JPS60120583A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS60120583A
JPS60120583A JP58228463A JP22846383A JPS60120583A JP S60120583 A JPS60120583 A JP S60120583A JP 58228463 A JP58228463 A JP 58228463A JP 22846383 A JP22846383 A JP 22846383A JP S60120583 A JPS60120583 A JP S60120583A
Authority
JP
Japan
Prior art keywords
buried layer
layer
insulating film
substrate
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58228463A
Other languages
Japanese (ja)
Inventor
Yoshito Nishijima
西嶋 由人
Hirokazu Fukuda
福田 広和
Koji Ebe
広治 江部
Koji Shinohara
篠原 宏爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58228463A priority Critical patent/JPS60120583A/en
Publication of JPS60120583A publication Critical patent/JPS60120583A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3222Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIVBVI compounds, e.g. PbSSe-laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0091Processes for devices with an active region comprising only IV-VI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To eliminate a shortcircuit caused by the disconnection of a buried layer by forming a buried layer and an insulating film on an active layer mode of a mesa-shaped lead, tin and tellurium formed on a semiconductor substrate made of at least lead or tellurium, and forming electrodes contacted with the buried layer through a hole formed in the insulating film. CONSTITUTION:A P type Pb.Te.Se enclosure layer 12 is grown, for example, by a liquid phase epitaxial growing method on a Pb.Te substrate 11. Then, a Pb. Sn.Te active layer 13 is grown by similarly a liquid phase eqitaxial growing method. Then, the layers 13, 12 are patterned to form a mesa-shape. Further, an N type Pb.Sn.Te buried layer 14 is formed by a liquid phase epitaxial growing method. Then, an insulating film 15 is grown, the film 15 is then patterned to form a hole 15A to expose part of the surface of the layer 14. Then, electrodes 16 made of gold is similarly formed by depositing and electrodes 17 made of gold are also formed on the back surface of the substrate 11. Then, individual semiconductor lasers are separated to complete it.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、遠赤外領域の波長で発振する鉛・錫・チル)
Lt (Pb−3n−Te) /P’b−Te系半導体
発光装置の改良に関する。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to lead, tin, and chil which oscillate at wavelengths in the far infrared region.
The present invention relates to improvements in Lt(Pb-3n-Te)/P'b-Te based semiconductor light emitting devices.

従来技術と問題点 一般に、Pb−3n−Teからなる化合物半導体は、遠
赤外領域で優れた光電変換機能がある為、赤外線カメラ
の盪像素子、ガス検知素子、そのた種々のセンサなど多
くの開発がなされ、半導体レーザもその一つである。
Conventional technology and problems In general, compound semiconductors made of Pb-3n-Te have excellent photoelectric conversion functions in the far-infrared region, so they are used in many applications such as imaging elements of infrared cameras, gas detection elements, and various other sensors. Developments have been made, and semiconductor lasers are one of them.

ところで、従来、光の閉し込め或いは電流狭窄などを行
うのに好適な構造を持つ埋め込み型半導体レーザと呼ば
れる半導体発光装置が知られている。
Incidentally, a semiconductor light emitting device called a buried semiconductor laser has been known to have a structure suitable for confining light or confining current.

前記Pb−5n−Teを用いた半導体レーザも埋め込み
型にすれば1通常の埋め込み型半導体レーザと同様な効
果を期待できることは云うまでもない。
It goes without saying that if the semiconductor laser using Pb-5n-Te is made into a buried type, the same effects as those of a normal buried type semiconductor laser can be expected.

然しながら、Pb−3n−Teを用いた埋め込み型半導
体レーザを作製するには多くの困難が存在する。
However, there are many difficulties in manufacturing a buried semiconductor laser using Pb-3n-Te.

その一つを第1図及び第2図を参照しつつ説明する。尚
、第1図及び第2図は工程要所に於ける半導体レーザの
要部切断正面図である。
One of them will be explained with reference to FIGS. 1 and 2. 1 and 2 are cutaway front views of essential parts of the semiconductor laser at key points in the process.

第1図ては、P b −T’e基板1上にメサ状の■〕
b・5n−Te活性層2が形成され、その上にpb・S
n・セレン(Se)埋め込み層3が形成された状態を表
している。
In Figure 1, there is a mesa-like shape on the P b -T'e substrate 1]
b・5n-Te active layer 2 is formed, and pb・S
This shows a state in which an n-selenium (Se) buried layer 3 is formed.

図から判るように、埋め込み層3を成長させた場合、基
板1上の全面に形成されず、所々で切れてしまい、下地
である基板1の表面が露出されることになる。
As can be seen from the figure, when the buried layer 3 is grown, it is not formed over the entire surface of the substrate 1, but is cut off in places, and the surface of the substrate 1, which is the underlying layer, is exposed.

そこで、第2図に見られるように、電極4を形成すると
、その一部は基板1に直接コンタクトすることになるか
ら、正常な動作をすることはできない。
Therefore, as shown in FIG. 2, when the electrode 4 is formed, a part of it comes into direct contact with the substrate 1, so that normal operation cannot be performed.

この種の化合物半導体は、各元素の比重が大きく異なる
為、通常の場合であっても、大型単結晶を得ることは困
難であるので、凹凸が顕著である実際の基板上には良質
の大型単結晶は成長し難いものと考えられる。
In this type of compound semiconductor, since the specific gravity of each element differs greatly, it is difficult to obtain a large single crystal even in normal cases. Single crystals are considered difficult to grow.

発明の目的 本発明は、前記埋め込み層の切れに起因する短絡を現用
の技術で得られる構成で解消しようとするものである。
OBJECTS OF THE INVENTION The present invention attempts to eliminate the short circuit caused by the breakage of the buried layer with a structure obtainable with current technology.

発明の構成 本発明の半導体発光装置では、少なくとも鉛・テルルか
らなる半導体基板、該半導体基板上に形成されたメサ状
の鉛・錫・テルルからなる活性層、その上に形成された
埋め込み層、その上に形成された絶縁膜、該絶縁膜に形
成された開口を介して前記埋め込み層にコンタクトする
電極を備えてなる構成になっているので、前記埋め込み
層に切れを生じたとしても、その切れは絶縁膜で覆われ
ているから、電極を形成しても、それに依る短絡が発生
ずる虞はない。
Structure of the Invention The semiconductor light emitting device of the present invention includes at least a semiconductor substrate made of lead and tellurium, a mesa-shaped active layer made of lead, tin and tellurium formed on the semiconductor substrate, a buried layer formed thereon, Since the structure includes an insulating film formed thereon and an electrode that contacts the buried layer through an opening formed in the insulating film, even if a break occurs in the buried layer, the Since the cut is covered with an insulating film, there is no risk of a short circuit occurring even if an electrode is formed.

発明の実施例 第3図乃至第8図は本発明一実施例を製造する場合につ
いて解説する為の工程要所に於ける半導体発光装置の要
部切断正面図及び要部切断斜面図(第5図のみ)であり
、以下これ等の図を参照しつつ説明する。
Embodiment of the Invention FIGS. 3 to 8 are a cutaway front view and a cutaway oblique view of the main part of a semiconductor light emitting device at key points in the process for explaining the case of manufacturing an embodiment of the present invention. Figures only), and will be described below with reference to these figures.

第3図参照 ■ Pb−Te基板11上に例えば液相エピタキシャル
成長法を適用してp型Pb−Te−3e閉じ込め層12
を厚さ例えば10 〔μm〕程度に成長させる。
Refer to FIG. 3 ■ A p-type Pb-Te-3e confinement layer 12 is formed on a Pb-Te substrate 11 by applying, for example, liquid phase epitaxial growth.
is grown to a thickness of, for example, about 10 [μm].

■ 同じく液相エピタキシャル成長法を適用してPb−
3n−Te活性層13を厚さ例えば1 〔μm〕゛程度
に成長させる。
■ By applying the same liquid phase epitaxial growth method, Pb-
The 3n-Te active layer 13 is grown to a thickness of, for example, about 1 μm.

第4図及び第5図参照 ■ 例えば、通常のフォト・リングラフィ技術を適用し
、活性層13及び閉じ込め層12のバターニングを行っ
てメサ状部分を形成する。
See FIGS. 4 and 5. (2) For example, the active layer 13 and the confinement layer 12 are patterned to form a mesa-shaped portion by applying a normal photo-phosphorography technique.

第4図では半導体レーザの一素子分を表しであるが、実
際には第5図に見られるように1枚のウェハ上に複数案
子分のメサ状部分が形成されていて、後に個別に分離さ
れるものであることは云うまでもない。
Although Fig. 4 shows one element of a semiconductor laser, in reality, as shown in Fig. 5, mesa-shaped portions for multiple screens are formed on one wafer, and are later separated individually. Needless to say, this is something that can be done.

第6図参照 ■ 更に液相成長エピタキシャル成長法を適用してrl
型pb・5n−Te埋め込み層14を形成する。
See Figure 6 ■ Furthermore, by applying liquid phase growth epitaxial growth method, rl
A pb-5n-Te buried layer 14 is formed.

この場合、埋め込み層14はメサ状部分の周囲には厚く
、その他の部分には薄く形成されているが、これは面方
位の関係でメサ状部分の周囲では埋め込み層を構成する
結晶の成長速度が速いがらである。
In this case, the buried layer 14 is formed to be thick around the mesa-shaped part and thin in other parts, but this is due to the crystal growth rate of the buried layer around the mesa-shaped part due to the surface orientation. Although it is fast.

第7図参照 ■ 例えば陽極酸化法を適用し、絶縁膜15を厚さ例え
ば1000 (人〕程度に成長させる。
Refer to FIG. 7. For example, by applying an anodic oxidation method, the insulating film 15 is grown to a thickness of, for example, about 1000 (people).

■ 例えば通常のフォトリングラフィ技術を通用して絶
縁膜15のパターニングを行うことに依り開口15Aを
形成し、埋め込み層14に於ける表面の一部を露出させ
る。
(2) For example, by patterning the insulating film 15 using a normal photolithography technique, an opening 15A is formed and a part of the surface of the buried layer 14 is exposed.

第8図参照 ■ 例えば蒸着法を適用して金(Au)からなる電極1
6を厚さ例えば1000 (人〕程度に形成する。
See Figure 8 ■ Electrode 1 made of gold (Au), for example by applying the vapor deposition method.
6 to a thickness of, for example, about 1000 (people).

■ 同様にして基板11の裏面にも例えば金からなる電
極17を厚さ例えば1ooo 〔人〕程度に形成する。
(2) Similarly, an electrode 17 made of, for example, gold is formed on the back surface of the substrate 11 to a thickness of, for example, about 100 mm.

■ この後、個別の半導体レーザに分離して完成する。■ After this, it is separated into individual semiconductor lasers and completed.

前記したところから明らかなように、埋め込み層14に
切れが生じても、その切れは絶縁膜15で覆われている
から、電極工6を形成しても、その電極16が基板11
に直接的にコンタクトする虞はない。
As is clear from the foregoing, even if a break occurs in the buried layer 14, the break is covered with the insulating film 15, so even if the electrode work 6 is formed, the electrode 16 will not touch the substrate 11.
There is no possibility of contacting directly.

発明の効果 本発明の半導体発光装置に於いては、少なくとも鉛・テ
ルルからなる半導体基板、該半導体基板上に形成された
メサ状の鉛・錫・テルルからなる活性層、その上に形成
された埋め込み層、その上に形成された絶縁膜、該絶縁
膜に形成された開口を介して前記埋め込み層にコンタク
トする電極を備えてなる構成を採っているので、前記埋
め込み層が前記半導体基板上の全面に広がることなく形
成されたとしても、その上には絶縁膜が存在している為
、所望部分以外の個所で電極が半導体基板に直接的にコ
ンタクトすることは皆無でなり、従って、短絡事故は発
生せず、製造歩留りは著しく向上する。
Effects of the Invention In the semiconductor light emitting device of the present invention, at least a semiconductor substrate made of lead and tellurium, a mesa-shaped active layer made of lead, tin and tellurium formed on the semiconductor substrate, and a Since the structure includes a buried layer, an insulating film formed on the buried layer, and an electrode that contacts the buried layer through an opening formed in the insulating film, the buried layer is formed on the semiconductor substrate. Even if it is formed without spreading over the entire surface, since there is an insulating film on top of it, there is no possibility that the electrode will come into direct contact with the semiconductor substrate at any location other than the desired area, thus preventing short circuit accidents. This does not occur, and the manufacturing yield is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来例を製造する場合を説明する為
の工程要所に於ける半導体発光装置の要部切断正面図、
第3図乃至第8図は本発明一実施例を製造する場合を説
明する為の工程要所に於ける半導体発光装置の要部切断
正面図及び要部切断斜面図(第5図のみ)である。 図に於いて、11はPb−Te1板、12はp型Pb−
Te−3e閉じ込め層、13はpb−sn−Te活性層
、14はn型Pb−3n・”Fe埋め込み層、15は絶
縁膜、1.5Aは開口、1G及び17は電極である。 特許出願人 富士通株式会社 代理人弁理士 相 谷 昭 司 代理人弁理士 渡 邊 弘 − 第1図 第2図 ム 第3図 第4図
1 and 2 are cutaway front views of essential parts of a semiconductor light emitting device at key points in the process for explaining the case of manufacturing a conventional example;
3 to 8 are a cut-away front view and a cut-away oblique view (FIG. 5 only) of the main parts of a semiconductor light emitting device at key points in the process for explaining the case of manufacturing an embodiment of the present invention. be. In the figure, 11 is a Pb-Te1 plate, 12 is a p-type Pb-
Te-3e confinement layer, 13 is a pb-sn-Te active layer, 14 is an n-type Pb-3n·Fe buried layer, 15 is an insulating film, 1.5A is an opening, 1G and 17 are electrodes. Patent application Person Fujitsu Ltd. Representative Patent Attorney Akira Aitani Representative Patent Attorney Hiroshi Watanabe - Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 少なくとも鉛・テルルからなる半導体基板、該半導体基
板上に形成されたメサ状の鉛・錫・テルルからなる活性
層、その上に形成された埋め込み層、その上に形成され
た絶縁膜、該絶縁膜に形成された開口を介して前記埋め
込み層にコンタクトする電極を備えてなることを特徴と
する半導体発光装置。
a semiconductor substrate made of at least lead and tellurium; a mesa-shaped active layer made of lead, tin and tellurium formed on the semiconductor substrate; a buried layer formed thereon; an insulating film formed thereon; A semiconductor light emitting device comprising an electrode that contacts the buried layer through an opening formed in a film.
JP58228463A 1983-12-05 1983-12-05 Semiconductor light emitting device Pending JPS60120583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58228463A JPS60120583A (en) 1983-12-05 1983-12-05 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58228463A JPS60120583A (en) 1983-12-05 1983-12-05 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS60120583A true JPS60120583A (en) 1985-06-28

Family

ID=16876874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58228463A Pending JPS60120583A (en) 1983-12-05 1983-12-05 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS60120583A (en)

Similar Documents

Publication Publication Date Title
JPS6156474A (en) Manufacture of gallium nitride semiconductor device
US3271636A (en) Gallium arsenide semiconductor diode and method
JP2720635B2 (en) Method for manufacturing semiconductor light emitting device
JPS60120583A (en) Semiconductor light emitting device
JP2657214B2 (en) Manufacturing method of surface emitting laser device
JP2754693B2 (en) Manufacturing method of plated electrode
JPS62179773A (en) Photoconductive infrared ray detector and manufacture thereof
JPS5987889A (en) Manufacture of semiconductor element
JPS62130572A (en) Semiconductor light emitting device
JPH0153729B2 (en)
JP2681964B2 (en) Manufacturing method of semiconductor device for DHD having NPN structure
JPS62122290A (en) Light emitting element
JPS6370461A (en) Semiconductor device
JPS61194887A (en) Semiconductor laser
JPS59222988A (en) Compound semiconductor element and manufacture thereof
JPS5929486A (en) Manufacture of semiconductor laser element
JPS6252962A (en) Semiconductor device
JPH08186288A (en) Semiconductor light-emitting element
JPS61278173A (en) Manufacture of semiconductor device
JPS58125870A (en) Semiconductor element
JPS6012766A (en) Semiconductor device
JPH04133363A (en) Manufacture of array type cdhgte infrared detector
JPH0897461A (en) Semiconductor light receiving element and manufacturing method therefor
JPS62247563A (en) Manufacture of semiconductor device
JPH0414266A (en) High breakdown strength planar type semiconductor element and its manufacture