JPH02278737A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02278737A
JPH02278737A JP9873189A JP9873189A JPH02278737A JP H02278737 A JPH02278737 A JP H02278737A JP 9873189 A JP9873189 A JP 9873189A JP 9873189 A JP9873189 A JP 9873189A JP H02278737 A JPH02278737 A JP H02278737A
Authority
JP
Japan
Prior art keywords
polysilicon film
film
layer
conductive film
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9873189A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takenaka
竹中 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP9873189A priority Critical patent/JPH02278737A/en
Publication of JPH02278737A publication Critical patent/JPH02278737A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve current driving capacity by expanding a gate electrode consisting of a first conductive film and a second conductive film up to the upper part of an n<-> diffusion layer consisting of a first impurities. CONSTITUTION:A phosphorus-implantation layer 6 is formed within a silicon substrate 1 through a first polysilicon film 3 and a gate oxide film 2, phosphorus is doped to a second polysilicon film 7 and a first polysilicon film 3 for eliminating a damaged layer 4, phosphorus is activated for the phosphor-implantation layer 6 within the silicon substrate 1 for forming the n<-> diffusion layer 6'. Then, for a second polysilicon film 7 and a first polysilicon film 3, the gate oxide film 2 is exposed by reactive ion etching, arsenic ion is implanted with the first polysilicon film 3 and the second polysilicon film 7 of the gate electrode as a mask for forming an arsenic implantation layer 8, and arsenic is activated and diffused to form an n<+> diffusion layer 8'. Thus, an n<-> diffusion layer 6' is formed at the inside of the gate electrode, thereby preventing hot carrier resistance from being reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はLDD−MOSFETの製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing an LDD-MOSFET.

(従来の技術) 従来のLDD−MOSFETの製造方法を、第2図(a
)〜(e)にnチャンネル型について例示する。
(Prior art) The conventional manufacturing method of LDD-MOSFET is shown in Fig. 2 (a).
) to (e) illustrate examples of n-channel type.

まず、第2図(a)に示すように、P型シリコン基板1
1上にゲート酸化膜12とポリシリコン膜からなるゲー
ト電極13を形成し、同ゲート電極をマスクにして、シ
リコン基板11中にリンイオンをドーズ量1013aa
−”程度イオン注入して、リン注入層14を形成する。
First, as shown in FIG. 2(a), a P-type silicon substrate 1
A gate oxide film 12 and a gate electrode 13 made of a polysilicon film are formed on the silicon substrate 11, and using the gate electrode as a mask, phosphorus ions are introduced into the silicon substrate 11 at a dose of 1013 aa.
A phosphorus implantation layer 14 is formed by implanting ions to a depth of about -".

次に、同図(b)に示すように、シリコン基板11に熱
処理を施して注入されたリンを活性化させてn−拡散層
14′を形成し、さらにゲート電極13とゲート酸化膜
12上にCVD酸化膜15を形成する。
Next, as shown in FIG. 2B, the silicon substrate 11 is heat-treated to activate the implanted phosphorus to form an n-diffusion layer 14', and then to form an n-diffusion layer 14' on the gate electrode 13 and gate oxide film 12. A CVD oxide film 15 is then formed.

次に、異方性エツチングでCVD酸化膜15をエツチン
グし、同図(c)に示すように、ゲート電極13の側壁
にサイドウオール15′を形成し、続いて。
Next, the CVD oxide film 15 is etched by anisotropic etching to form a side wall 15' on the side wall of the gate electrode 13, as shown in FIG.

同サイドウオール15’をマスクにして、シリコン基板
中にヒ素イオンをドーズ量10”a++−”程度イオン
注入して、ヒ素注入層16を形成する。第2図(d)は
ヒ素イオン注入後の状態を示す断面図である。
Using the same sidewall 15' as a mask, arsenic ions are implanted into the silicon substrate at a dose of about 10''a++-'' to form an arsenic implanted layer 16. FIG. 2(d) is a cross-sectional view showing the state after arsenic ion implantation.

最後に、シリコン基板11に熱処理を施して、注入され
たヒ素を活性化してn′″拡散層16’を形成して、第
2図(8)に示すLDD−MOSFETが完成する。
Finally, the silicon substrate 11 is heat treated to activate the implanted arsenic and form an n'' diffusion layer 16', completing the LDD-MOSFET shown in FIG. 2(8).

(発明が解決しようとする課題) しかしながら、第2図に示したような従来の製造方法で
LDD−MOSFETを作成する場合。
(Problems to be Solved by the Invention) However, when an LDD-MOSFET is manufactured using the conventional manufacturing method as shown in FIG.

n−拡散層の一部がゲート電極の外側に形成されるため
、電流駆動能力が低下する、さらにホットキャリア耐性
が低下するなどの間厘点があった。
Since a part of the n-diffusion layer is formed outside the gate electrode, there are disadvantages such as a decrease in current driving ability and a decrease in hot carrier resistance.

(課題を解決するための手段) 本発明は、上記課題を解決するためになされたものであ
り、−導電形の半導体基板上に絶縁膜を介して、第1の
導電膜を形成する工程と、同第1の導電膜の表面側領域
にイオン注入法でダメージ層を形成する工程と、同ダメ
ージ層の所望の領域を異方性にエツチングして除去する
工程と、ダメージ層が除去された前記第1の導電膜と前
記の絶縁膜を通して、前記半導体基板中に基板と反対導
電形の第1の不純物をイオン注入する工程と、前記の残
存する第1の導電膜上に第2の導電膜を形成する工程と
、同第2の導電膜と前記第1の導電膜を、前記第1の不
純物が注入された領域の絶縁膜が露出するまで異方性エ
ツチングする工程と、残存する前記第1および第2の導
電膜をマスクにして、前記半導体基板中に基板と反対導
電形の第2の不純物をイオン注入する工程とをそなえて
いる。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and includes a step of forming a first conductive film on a conductive type semiconductor substrate via an insulating film. , a step of forming a damaged layer in the surface side region of the first conductive film by ion implantation, a step of removing a desired region of the damaged layer by anisotropic etching, and a step of removing the damaged layer. ion-implanting a first impurity of a conductivity type opposite to that of the substrate into the semiconductor substrate through the first conductive film and the insulating film; and implanting a second conductive impurity onto the remaining first conductive film. a step of anisotropically etching the second conductive film and the first conductive film until the insulating film in the region into which the first impurity is implanted is exposed; The method further includes a step of ion-implanting a second impurity having a conductivity type opposite to that of the semiconductor substrate into the semiconductor substrate using the first and second conductive films as masks.

(作 用) 本発明の半導体装置の製造方法では、第1の不純物から
なるn−拡散層の上部にまで、第1の導電膜と第2の導
電膜からなるゲート電極を広げることが可能となる。
(Function) In the method for manufacturing a semiconductor device of the present invention, it is possible to extend the gate electrode made of the first conductive film and the second conductive film to the top of the n-diffusion layer made of the first impurity. Become.

(実施例) 本発明の半導体装置の製造方法でNチャンネル型LDD
−MOSFETを作成した時の一実施例を第1図に示す
(Example) N-channel type LDD by the method of manufacturing a semiconductor device of the present invention
- An example of fabricating a MOSFET is shown in FIG.

第1図(a)に示すように、P型シリコン基板1を熱酸
化し、膜厚約200人のゲート酸化膜2を形成し、続い
て減圧CVD法で膜厚約4000人の第1ポリシリコン
膜3を形成する1次に第1ポリシリコン膜3にリンイオ
ンを加速エネルギ約200 k e V、ドーズ盟約I
 X 10101sa”の条件で注入して、第1ポリシ
リコン膜3の表面から約3000人の深さまでのダメー
ジ層4を形成する。
As shown in FIG. 1(a), a P-type silicon substrate 1 is thermally oxidized to form a gate oxide film 2 with a thickness of approximately 200 densities, and then a first polyimide film 2 with a thickness of approximately 4000 densities is formed by low pressure CVD. In the first step to form the silicon film 3, phosphorus ions are accelerated onto the first polysilicon film 3 at an energy of approximately 200 keV and a dose of approximately I.
The damage layer 4 is formed from the surface of the first polysilicon film 3 to a depth of approximately 3,000 nm by implanting under the condition of "X 10101 sa".

次に第1図(b)に示すように、エツチングマスクとし
てのフォトレジスト5を通常のリソグラフィー法で、ダ
メージ層4上に形成する。
Next, as shown in FIG. 1(b), a photoresist 5 as an etching mask is formed on the damaged layer 4 by a normal lithography method.

続いて、第1図(C)のように、フォトレジスト5をマ
スクとして、反応性イオンエツチング法でダメージ層4
をほぼ垂直にエツチングする。この時、イオン注入によ
ってダメージを受けたポリシリコン膜とダメージのない
ポリシリコン膜とのエツチング速度の差を利用して、ダ
メージ層4をほぼ除去し終った時点でエツチングを終了
させることが可能となる。イオン注入で形成されたダメ
ージ層4の厚さは均一なので、上述したエツチング速度
の差を利用して、エツチング後に均一な厚さの第1ポリ
シリコン膜3を残すことは可能である。
Next, as shown in FIG. 1(C), using the photoresist 5 as a mask, the damaged layer 4 is removed by reactive ion etching.
Etch almost vertically. At this time, by utilizing the difference in etching speed between the polysilicon film damaged by ion implantation and the undamaged polysilicon film, it is possible to terminate the etching when the damaged layer 4 is almost completely removed. Become. Since the thickness of the damaged layer 4 formed by ion implantation is uniform, it is possible to leave the first polysilicon film 3 of uniform thickness after etching by utilizing the above-mentioned difference in etching speed.

本実施例の場合、ダメージ層4を除去した後に残存する
第1ポリシリコン膜3の膜厚は約1000人である。こ
の後、フォトレジスト5を残した状態でリンイオンを加
速エネルギ約120keV、ドーズ盟約lXl0”C1
1−”の条件で、残存する第1ポリシリコン膜3とゲー
ト酸化膜2を通してシリコン基板1中に注入し、リン注
入層6を形成する。
In the case of this embodiment, the thickness of the first polysilicon film 3 remaining after removing the damaged layer 4 is about 1000. After this, with the photoresist 5 remaining, phosphorus ions are accelerated at an energy of about 120 keV and a dose of about 1X10''C1.
Phosphorus is injected into the silicon substrate 1 through the remaining first polysilicon film 3 and gate oxide film 2 under conditions of 1-'' to form a phosphorus injection layer 6.

次に、フォトレジスト5を除去後、第1図(d)のよう
に第1ポリシリコン膜3上に、膜厚約2000人の第2
ポリシリコン膜7を減圧CVD法で形成し、さらに温度
約900℃、pocc3雰囲気中で熱処理を施して、第
2ポリシリコン膜7および第1ポリシリコン膜3にリン
を約10”am−”程度ドープする。この時、前記のダ
メージ層4は熱処理によってダメージが除去されてしま
う。また、シリコン基板1中のリン注入層6はリンが活
性化されてn−拡散層となる。
Next, after removing the photoresist 5, as shown in FIG.
A polysilicon film 7 is formed by a low pressure CVD method, and then heat-treated at a temperature of about 900° C. in a POCC3 atmosphere to add phosphorus to the second polysilicon film 7 and first polysilicon film 3 by about 10 am-. Dope. At this time, damage to the damaged layer 4 is removed by heat treatment. Further, phosphorus is activated in the phosphorus injection layer 6 in the silicon substrate 1 and becomes an n- diffusion layer.

次に、第2ポリシリコン膜7と第1ポリシリコン膜3を
反応性イオンエツチングで、異方的に約3000人程度
エツチングし、ゲート酸化膜2が露出した時点でエツチ
ングを終了させる。第1図(e)はこの後の状態を示す
図であり、この時、残存する第1ポリシリコン膜3およ
び第2ポリシリコン膜7がMOSFETのゲート電極と
なる。このゲート電極のゲート長は、はぼ第1図(c)
で残存するダメージ層4の幅(=フォトレジスト5の幅
)と第2ポリシリコン膜7の膜厚の2倍の和になる。
Next, the second polysilicon film 7 and the first polysilicon film 3 are etched anisotropically by about 3,000 times using reactive ion etching, and the etching is terminated when the gate oxide film 2 is exposed. FIG. 1(e) is a diagram showing the state after this, in which the remaining first polysilicon film 3 and second polysilicon film 7 become the gate electrode of the MOSFET. The gate length of this gate electrode is approximately as shown in Figure 1(c).
The width of the remaining damaged layer 4 (=width of the photoresist 5) is twice the thickness of the second polysilicon film 7.

本実施例の場合、フォトレジスト幅をo、s、mとすれ
ばゲート長は0.8+0.2X 2 =1.2−となる
。また、ゲートfi!piの膜厚は約3000人となる
In the case of this embodiment, if the photoresist widths are o, s, and m, the gate length is 0.8+0.2X 2 =1.2-. Also, gate fi! The thickness of pi is approximately 3,000 people.

次に第1図(f)に示すようにゲート電極(第1ポリシ
リコン膜3および第2ポリシリコン膜7)をマスクにし
てヒ素イオンを加速エネルギ約60k e V 、ドー
ズ盟約5 XIO”am−”(71条件で、シリコン基
板1中に注入してヒ素注入層8を形成する。
Next, as shown in FIG. 1(f), using the gate electrode (first polysilicon film 3 and second polysilicon film 7) as a mask, arsenic ions are accelerated at an energy of about 60 keV and a dose of about 5 XIO"am- (Arsenic is implanted into the silicon substrate 1 under conditions 71 to form the arsenic implanted layer 8.

そして、最後に、シリコン基板1に約900℃の温度で
熱処理を施して、注入されたヒ素を活性化および拡散さ
せてn+拡散層8′を形成することによって、LDD−
MOSFETが完成する。
Finally, the silicon substrate 1 is heat-treated at a temperature of about 900° C. to activate and diffuse the implanted arsenic to form an n+ diffusion layer 8'.
MOSFET is completed.

(発明の効果) 以上の説明で明らかなように、本発明によると第1図(
g)に示すような、n−拡散層がゲート電極の内側に形
成されたLDD−MOSFETを容易に製造できる効果
を有する。
(Effect of the invention) As is clear from the above explanation, according to the present invention, FIG.
This has the effect of easily manufacturing an LDD-MOSFET in which an n-diffusion layer is formed inside the gate electrode as shown in g).

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(g)は本発明のLDD−MOSFET
の製造方法を説明するための工程順断面図、第2図(a
)〜(a)は従来のLDD−MOSFETの製造方法を
説明するための工程順断面図である。 1 ・・・シリコン基板、 2・・・ゲート酸化膜、 
3・・・第1ポリシリコン膜、4・・・ダメージ層、 
5 ・・・ フォトレジスト、6 ・・・ リン注入層
、 6′・・・ n”拡散層、7・・・第2ポリシリコ
ン膜、 8 ・・・ ヒ素注入層、 8′ ・・・ n
o拡散層。 特許出願人 松下電子工業株式会社 第 図 第2図
Figures 1(a) to (g) show LDD-MOSFETs of the present invention.
Fig. 2 (a) is a process-order cross-sectional view for explaining the manufacturing method of
) to (a) are step-by-step cross-sectional views for explaining a conventional method for manufacturing an LDD-MOSFET. 1...Silicon substrate, 2...Gate oxide film,
3... First polysilicon film, 4... Damage layer,
5... Photoresist, 6... Phosphorus injection layer, 6'... n'' diffusion layer, 7... Second polysilicon film, 8... Arsenic injection layer, 8'... n
o Diffusion layer. Patent applicant Matsushita Electronics Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一導電形の半導体基板上に絶縁膜を介して、第1の導電
膜を形成する工程と、同第1の導電膜の表面側領域にイ
オン注入法でダメージ層を形成する工程と、同ダメージ
層の所望の領域を異方性にエッチングして除去する工程
と、ダメージ層が除去された前記第1の導電膜と前記の
絶縁膜を通して、前記半導体基板中に基板と反対導電形
の第1の不純物をイオン注入する工程と、前記の残存す
る第1の導電膜上に第2の導電膜を形成する工程と、前
記第2の導電膜と前記第1の導電膜を、前記第1の不純
物が注入された領域の絶縁膜が露出するまで異方性エッ
チングする工程と、残存する前記第1および第2の導電
膜をマスクにして、前記半導体基板中に基板と反対導電
形の第2の不純物をイオン注入する工程とをそなえたこ
とを特徴とする半導体装置の製造方法。
A step of forming a first conductive film on a semiconductor substrate of one conductivity type via an insulating film, a step of forming a damaged layer on the surface side region of the first conductive film by ion implantation, a step of anisotropically etching and removing a desired region of the layer; and a step of etching a first conductive film having a conductivity type opposite to that of the substrate into the semiconductor substrate through the first conductive film from which the damaged layer has been removed and the insulating film. a step of ion-implanting an impurity, a step of forming a second conductive film on the remaining first conductive film, and a step of forming the second conductive film and the first conductive film into Anisotropic etching is performed until the insulating film in the region where the impurity is implanted is exposed, and a second conductive film of a conductivity type opposite to that of the substrate is etched into the semiconductor substrate using the remaining first and second conductive films as masks. 1. A method for manufacturing a semiconductor device, comprising the step of ion-implanting an impurity.
JP9873189A 1989-04-20 1989-04-20 Manufacture of semiconductor device Pending JPH02278737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9873189A JPH02278737A (en) 1989-04-20 1989-04-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9873189A JPH02278737A (en) 1989-04-20 1989-04-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02278737A true JPH02278737A (en) 1990-11-15

Family

ID=14227664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9873189A Pending JPH02278737A (en) 1989-04-20 1989-04-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02278737A (en)

Similar Documents

Publication Publication Date Title
JPH10144921A (en) Structure and manufacture of semiconductor device
JPH0147016B2 (en)
JPH09223797A (en) Manufacture of semiconductor device
JP2633104B2 (en) Method for manufacturing semiconductor device
JP3049496B2 (en) Method of manufacturing MOSFET
JPH02278737A (en) Manufacture of semiconductor device
JPS63185064A (en) Manufacture of semiconductor device
JP3311082B2 (en) Method for manufacturing semiconductor device
JPS63177561A (en) Manufacture of semiconductor device
JPS62273774A (en) Manufacture of field-effect transistor
JPH01117066A (en) Manufacture of mos type semiconductor device
JP3244066B2 (en) Method for manufacturing semiconductor device
JPS63211761A (en) Manufacture of semiconductor device
JPS60245281A (en) Manufacture of semiconductor device
JP2887902B2 (en) Method for manufacturing semiconductor device
JPS63144573A (en) Manufacture of mos type transistor
JPH0226034A (en) Manufacture of semiconductor device
JPS63308962A (en) Manufacture of semiconductor device
JPH046870A (en) Manufacture of complementary mos semiconductor device
JPS63240068A (en) Manufacture of semiconductor device
JPS61251131A (en) Manufacture of semiconductor device
JPS60140763A (en) Manufacture of semiconductor device
JPH03148134A (en) Manufacture of semiconductor device
JPS62295463A (en) Manufacture of semiconductor element
JPH01187976A (en) Manufacture of semiconductor device