JPS62273774A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPS62273774A
JPS62273774A JP11654586A JP11654586A JPS62273774A JP S62273774 A JPS62273774 A JP S62273774A JP 11654586 A JP11654586 A JP 11654586A JP 11654586 A JP11654586 A JP 11654586A JP S62273774 A JPS62273774 A JP S62273774A
Authority
JP
Japan
Prior art keywords
gate electrode
polysilicon
resist
gate
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11654586A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Okuda
奥田 能充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP11654586A priority Critical patent/JPS62273774A/en
Publication of JPS62273774A publication Critical patent/JPS62273774A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To obtain a field-effect transistor having a stable LDD structure by simple processes, by utilizing the difference in size of a gate electrode after anisotropic etching and after isotropic etching as the region of low concentration drain and source diffused layer. CONSTITUTION:An isolating oxide film 2 is formed on a silicon substrate 1 having a P-type surface. Thereafter, a gate oxide film 3 is formed in a transistor forming region by a thermal oxidation method. Then, polysilicon 4 for a gate electrode is deposited by a pressure reduced CVD method. Then a gate-electrode forming pattern 5 is formed with positive resist. Thereafter, anisotropic etching of the polysilicon is performed. At this time, the size of the polysilicon after etching is about the same as the size of the resist. Then arsenic ions are implanted without removing the resist, and a high concentration drain and source diffused layer 6 is formed. The gate electrode undergoes isotropic etching. Thereafter the resist is removed by oxygen plasma. With the polysilicon electrode as a mask, arsenic ions are implanted, and a low concentration drain and source diffused layer 7 is formed.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は高耐圧性の微小電界効果トランジスタの製造方
法に関する〇 従来の技術 半導体集積回路を形成する際に特にその高集櫃化は重大
な要素の一つとなっているが、これを実現する最も有力
な手段の一つとして近年量も一般的なものは、ゲート電
極にポリシリコンや高融点金属化合物等を用い、このゲ
ート電極に自己整合的にドレイン及びソース拡散層を形
成する方法である。この方法を用いた微細構造を持つ最
も代表的な素子としてメモリー素子があげられよう。と
ころでこの構造を持つ絶縁ゲート型電界効果トランジス
タにおいてそのゲート長が1.5μm程度以下になると
実効チャンネル長を確保するためにドレイン、ソース拡
散層の深さは0.3μm程度以下にする必要がある。こ
の場合、単純な自己整合型の電界効果トランジスタでは
、特にドレイン拡散層の持つ大きな曲率のためドレイン
耐圧の低下が起る。この現象を防ぐ目的で微細な電界効
果トランジスタを形成する際によく用いられる構造とし
て、L D D (Litely Doped Dra
in)がある。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Field of Application The present invention relates to a method for manufacturing a micro field effect transistor with high withstand voltage. The formation of a structure has become one of the important factors, and one of the most effective means to achieve this, which has become popular in recent years, is to use polysilicon or high-melting point metal compounds for the gate electrode. This method forms drain and source diffusion layers in a self-aligned manner with the gate electrode. Memory devices are the most typical device that has a fine structure using this method. By the way, in an insulated gate field effect transistor having this structure, when the gate length is about 1.5 μm or less, the depth of the drain and source diffusion layers needs to be about 0.3 μm or less to ensure the effective channel length. . In this case, in a simple self-aligned field effect transistor, the drain breakdown voltage decreases, especially due to the large curvature of the drain diffusion layer. In order to prevent this phenomenon, LDD (Litely Doped Dra) is a structure often used when forming fine field effect transistors.
in).

この方法は高濃度なドレイン拡散層のゲート側の内側に
低濃度の同型不純物層を設けることにより、曲率の大き
な部分への電界集中を防ぐものである。
In this method, a low concentration same-type impurity layer is provided inside the high concentration drain diffusion layer on the gate side to prevent electric field concentration in a portion with a large curvature.

発明が解決しようとする問題点 ところがこのような構造を得るための方法は、たとえば
ゲート電極形成後にこのゲート電極の側壁にポリシリコ
ン等によるサイドウオールを形成する必要がある等複雑
な工程が多く必要である。
Problems to be Solved by the Invention However, the method for obtaining such a structure requires many complicated steps, such as the need to form side walls of polysilicon or the like on the side walls of the gate electrode after forming the gate electrode. It is.

本発明は、LDD構造を実現する場合の従来の方法にお
けるサイドウオール形成等の複雑で不安定な工程を不必
要とするものである。
The present invention eliminates the need for complicated and unstable steps such as sidewall formation in conventional methods when implementing LDD structures.

問題点を解決するための手段 本発明の電界効果トランジスタの製造方法は次のとおり
である。半導体基板主面を、周知の選択酸化法によりト
ランジスタ形成領域と分離領域に分割する。次にトラン
ジスタ形成領域にゲート酸化膜を形成後ポリシリコンも
しくは高融点金属化合物を堆積する。次にレジストをマ
スクにして異方性のエツチングを行い、レジストと同寸
法のゲート電極を形成する。その後この状態で高濃度の
ドレイン及びソース拡散層を自己整合的に形成すべくイ
オン注入を行う。次にゲート電極の等方的なエツチング
を行った後レジストを除去し低濃度のドレイン及びソー
ス拡散層を第二回目のイオン注入によって自己整合的に
形成する。その後通常のアニールを行った後、上部電極
層間膜等の形成6ベー2 工程を実施する。
Means for Solving the Problems The method for manufacturing a field effect transistor of the present invention is as follows. The main surface of the semiconductor substrate is divided into a transistor formation region and an isolation region by a well-known selective oxidation method. Next, after forming a gate oxide film in the transistor formation region, polysilicon or a high melting point metal compound is deposited. Next, anisotropic etching is performed using the resist as a mask to form a gate electrode having the same dimensions as the resist. Thereafter, in this state, ion implantation is performed to form highly doped drain and source diffusion layers in a self-aligned manner. Next, after performing isotropic etching of the gate electrode, the resist is removed and low concentration drain and source diffusion layers are formed in a self-aligned manner by second ion implantation. After that, normal annealing is performed, and then a step of forming an upper electrode interlayer film, etc. is carried out.

作用 本発明の電極効果トランジスタの形成方法においては、
ゲート電極の異方性エツチング後の寸法と等方性エツチ
ング後の寸法差が低濃度ドレイン。
Function: In the method for forming an electrode effect transistor of the present invention,
The difference in the dimensions of the gate electrode after anisotropic etching and after isotropic etching is the low concentration drain.

ソース拡散層の領域となる。本発明によればゲート形成
時のマスクとしてレジストが必要なだけで複雑な工程を
必要とせず安定なLDD構造を持つ絶縁ゲート型の電果
効果トランジスタを形成できる。
This becomes the region of the source diffusion layer. According to the present invention, an insulated gate type field effect transistor having a stable LDD structure can be formed without requiring a complicated process by only requiring a resist as a mask during gate formation.

実施例 以下に本発明の電界効果トランジスタの製造方法の実施
例を図を用いて詳しく説明する。第1図においてP型(
100)面を持つシリコン基板1上に選択酸化法によっ
ておよそ70oO人の厚さを持つ分離酸化膜2を形成し
た後、トランジスタ形成領域に熱酸化法によって約30
0人のゲート酸化膜3を形成する。次に減圧CVD法に
よってゲート電極用のポリシリコン4を約500o人堆
積する。そして前記ポリシリコンに燐をドープし6 ・
\ て比抵抗を下げた後、約1μm厚のポジレジストによっ
てゲート電極形成用のパターン5を形成する。この時レ
ジストに遠紫外光を照射し、レジストの酸化を行う。こ
の後、六沸化硫黄と四塩化炭素の混合ガスを用いた反応
性イオンエツチング法を用いてポリシリコンの異方性エ
ツチングを行う。
EXAMPLES Below, examples of the method for manufacturing a field effect transistor of the present invention will be described in detail with reference to the drawings. In Figure 1, P type (
After forming an isolation oxide film 2 having a thickness of approximately 7000 μm on a silicon substrate 1 having a surface of 100 μm by selective oxidation method, an isolation oxide film 2 having a thickness of approximately 700 μm is formed in the transistor formation region by thermal oxidation method.
0 gate oxide film 3 is formed. Next, approximately 500 layers of polysilicon 4 for a gate electrode are deposited by low pressure CVD. Then, the polysilicon is doped with phosphorus and 6.
After lowering the specific resistance, a pattern 5 for forming a gate electrode is formed using a positive resist with a thickness of about 1 μm. At this time, the resist is irradiated with deep ultraviolet light to oxidize the resist. Thereafter, polysilicon is anisotropically etched using a reactive ion etching method using a mixed gas of sulfur hexafluoride and carbon tetrachloride.

この時のポリシリコンのエッチ後の寸法はレジストの寸
法とほぼ同じである。次にレジストを除去せずに砒素の
イオン注入を行う。この時の注入条件は加速電圧40 
KeVドーズ量2X10  ffi  である。このイ
オン注入は高濃度ドレイン、ソース拡散層6を形成する
ためのものである。その後前記レジストをマスクにして
ゲート電極を等方的にエツチングする。方法は、フロン
(200SCCM)と酸素(2osccM)の混合ガス
によるプラズマエツチングを用いる。このエツチングに
よるサイドエッチ量は約4000人である。この後レジ
スト香酸素プラズマによって除去し、ポリシリコン電極
をマスクにして自己整合的に砒素のイオン注入を行うと
第2図に示すようになる。この時の注入条件7ベー7 はs o KeVドーズ量は1×10 である。このイ
オン注入は低濃度ドレイン、ソース拡散層7を形成する
ためのものである。この次に900℃30分間の熱処理
を行ってイオン注入層をアニールし、さらに上部の電極
及び層間膜を形成する。
At this time, the dimensions of the polysilicon after etching are approximately the same as the dimensions of the resist. Next, arsenic ions are implanted without removing the resist. The injection conditions at this time are acceleration voltage 40
The KeV dose is 2×10 ffi. This ion implantation is for forming a highly doped drain and source diffusion layer 6. Thereafter, the gate electrode is isotropically etched using the resist as a mask. The method uses plasma etching using a mixed gas of Freon (200 SCCM) and oxygen (2 osccM). The amount of side etching by this etching is approximately 4000. Thereafter, the resist is removed by oxygen plasma, and arsenic ions are implanted in a self-aligned manner using the polysilicon electrode as a mask, resulting in the result shown in FIG. At this time, the implantation condition 7be7 is that the so KeV dose is 1×10. This ion implantation is for forming a lightly doped drain and source diffusion layer 7. Next, heat treatment is performed at 900° C. for 30 minutes to anneal the ion-implanted layer, and then an upper electrode and interlayer film are formed.

発明の効果 本発明によれば、簡単な工程で安定なLDD構造を持つ
電界効果トランジスタを得ることができる。
Effects of the Invention According to the present invention, a field effect transistor having a stable LDD structure can be obtained through a simple process.

方法の工程を示す素子断面図である。FIG. 3 is a cross-sectional view of the device showing steps of the method.

1・・・・・・シリコン基板、2・・・・・・分離酸化
膜、3・・・・・・ゲート酸化膜、4・・・・・・ゲー
ト電極、6・・・・・・ホトレジスト、6・・・・・・
高濃度ドレイン、ソースイオン注入層、7・・・・・・
低濃度ドレイン、ソースイオン注入層。
DESCRIPTION OF SYMBOLS 1...Silicon substrate, 2...Isolation oxide film, 3...Gate oxide film, 4...Gate electrode, 6...Photoresist , 6...
High concentration drain, source ion implantation layer, 7...
Low concentration drain and source ion implantation layers.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名(−
−−シyJ>@不2( 2−−−クトII徒1炉え4こ月更 5−−一本トl/=;スト
Name of agent: Patent attorney Toshio Nakao and one other person (-
--shiyJ>@fu2( 2---kut II 1 furnace 4 month change 5--1ponto l/=; strike

Claims (3)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板の主面上に、ゲート絶縁膜
とポリシリコンもしくは高融点金属よりなるゲート電極
膜とを順次積層する第1の工程と、前記ゲート電極膜上
に形成したゲート電極形成用レジストマスクを用いて、
前記ゲート電極膜を異方性エッチングしゲート電極を形
成する第2の工程と、前記ゲート電極をマスクにして前
記半導体基板と逆導電型の第1の不純物を前記半導体基
板中にイオン注入し自己整合的にソース及びドレインの
第1の領域を形成する第3の工程と、前記レジストマス
クを用いて前記ゲート電極を等方性エッチングする第4
の工程と、前記レジストマスクを除去後前記ゲート電極
をマスクにして前記半導体基板と逆導電型の前記第1の
不純物より低濃度の第2の不純物を前記半導体基板中に
イオン注入し、自己整合的にソース及びドレインの第2
の領域を形成する第5の工程と、層間絶縁膜と前記ソー
ス及びドレインの第1の領域に対するコンタクト電極を
形成する第6の工程とを有する事を特徴とする電界効果
トランジスタの製造方法。
(1) A first step of sequentially laminating a gate insulating film and a gate electrode film made of polysilicon or a high melting point metal on the main surface of a semiconductor substrate of one conductivity type, and a gate formed on the gate electrode film. Using a resist mask for electrode formation,
a second step of anisotropically etching the gate electrode film to form a gate electrode; and a second step of ion-implanting a first impurity of a conductivity type opposite to that of the semiconductor substrate into the semiconductor substrate using the gate electrode as a mask. a third step of forming source and drain first regions in a consistent manner; and a fourth step of isotropically etching the gate electrode using the resist mask.
After removing the resist mask, using the gate electrode as a mask, a second impurity having a conductivity type opposite to that of the semiconductor substrate and having a lower concentration than the first impurity is ion-implanted into the semiconductor substrate, and self-alignment is performed. source and drain second
A method for manufacturing a field effect transistor, comprising: a fifth step of forming a region; and a sixth step of forming an interlayer insulating film and a contact electrode for the source and drain first regions.
(2)第1の工程後、レジストマスクに遠紫外光を照射
する工程を含む特許請求の範囲第1項記載の電界効果ト
ランジスタの製造方法。
(2) The method for manufacturing a field effect transistor according to claim 1, which includes the step of irradiating the resist mask with deep ultraviolet light after the first step.
(3)第4の工程がフロンと酸素の混合気体によるプラ
ズマエッチングである特許請求の範囲第1項記載の電界
効果トランジスタの製造方法。
(3) The method for manufacturing a field effect transistor according to claim 1, wherein the fourth step is plasma etching using a mixed gas of fluorocarbon and oxygen.
JP11654586A 1986-05-21 1986-05-21 Manufacture of field-effect transistor Pending JPS62273774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11654586A JPS62273774A (en) 1986-05-21 1986-05-21 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11654586A JPS62273774A (en) 1986-05-21 1986-05-21 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPS62273774A true JPS62273774A (en) 1987-11-27

Family

ID=14689766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11654586A Pending JPS62273774A (en) 1986-05-21 1986-05-21 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPS62273774A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840611A (en) * 1993-12-16 1998-11-24 Goldstar Electron Company, Ltd. Process for making a semiconductor MOS transistor
KR100384860B1 (en) * 2000-08-31 2003-05-22 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
KR100571315B1 (en) * 1998-06-11 2006-08-30 삼성전자주식회사 Constructing method for lightly doped drain structure of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840611A (en) * 1993-12-16 1998-11-24 Goldstar Electron Company, Ltd. Process for making a semiconductor MOS transistor
KR100571315B1 (en) * 1998-06-11 2006-08-30 삼성전자주식회사 Constructing method for lightly doped drain structure of semiconductor device
KR100384860B1 (en) * 2000-08-31 2003-05-22 주식회사 하이닉스반도체 Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5972754A (en) Method for fabricating MOSFET having increased effective gate length
US5726081A (en) Method of fabricating metal contact of ultra-large-scale integration metal-oxide semiconductor field effect transistor with silicon-on-insulator structure
JP2000232075A (en) Manufacture of semiconductor device
JPS62273774A (en) Manufacture of field-effect transistor
JPH0370139A (en) Manufacture of semiconductor device
JPH09223797A (en) Manufacture of semiconductor device
KR0170436B1 (en) Method of manufacturing mosfet
JPH05206454A (en) Manufacture of mis-type semiconductor device
US6013554A (en) Method for fabricating an LDD MOS transistor
JP3088556B2 (en) Semiconductor device manufacturing method
JPH03198349A (en) Manufacture of mos type semiconductor device
JPH01117066A (en) Manufacture of mos type semiconductor device
JPH01110762A (en) Manufacture of semiconductor device
JPH02133929A (en) Semiconductor device and its manufacture
KR100253340B1 (en) Manufacturing method for mos transistor
JP3311082B2 (en) Method for manufacturing semiconductor device
KR940007663B1 (en) Manufacturing method of mosfet
JPH0226034A (en) Manufacture of semiconductor device
KR100289394B1 (en) Method for producing a self aligned type epitaxial co silicide in semiconductor device
JPS6367778A (en) Manufacture of semiconductor device
JPH07122741A (en) Manufacture of semiconductor device
JPH03171740A (en) Manufacture of semiconductor device
JPH01217962A (en) Manufacture of complementary mis field effect semiconductor device
JPS62250673A (en) Manufacture of semiconductor device
JPH06104276A (en) Semiconductor device and manufacture thereof