JPH03171740A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03171740A
JPH03171740A JP1309037A JP30903789A JPH03171740A JP H03171740 A JPH03171740 A JP H03171740A JP 1309037 A JP1309037 A JP 1309037A JP 30903789 A JP30903789 A JP 30903789A JP H03171740 A JPH03171740 A JP H03171740A
Authority
JP
Japan
Prior art keywords
gate electrode
concentration
oxide film
forming
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309037A
Other languages
Japanese (ja)
Inventor
Takanao Hayashi
孝尚 林
Akira Uchiyama
章 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1309037A priority Critical patent/JPH03171740A/en
Publication of JPH03171740A publication Critical patent/JPH03171740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enable formation of a reference concentration diffusion region, a high- concentration source/drain region, and a low-concentration diffusion region in self- aligned manner without any need for a side-wall formation process by the ion implanta tion with a polysilicon oxide film, which is formed at a gate electrode or on the surface of this gate electrode by thermal oxidation, as a mask. CONSTITUTION:An N<+> polysilicon layer 23 which is formed on a P-type silicon sub strate 21 is subjected to patterning, thus forming a gate electrode 24. After that, with the gate electrode 24 as a mask, N-type impurities are ion-implanted, thus forming reference concentration N-type regions 26a and 26b on the surface of the substrate 21 on both sides of the gate electrode 24. Then, the surface of the gate electrode 24 is subjected to expansion oxidation by the thermal oxidation method, thus forming a polysilicon oxide film 27. Then, with the gate electrode 24 and the polysilicon oxide film 27 as masks, the N-type impurities are ion-implanted at high concentration, thus forming high-concentration source.drain regions 29a and 29b on the surface of the substrate 21. After that, with the gate electrode 24 as a mask, the N-type impurities are ion-implanted at low concentration, thus forming low-concentration N-type regions 31a and 31b on the surface of the substrate 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置、特にMIS電界効果トランジスタ
の製造方法に関する. 〔従来の技術〕 近年、半導体素子の微細化に伴い、MISトランジスタ
においてもゲート長が短くなり、ホットキャリアの発生
によるデバイスの劣化が問題となった.そこで、この対
策として、特にNMISFETにおいてはドレイン領域
近傍の高電界を緩和し、耐圧を向上するためにドレイン
領域を低濃度及び高濃度の拡散領域の二重拡散構造とし
た、所謂LDD構造が広く用いられてきた.ところで、
かかるLDD構造は、ドレイン近傍の電界を緩和するこ
とによりホットキャリアの発生を抑制する反面、ホット
キャリアによって、ドレイン近傍のゲート酸化膜中に捕
獲された電子の影響を受け、低濃度N型領域の表面が空
乏化し、このため、寄生抵抗が増大して、LDD構造の
トランジスタの電流駆動能力が低下するという欠点があ
った. 従来、かかる欠点を解消するM I S il界効果ト
ランジスタの製造方法として、「特開昭61−2106
73,に開示されるものがある.以下、第2図に従って
、この種の製造方法について述べる.向、第2図は工程
断面図を示す. 先ず、P型シリコン基板1上に、ゲート酸化膜2及びこ
の上に、ポリシリコンから或るゲート電極3を順次形成
する.次に、上記ゲート電極3をマスクとして、N型不
純物である#’l(P)を低濃度にイオン注入し、ゲー
ト電極3両側方の上記基板1表面部に低濃度N型領域5
a,5bを形成する(第2図a). その後、熱酸化法により、ゲート電極3の表面に、ポリ
シリコン酸化膜6を成長形成する。これによりゲート長
は、ポリシリコン酸化膜6が膨張酸化した分だけ長くな
る。次いで、上記ゲート電極3及びポリシリコン酸化1
196をマスクとして、N型不純物である砒素(As)
を低濃度N型領域5a,5bの不純物濃度より高濃度に
イオン注入し、上記低濃度N型領域5a,5bの外側に
接する基準濃度N型領域8a,8bを基Fi1の表面部
に形成する(第2図b). しかる後、全面に、SiOtllを堆積した後、反応性
イオンエッチング法により、ゲート電極3の両側方に、
サイドウォール9a,9bを形成する.その後、ゲート
電極3.ポリシリコン酸化膜6及びサイドウォール9a
,9bをマスクとして、砒素を基準濃度N型領域8a,
8bの不純物濃度より高濃度にイオン注入し、上記基準
濃度N型領域8a.8bの外側に接する高濃度のソース
・ドレイン領域11a,llbを基板1表面部に形成し
、MOSFETを完威していた(第2図C).尚、この
場合、高濃度ソース・ドレイン領域11a,llbは基
準濃度N型領域8a.8bより不純物濃度が高濃度であ
り、基準濃度N型領域8a  8bは低濃度N型領域5
a,5bより不純物濃度が高濃度である. 斯くして、かかる三重拡散のLDD構造によれば、基準
濃度N型領域8a,8bを設けたことにより、低濃度N
型領域5a,5bの空乏化が緩和され、ひいてはトラン
ジスタの電流駆動能力の低下が抑制できるものであった
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, particularly a MIS field effect transistor. [Prior Art] In recent years, with the miniaturization of semiconductor devices, the gate length of MIS transistors has become shorter, and device deterioration due to the generation of hot carriers has become a problem. Therefore, as a countermeasure to this problem, especially in NMISFETs, the so-called LDD structure, in which the drain region is made into a double diffusion structure of low concentration and high concentration diffusion regions, is widely used in order to alleviate the high electric field near the drain region and improve the withstand voltage. It has been used. by the way,
Such an LDD structure suppresses the generation of hot carriers by relaxing the electric field near the drain, but on the other hand, the hot carriers are affected by electrons captured in the gate oxide film near the drain, and the low concentration N-type region is The surface becomes depleted, which increases parasitic resistance, resulting in a disadvantage that the current driving ability of the transistor with the LDD structure decreases. Conventionally, as a method for manufacturing MI SIL field effect transistors that eliminates such drawbacks, there is a method disclosed in Japanese Patent Application Laid-Open No.
There is something disclosed in 73. This type of manufacturing method will be described below with reference to Figure 2. Figure 2 shows a cross-sectional view of the process. First, a gate oxide film 2 and a certain gate electrode 3 made of polysilicon are sequentially formed on a P-type silicon substrate 1. Next, using the gate electrode 3 as a mask, N-type impurity #'l (P) is ion-implanted at a low concentration to form low-concentration N-type regions 5 on the surface of the substrate 1 on both sides of the gate electrode 3.
a, 5b (Fig. 2a). Thereafter, a polysilicon oxide film 6 is grown on the surface of the gate electrode 3 by thermal oxidation. As a result, the gate length increases by the amount that polysilicon oxide film 6 expands and oxidizes. Next, the gate electrode 3 and polysilicon oxide 1
Using 196 as a mask, arsenic (As), which is an N-type impurity, is added.
Ions are implanted at a higher concentration than the impurity concentration of the low concentration N type regions 5a and 5b to form reference concentration N type regions 8a and 8b in contact with the outside of the low concentration N type regions 5a and 5b on the surface portion of the base Fi1. (Figure 2b). After that, after depositing SiOtll on the entire surface, reactive ion etching is performed to form a layer on both sides of the gate electrode 3.
Form sidewalls 9a and 9b. After that, gate electrode 3. Polysilicon oxide film 6 and sidewall 9a
, 9b as a mask, arsenic is applied to the reference concentration N-type region 8a,
Ions are implanted at a higher impurity concentration than those of the reference concentration N-type regions 8a. Highly doped source/drain regions 11a and 11b in contact with the outside of 8b were formed on the surface of the substrate 1 to complete the MOSFET (FIG. 2C). In this case, the high concentration source/drain regions 11a, llb are the reference concentration N type regions 8a. The impurity concentration is higher than that of 8b, and the reference concentration N-type region 8a and 8b are the low concentration N-type region 5.
The impurity concentration is higher than that of a and 5b. According to this triple diffusion LDD structure, by providing the reference concentration N type regions 8a and 8b, the low concentration N type region 8a and 8b are provided.
Depletion of the type regions 5a and 5b was alleviated, and as a result, a decrease in the current driving ability of the transistor could be suppressed.

〔発明が解決しようとする!Ia) 然し彊ら、従来MISFETの製造方法においては、三重拡散構造を得るため、サイドウオールを利用しているため、この分の工数が嵩み、製造コスト高や歩留り低下を招来するという問題点があった. 本発明の目的は、上述した問題点に鑑み、工数が低減でき、トランジスタの電流駆動能力が向上できる半導体装置の製造方法を提供するものである. 〔課題を解決するための手段〕[Invention tries to solve! Ia) However, in the conventional MISFET manufacturing method, sidewalls are used to obtain a triple diffusion structure, which increases the number of man-hours, leading to higher manufacturing costs and lower yields. Ta. SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a method for manufacturing a semiconductor device that can reduce the number of steps and improve the current driving ability of a transistor. [Means to solve the problem]

本発明は上述した目的を達威するため、半導体基板上に
、ゲート絶縁膜、ポリシリコンから或るゲート電極を順
次形成する工程と、上記ゲート電極をマスクとして、不
純物を所望の濃度でイオン注入し、上記ゲート電極両側
方の上記基板表面部に、自己整合的に基準濃度拡散領域
を形成する工程と、熱酸化法により、上記ゲート電極の
表面を膨張酸化し、ポリシリコン酸化膜を形成する工程
と、上記ポリシリコン酸化膜及び上記ゲート電極をマス
クとして、不純物を上記基準濃度拡散領域の濃度より高
濃度にイオン注入し、上記基準濃度拡散領域の外側に接
する基準濃度より高い濃度の高濃度ソース・ドレイン領
域を自己整合的に形成する工程と、上記ポリシリコン酸
化膜を除去した後、上記ゲート電極をマスクとして、不
純物を上記基準濃度拡散領域の濃度より低濃度にイオン
注入し、上記基準濃度拡散領域の内側に接する基準濃度
より低い濃度の低濃度拡散領域を自己整合的に形成する
工程とを含むものである。
In order to achieve the above-mentioned object, the present invention includes a step of sequentially forming a gate electrode from a gate insulating film and polysilicon on a semiconductor substrate, and ion implantation of impurities at a desired concentration using the gate electrode as a mask. Then, forming reference concentration diffusion regions in a self-aligned manner on the surface of the substrate on both sides of the gate electrode, and expanding and oxidizing the surface of the gate electrode by a thermal oxidation method to form a polysilicon oxide film. step, using the polysilicon oxide film and the gate electrode as a mask, impurity ions are implanted at a concentration higher than the concentration of the reference concentration diffusion region, and a high concentration higher than the reference concentration adjacent to the outside of the reference concentration diffusion region is implanted. After forming the source/drain regions in a self-aligned manner and removing the polysilicon oxide film, using the gate electrode as a mask, impurity is ion-implanted to a concentration lower than that of the reference concentration diffusion region, and The method includes the step of forming in a self-aligned manner a low concentration diffusion region having a concentration lower than a reference concentration and in contact with the inside of the concentration diffusion region.

〔作 用〕[For production]

本発明においては、ゲートi!極をマスクとする基準濃
度拡散領域形成後、ゲート電極及び熱酸化によりL記ゲ
ー1−電極の表面に形成されたポリシリコン酸化膜をマ
スクとして、高濃度ソース・ドレイン領域を自己整合的
に形成し、ポリシリコン酸化膜除去後の狭幅のゲー1一
電極をマスクとして、低濃度拡散領域を自己整合的に形
成するので、ザイドウォール形成工程を必要とせず、三
重拡散のL I) D構造が得られる.従って、工数が
低減化され、製造コストの低減及び歩留り向上が達成さ
れる. (実施例) 本発明MISFETの製造方法に係わる一実施例を、第
1図に基づいて説明する。尚、第1図は工程断面図を示
す. 先ず、P型シリコン基板2l上に、ゲート酸化n222
を熱酸化法により形成する。次に、この上に、化学的気
相威長法(CVD)によって、ノンドープのポリシリコ
ンを、例えば4000久厚堆積した後、このポリシリコ
ン中に、N型不純物である燐を拡散させ、N゛ポリシリ
コン層23とする(第1図a). 而して、上記N゛ポリシリコンJii23をパターニン
グして、ゲートt tri 2 4を形成する(第1図
b). その後、上記ゲート電極24をマスクとして、N型不純
物、例えばAs’ を所望の濃度にイオン注入し、ゲー
ト電極24両側方の基板21表面部に、基準濃度N型領
域26a.26bを形成する(第1図C). 次いで、熱酸化法により、ゲート電極24表面を膨張酸
化し、1000入厚のポリシリコン酸化膜27を形成す
る.これにより、ゲート長は片側で500入程度長くな
り、このとき、上記基準濃度N型領域26a,26bは
若干熱拡散する。尚、ゲート電極24の酸化時に、基板
2l上も酸化されるが、これは酸化レートが小さいため
問題とはならない.次に、ゲート電極24及びポリシリ
コン酸化膜27をマスクとして、N型不純物、例えば砒
素を基準濃度N型領域26a,26bの濃度より高濃度
にイオン注入し、基準濃度N型領域26a  26bの
外側に接する高濃度のソース・ドレイン領域29a,2
9bを、基板21表面部に形成する。従って、この場合
のソース・ドレイン領域29a.29bと基準濃度N型
領域26a26bとのずれ、即ちオフセット長は、ポリ
シリコン酸化膜27における酸化前のゲート電極24の
形状(図中点線)より膨張した分、つまり500入長及
びポリシリコン酸化膜27形成時における基Y$濃度N
型領域26a,26bの熱拡散L7た分となる(第1図
d). しかる後、ポリシリコン酸化膜27及びゲート酸化膜2
2を除く基板2l上の酸化膜を除去する.Vtいて、ゲ
ート電極24をマスクとして、N型不純物、例えば燐を
基準濃度N型領域26a.26bの濃度より低濃度にイ
オン注入し、基準濃度N型領域26a.26bの内側に
接する低濃度N型領域31a,3lbを、基板2lの表
面部に形成する(第1図e). 更に、全面に絶縁膜32を堆積した後、この絶縁膜32
のソース・ドレイン領域29a.29b上の部分を開孔
し、この開札部に、M配線33を形成し、完成する(第
1図r)。
In the present invention, gate i! After forming the reference concentration diffusion region using the electrode as a mask, high concentration source/drain regions are formed in a self-aligned manner using the gate electrode and the polysilicon oxide film formed on the surface of the L gate electrode by thermal oxidation as a mask. However, since the low concentration diffusion region is formed in a self-aligned manner using the narrow gate electrode after removing the polysilicon oxide film as a mask, there is no need for a zide wall formation process, and a triple diffusion LID structure is formed. is obtained. Therefore, the number of man-hours is reduced, and manufacturing costs and yields are improved. (Example) An example of the method for manufacturing a MISFET of the present invention will be described based on FIG. 1. Furthermore, Figure 1 shows a cross-sectional view of the process. First, gate oxidation n222 is formed on the P-type silicon substrate 2l.
is formed by a thermal oxidation method. Next, non-doped polysilicon is deposited to a thickness of, for example, 4000 cm on top of this by chemical vapor deposition (CVD), and then phosphorus, which is an N-type impurity, is diffused into the polysilicon. ``Polysilicon layer 23 (Figure 1a). The N-polysilicon Jii 23 is then patterned to form a gate t tri 2 4 (FIG. 1b). Thereafter, using the gate electrode 24 as a mask, N-type impurities such as As' are ion-implanted to a desired concentration, and the reference concentration N-type regions 26a. 26b (Fig. 1C). Next, the surface of the gate electrode 24 is expanded and oxidized by thermal oxidation to form a polysilicon oxide film 27 with a thickness of 1,000 μm. As a result, the gate length becomes longer by about 500 mm on one side, and at this time, the reference concentration N-type regions 26a and 26b undergo some thermal diffusion. Note that when the gate electrode 24 is oxidized, the surface of the substrate 2l is also oxidized, but this does not pose a problem because the oxidation rate is low. Next, using the gate electrode 24 and the polysilicon oxide film 27 as a mask, an N-type impurity, for example, arsenic, is ion-implanted to a higher concentration than the reference concentration N-type regions 26a and 26b, and outside the reference concentration N-type regions 26a and 26b. High concentration source/drain regions 29a, 2 in contact with
9b is formed on the surface of the substrate 21. Therefore, in this case, the source/drain regions 29a. The deviation between 29b and the reference concentration N-type region 26a26b, that is, the offset length, is the expansion of the polysilicon oxide film 27 from the shape of the gate electrode 24 before oxidation (dotted line in the figure), that is, the 500% offset length and the polysilicon oxide film Group Y$ concentration N at the time of 27 formation
This is the thermal diffusion L7 of the mold regions 26a and 26b (Fig. 1d). After that, polysilicon oxide film 27 and gate oxide film 2 are formed.
The oxide film on the substrate 2l except for 2 is removed. Vt, and using the gate electrode 24 as a mask, an N-type impurity such as phosphorus is added to the reference concentration N-type regions 26a. Ions are implanted at a concentration lower than that of the reference concentration N-type regions 26a. Low concentration N-type regions 31a and 3lb which are in contact with the inside of the substrate 26b are formed on the surface of the substrate 2l (FIG. 1e). Furthermore, after depositing an insulating film 32 on the entire surface, this insulating film 32
source/drain regions 29a. A hole is made in the part above 29b, and the M wiring 33 is formed in this opening part, and the process is completed (FIG. 1r).

尚、本発明方法は、N型シリコン基板にP型不純物のボ
ロン(B)又はBF!等のイオン注入によって形成され
るP型拡散領域を有するPMISFETの製造にも適用
される.又、基準濃度N型領域26a,26bは、低濃
度N型領域31a.3lbより不純物濃度が高濃度であ
り、高濃度ソース・ドレイン領域29a.29bより不
純物濃度が低濃度である.ちなみに、L D D構造に
おける高不純物濃度とはX 1 0 ”ions / 
c一程度をいい、低不純物濃度とはX 1 0 ”io
ns/ ctl程度をいう. 〔発明の効果〕 以上説明したように本発明によれば、ゲート電極及びこ
のゲート電極の表面に熱酸化により形成されたポリシリ
コン酸化膜をマスクとするイオン注入により自己整合的
に基IIi濃度拡散領域、高濃度ソース・ドレイン領域
及び低濃度拡散領域を夫々形成するので、サイドウオー
ル形成工程を必要とすることなく、三重拡散のLDD構
造が得られる.よって、工数が低減化され、従って、製
造コストが低減できると共に、歩留りが向上でき、トラ
ンジスタの電流駆動能力も向上できる。
Note that the method of the present invention uses boron (B) or BF! as a P-type impurity on an N-type silicon substrate. It is also applied to the manufacture of PMISFETs having P-type diffusion regions formed by ion implantation such as ion implantation. Further, the reference concentration N type regions 26a, 26b are the low concentration N type regions 31a. 3lb, the impurity concentration is higher than that of the high concentration source/drain regions 29a. The impurity concentration is lower than that of 29b. By the way, the high impurity concentration in the LDD structure is
The low impurity concentration is approximately X 10"io
About ns/ctl. [Effects of the Invention] As explained above, according to the present invention, the base IIi concentration is diffused in a self-aligned manner by ion implantation using the gate electrode and the polysilicon oxide film formed by thermal oxidation on the surface of the gate electrode as a mask. Since a high concentration source/drain region, a high concentration source/drain region, and a low concentration diffusion region are formed respectively, a triple diffusion LDD structure can be obtained without requiring a sidewall forming step. Therefore, the number of man-hours can be reduced, and therefore manufacturing costs can be reduced, yields can be improved, and the current driving ability of the transistor can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例における工程断面図であ
り、第2図は従来方法の工程断面図である. 2l・・・P型シリコン基板、22・・・ゲート酸化膜
、23・・・N゜ボリシリコン層、24・・・ゲート電
極、26a,26b・・・基準濃度N型領域、27・・
・ポリシリコン酸化膜、29a,29b・・・ソース・
ドレイン領域、31a,3lb・・・低濃度N型領域。 楢鷹ガ;去の二才工図 第2図
FIG. 1 is a process sectional view of an embodiment of the method of the present invention, and FIG. 2 is a process sectional view of a conventional method. 2l... P type silicon substrate, 22... Gate oxide film, 23... N° polysilicon layer, 24... Gate electrode, 26a, 26b... Reference concentration N type region, 27...
・Polysilicon oxide film, 29a, 29b...source・
Drain region, 31a, 3lb...Low concentration N type region. Narataka; last Nisai engineering drawing 2nd drawing

Claims (1)

【特許請求の範囲】 半導体基板上に、ゲート絶縁膜、ポリシリコンから成る
ゲート電極を順次形成する工程と、上記ゲート電極をマ
スクとして、不純物を所望の濃度でイオン注入し、上記
ゲート電極両側方の上記基板表面部に、自己整合的に基
準濃度拡散領域を形成する工程と、 熱酸化法により、上記ゲート電極の表面を膨張酸化し、
ポリシリコン酸化膜を形成する工程と、上記ポリシリコ
ン酸化膜及び上記ゲート電極をマスクとして、不純物を
上記基準濃度拡散領域の濃度より高濃度にイオン注入し
、上記基準濃度拡散領域の外側に接する基準濃度より高
い濃度の高濃度ソース・ドレイン領域を自己整合的に形
成する工程と、 上記ポリシリコン酸化膜を除去した後、上記ゲート電極
をマスクとして、不純物を上記基準濃度拡散領域の濃度
より低濃度にイオン注入し、上記基準濃度拡散領域の内
側に接する基準濃度より低い濃度の低濃度拡散領域を自
己整合的に形成する工程とを含むことを特徴とする半導
体装置の製造方法。
[Claims] A step of sequentially forming a gate insulating film and a gate electrode made of polysilicon on a semiconductor substrate, and using the gate electrode as a mask, ion-implanting impurities at a desired concentration, and implanting impurities on both sides of the gate electrode. forming a reference concentration diffusion region in a self-aligned manner on the surface of the substrate; expanding and oxidizing the surface of the gate electrode by thermal oxidation;
a step of forming a polysilicon oxide film, and using the polysilicon oxide film and the gate electrode as masks, implanting impurity ions at a concentration higher than that of the reference concentration diffusion region, and forming a reference layer in contact with the outside of the reference concentration diffusion region; After removing the polysilicon oxide film, using the gate electrode as a mask, impurities are formed at a concentration lower than that of the reference concentration diffusion region. A method of manufacturing a semiconductor device, comprising the step of: implanting ions into the reference concentration diffusion region to form a low concentration diffusion region having a concentration lower than the reference concentration and in contact with the inside of the reference concentration diffusion region in a self-aligned manner.
JP1309037A 1989-11-30 1989-11-30 Manufacture of semiconductor device Pending JPH03171740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309037A JPH03171740A (en) 1989-11-30 1989-11-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309037A JPH03171740A (en) 1989-11-30 1989-11-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03171740A true JPH03171740A (en) 1991-07-25

Family

ID=17988121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309037A Pending JPH03171740A (en) 1989-11-30 1989-11-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03171740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654215A (en) * 1996-09-13 1997-08-05 Advanced Micro Devices, Inc. Method for fabrication of a non-symmetrical transistor
US7176520B2 (en) 2003-09-05 2007-02-13 Renesas Technology Corp. Semiconductor device and a method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654215A (en) * 1996-09-13 1997-08-05 Advanced Micro Devices, Inc. Method for fabrication of a non-symmetrical transistor
US7176520B2 (en) 2003-09-05 2007-02-13 Renesas Technology Corp. Semiconductor device and a method of manufacturing the same
US7791131B2 (en) 2003-09-05 2010-09-07 Renesas Electronics Corp. Semiconductor device and a method of manufacturing the same
US7994567B2 (en) 2003-09-05 2011-08-09 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5382534A (en) Field effect transistor with recessed buried source and drain regions
JPS6316673A (en) Manufacture of semiconductor device
US20060263964A1 (en) Method and device to reduce gate-induced drain leakage (GIDL) current in thin gate oxide MOSFETs
US6429055B2 (en) Method for making SOI MOSFETS
JP2012004473A (en) Semiconductor device and method for manufacturing semiconductor device
US5726081A (en) Method of fabricating metal contact of ultra-large-scale integration metal-oxide semiconductor field effect transistor with silicon-on-insulator structure
US5115296A (en) Preferential oxidization self-aligned contact technology
TWI241632B (en) Method for fabricating poly patterns
JPH03171740A (en) Manufacture of semiconductor device
JPH0738095A (en) Semiconductor device and its manufacturing method
JPS59231864A (en) Semiconductor device
JP3455742B2 (en) Semiconductor device
JP2000077429A (en) Manufacture of semiconductor device
KR100313783B1 (en) Method for fabricating metal oxide semiconductor transistor
JPH08306802A (en) Manufacture of semiconductor device
JPS62273774A (en) Manufacture of field-effect transistor
JPH0778979A (en) Fabrication of semiconductor device
JPH06204456A (en) Semiconductor device
JPH025436A (en) Manufacture of field-effect transistor
JPH01117066A (en) Manufacture of mos type semiconductor device
CN115863404A (en) Semiconductor structure and manufacturing method thereof
KR940007663B1 (en) Manufacturing method of mosfet
JP3373839B2 (en) Semiconductor device
JPS62250673A (en) Manufacture of semiconductor device
JP2000174267A (en) Mis semiconductor device and its manufacture