堆積する。その上に絶縁膜11を200nm堆積す
る。次に図2(c)に示すように、ドライエッチング技術
を用いてゲ−トパタ−ニングを行う。次に図3(a)に示
すように、絶縁膜7を20nm堆積する。次にりんイオンま
たはひ素イオンをP型シリコン基板1の表面にイオン注
入により低濃度拡散層8を形成した後、活性化熱処理を
行う。次に図3(b)に示すように、P型シリコン基板1
の表面に酸化膜を200nm 堆積した後、エッチバック法を
用いて酸化膜をエッチングしサイドウォ−ル9を形成す
る。次に図3(c)に示すように、P型シリコン基板1の
表面にサイドウォ−ル9をマスクとしてひ素イオンを注
入し高濃度拡散層10を形成した後、活性化熱処理を行
いトランジスタが完成する。
First, as shown in FIG. 2A, a LOCOS oxide film 2 and a gate oxide film 3 are formed on a P-type silicon substrate 1 in predetermined regions of about 700 nm and about 20 nm, respectively. Next, as shown in FIG. 2B, a polycrystalline silicon layer 4 is deposited to a thickness of 250 nm by the low pressure CVD method. Refractory metal layer 5 on it
Is deposited to 200 nm. The insulating film 11 is deposited thereon to a thickness of 200 nm. Next, as shown in FIG. 2 (c), gate patterning is performed using a dry etching technique. Next, as shown in FIG. 3A, an insulating film 7 is deposited to a thickness of 20 nm. Next, phosphorus ions or arsenic ions are ion-implanted on the surface of the P-type silicon substrate 1 to form the low-concentration diffusion layer 8, and then activation heat treatment is performed. Next, as shown in FIG. 3B, a P-type silicon substrate 1
After depositing an oxide film of 200 nm on the surface of, the side wall 9 is formed by etching the oxide film using the etch back method. Next, as shown in FIG. 3C, arsenic ions are implanted into the surface of the P-type silicon substrate 1 using the side wall 9 as a mask to form a high-concentration diffusion layer 10, and then activation heat treatment is performed to complete the transistor. To do.

【0013】[0013]

【発明の効果】以上のように本発明は、低濃度拡散層の
十分な活性化を低濃度拡散層形成の直後に膜はがれなし
に行うことができ、高融点金属層をむき出しにせずにサ
イドウォ−ルが形成ができる優れた半導体装置およびそ
の製造方法を実現できるものである。
As described above, according to the present invention, sufficient activation of the low-concentration diffusion layer can be performed immediately after formation of the low-concentration diffusion layer without peeling off the film, and the refractory metal layer is not exposed to the side wall. It is possible to realize an excellent semiconductor device capable of forming a package and a manufacturing method thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における半導体装置の要部断
面図
FIG. 1 is a sectional view of an essential part of a semiconductor device according to an embodiment of the present invention.

【図2】(a)〜(c)は同半導体装置の製造方法の前半工
程の工程断面図
2A to 2C are process cross-sectional views of the first half of the method for manufacturing the same semiconductor device.

【図3】(a)〜(c)は同半導体装置の製造方法の後半工
程の工程断面図
3A to 3C are process cross-sectional views of the latter half of the method for manufacturing the same semiconductor device.

【図4】従来の半導体装置の要部断面図FIG. 4 is a sectional view of a main part of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 シリコン基板(半導体基板) 3 ゲート絶縁膜 4 多結晶シリコン層 5 高融点金属層 6 ゲート電極 7 絶縁膜(第2の絶縁膜) 8 低濃度拡散層 9 サイドウォ−ル(第3の絶縁膜) 10 高濃度拡散層 11 絶縁膜(第1の絶縁膜) 1 Silicon Substrate (Semiconductor Substrate) 3 Gate Insulating Film 4 Polycrystalline Silicon Layer 5 Refractory Metal Layer 6 Gate Electrode 7 Insulating Film (Second Insulating Film) 8 Low Concentration Diffusion Layer 9 Sidewall (Third Insulating Film) 10 High-concentration diffusion layer 11 Insulating film (first insulating film)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/316 29/62 G 9055−4M 9274−4M H01L 21/94 A 7377−4M 29/78 301 P (72)発明者 中林 隆 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 堀 敦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 益田 洋司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication location H01L 21/316 29/62 G 9055-4M 9274-4M H01L 21/94 A 7377-4M 29/78 301 P (72) Inventor Takashi Nakabayashi 1006 Kadoma, Kadoma-shi, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Atsushi Hori At 1006 Kadoma, Kadoma City Osaka Prefecture (72) Inventor Yoji Masuda, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一方導電型の半導体基板の上にゲート絶
縁膜が形成されており、前記ゲート絶縁膜の上に多結晶
シリコン層と高融点金属層からなるゲート電極が形成さ
れており、前記ゲート電極上には第1の絶縁膜と第2の
絶縁膜が積層して形成されており、前記ゲート電極の側
面には第2の絶縁膜と第3の絶縁膜が積層して形成され
ており、かつ半導体基板にはゲート電極をマスクとする
他方導電型の低濃度拡散層と第3の絶縁膜をマスクとし
前記低濃度拡散層の一部に重なる他方導電型の高濃度拡
散層が形成されている半導体装置。
1. A gate insulating film is formed on a conductive type semiconductor substrate, and a gate electrode composed of a polycrystalline silicon layer and a refractory metal layer is formed on the gate insulating film. A first insulating film and a second insulating film are stacked on the gate electrode, and a second insulating film and a third insulating film are stacked on the side surface of the gate electrode. On the semiconductor substrate, the other conductivity type low concentration diffusion layer using the gate electrode as a mask and the other conductivity type high concentration diffusion layer overlapping with part of the low concentration diffusion layer using the third insulating film as a mask are formed. Semiconductor device.
【請求項2】 一方導電型の半導体基板上にゲート絶縁
膜を介して多結晶シリコン層を堆積した後前記多結晶シ
リコン層上に高融点金属層を堆積する工程と、前記高融
点金属層上に第1の絶縁膜を堆積した後フォトリソグラ
フィーによって上部に第1の絶縁膜を有するゲート電極
を形成する工程と、前記ゲート電極の上部および側面に
薄い第2の絶縁膜を堆積する工程と、ゲート電極をマス
クとして他方導電型の低濃度拡散層を形成する工程と、
前記低濃度拡散層の活性化熱処理を行う工程と、前記ゲ
ート電極の側面に第3の絶縁膜を形成する工程と、前記
第3の絶縁膜をマスクとして他方導電型の高濃度拡散層
を形成する工程とを有する半導体装置の製造方法。
2. A step of depositing a polycrystalline silicon layer on a conductive type semiconductor substrate through a gate insulating film and then depositing a refractory metal layer on the polycrystalline silicon layer, and a step of depositing a refractory metal layer on the polycrystalline silicon layer. Forming a gate electrode having a first insulating film thereon by photolithography after depositing a first insulating film on the substrate, and depositing a thin second insulating film on the upper and side surfaces of the gate electrode; Forming a low concentration diffusion layer of the other conductivity type using the gate electrode as a mask;
Performing a heat treatment for activation of the low-concentration diffusion layer, forming a third insulating film on the side surface of the gate electrode, and forming a high-concentration diffusion layer of the other conductivity type using the third insulating film as a mask And a method of manufacturing a semiconductor device.
JP24908192A 1992-09-18 1992-09-18 Semiconductor device and manufacture thereof Pending JPH06104276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24908192A JPH06104276A (en) 1992-09-18 1992-09-18 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24908192A JPH06104276A (en) 1992-09-18 1992-09-18 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06104276A true JPH06104276A (en) 1994-04-15

Family

ID=17187721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24908192A Pending JPH06104276A (en) 1992-09-18 1992-09-18 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06104276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780896A (en) * 1995-12-21 1998-07-14 Nec Corporation Semiconductor device having shallow impurity region without short-circuit between gate electrode and source and drain regions and process of fabrication thereof
US6281084B1 (en) 1999-08-31 2001-08-28 Infineon Technologies Corporation Disposable spacers for improved array gapfill in high density DRAMs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780896A (en) * 1995-12-21 1998-07-14 Nec Corporation Semiconductor device having shallow impurity region without short-circuit between gate electrode and source and drain regions and process of fabrication thereof
US6281084B1 (en) 1999-08-31 2001-08-28 Infineon Technologies Corporation Disposable spacers for improved array gapfill in high density DRAMs

Similar Documents

Publication Publication Date Title
JPH0744275B2 (en) Method for manufacturing high breakdown voltage MOS semiconductor device
JPS6360549B2 (en)
JPH06104276A (en) Semiconductor device and manufacture thereof
JP2002164537A (en) Semiconductor device and its manufacturing method
JPH0127589B2 (en)
JPS603157A (en) Manufacture of semiconductor device
JPH02133929A (en) Semiconductor device and its manufacture
JP2001267558A (en) Method of manufacturing for semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
JP2525186B2 (en) Method for manufacturing semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JPS62273774A (en) Manufacture of field-effect transistor
JPH0621089A (en) Semiconductor device and manufacture thereof
JPH0629310A (en) Semiconductor device and manufacture thereof
JP2988067B2 (en) Manufacturing method of insulated field effect transistor
JPH0226034A (en) Manufacture of semiconductor device
JPS63144575A (en) Manufacture of semiconductor device
JPH06252173A (en) Manufacture of insulated gate semiconductor device
JPS5951152B2 (en) Manufacturing method of semiconductor device
JPS59104175A (en) Manufacture of semiconductor device
JPS6254959A (en) Manufacture of mis semiconductor device
JP2001077205A (en) Manufacture of semiconductor device
JPH053210A (en) Manufacture of semiconductor device
JPS6245180A (en) Manufacture of semiconductor device
JPH04145666A (en) Electrically erasable nonvolatile semiconductor memory