JPS5929486A - Manufacture of semiconductor laser element - Google Patents

Manufacture of semiconductor laser element

Info

Publication number
JPS5929486A
JPS5929486A JP57140331A JP14033182A JPS5929486A JP S5929486 A JPS5929486 A JP S5929486A JP 57140331 A JP57140331 A JP 57140331A JP 14033182 A JP14033182 A JP 14033182A JP S5929486 A JPS5929486 A JP S5929486A
Authority
JP
Japan
Prior art keywords
insulating film
layer
substrate
gold
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57140331A
Other languages
Japanese (ja)
Inventor
Hirokazu Fukuda
福田 広和
Kouji Shinohara
篠原 宏「じ」
Yoshito Nishijima
西嶋 由人
Kosaku Yamamoto
山本 功作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57140331A priority Critical patent/JPS5929486A/en
Publication of JPS5929486A publication Critical patent/JPS5929486A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable a thick electrode layer connecting to the golden ribbon lead to be formed easily by means of a plating process by a method wherein an insulating film is selectively formed on the entire surface of a substrate selectively coated with the insulating film and the backside thereof coated with a gold layer evaporating film to plate the insulating film with a gold layer film excluding the top surface of a mesastriping light emitting region. CONSTITUTION:Several striping grooves 5 with the depth reaching a buffer layer 2 are provided in parallel at specified interval and golden electrode layers 8, 9 are respectively coated to be formed on the surface and back side of a substrate 1 including a selectively formed insulating film 7 excluding the top surface of the divided mesastriping light emitting regions 6 while an oxide insulating film made of SiO2 is patterned selectively coating the specified element separating region to be the boundary between each laser elements to form an insulating film pattern 31 on the electrode layer 9. Several laser elements may be easily formed by means of forming a gold plate layer 32 around several score mum thick with a plating process on the electrode layer 9 and utilizing the insulating film pattern region 31 not gold plated for cleaving each edge parts 33, 34 and 35.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体レーザ素子の製造方法の改良に係υ特に
鉛カルコゲン系の化合物半導体レーザ素子の発光領域側
とは反対側の基板面に構成する金属電極層の形成方法に
関するものである。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to an improvement in a method for manufacturing a semiconductor laser device.In particular, it relates to an improvement in a method for manufacturing a semiconductor laser device. The present invention relates to a method for forming a metal electrode layer.

(b)  従来技術と問題点 一般に例えば鉛・硫黄・セレン(pbsse)あるいは
鉛・錫串テルル コゲン系の赤外線を発振する半導体レーザ素子は、第1
図に示すように例えばp導電型のPbTeからなる基板
l上に、p2#電型のP ’Ll ’I’ eからなる
バッファ層2、p導電型のPbSnTeからなる活性層
8、およびn導電型のPI)Teからなるトップ層4を
順に液相エピタキシャル成長法によって積層する。
(b) Prior art and problems In general, semiconductor laser elements that emit infrared rays, such as lead-sulfur-selenium (PBSE) or lead-tin tellurocogen, are
As shown in the figure, for example, on a substrate l made of PbTe of p conductivity type, a buffer layer 2 made of P'Ll 'I' e of p2# conductivity type, an active layer 8 made of PbSnTe of p conductivity type, and an active layer 8 made of PbSnTe of p conductivity type are formed. A top layer 4 made of type PI) Te is sequentially deposited by liquid phase epitaxial growth.

次いで上記基板lの表面に前記バッファ層2に達する深
さのヌトライプ状の溝5を所定間隔で並行に複数本設け
てメサストライプ状の発光領域6を形成し、さらに前記
基板1表面に、発光領域6の頂面を除いて選択的に絶縁
膜7を形成する。そして該絶縁膜7を含む基板1表面上
に金(Au)からなる電極層8を、また該裏面には、金
、白金(Au−Pt)からなる2層構造の電極層9を被
着形成した後、前記基板l上の所定へき開ライン10お
よび11に対応する縁端部分に、その面に対して垂直方
向に先端が鋭利なダイヤモンド針、あるいは安全カミソ
リなどをあてがい押圧へき開して、第2図に示す半導体
レーザ素子が複数個得られるつしかしてこのように構成
された半導体レーザ素子は図示の如く、高熱伝導度を有
する例えば銅製のヒートシンク基台12上に、トップ層
4と接続された前記電極層8を介してインジウム(In
)によって固着され、該素子のPN接合部で動作時に発
生する熱を放散して良好にレーザ光を連続発振させる構
成がとられている。また該素子の他方の電極層9上には
、金(Au)リボンリード13がインジウム(In)を
接合材として接続されている。
Next, on the surface of the substrate 1, a plurality of nutripe-shaped grooves 5 having a depth reaching the buffer layer 2 are provided in parallel at a predetermined interval to form a mesa stripe-shaped light emitting region 6, and further, on the surface of the substrate 1, a light emitting region 5 is formed. An insulating film 7 is selectively formed except for the top surface of the region 6. Then, an electrode layer 8 made of gold (Au) is deposited on the front surface of the substrate 1 including the insulating film 7, and a two-layer electrode layer 9 made of gold and platinum (Au-Pt) is deposited on the back surface. After that, a diamond needle or a safety razor with a sharp tip is applied in a direction perpendicular to the surface of the edge portion of the substrate l corresponding to the predetermined cleavage lines 10 and 11 to press and cleave it. A plurality of semiconductor laser devices shown in the figure are obtained.The semiconductor laser device thus constructed is connected to a top layer 4 on a heat sink base 12 made of, for example, copper and having high thermal conductivity, as shown in the figure. Indium (In
), and the structure is such that the heat generated during operation is dissipated at the PN junction of the element, and the laser beam is continuously oscillated in an excellent manner. Further, a gold (Au) ribbon lead 13 is connected to the other electrode layer 9 of the element using indium (In) as a bonding material.

ところで上述の如き構成の半導体レーザ素子において、
p導電型のPI)Te半導体領域l側に設けられた電極
層9をAu−Ptからなる2層構造としている所以は、
該電極層9を金(Au)蒸着層のみで構成した場合、該
金蒸着層上に金リボンリード13を接続する際に介在さ
せたIn鑞と金蒸着層とが合金化し、長期間のうちに合
金化して行った工nが前記p導電型のPbTe半導体領
域と接触しドナーとして作用して金リボンリード13と
の接続抵抗が増加する電極構成上の有害な不都合を排除
するだめで、前記金蒸着層上にPt層を重積し、Auと
Inとの合金化を抑止している。ところが−・方Pt層
によって上記合金化が抑止されると、前記wL電極層と
、In鑞を介在してポンディングされた金リボンリード
13との接着強度が低下し、該金リボンリード18が剥
がれ易くなる欠点があった。そこでかかる欠点を解消す
るために、前記電極層9を、メッキ法によって厚い(数
10μm程度)金メッキ層で構成することが試みられて
いるが、当該電極層9が厚くなると、へき開による素子
分離が困難となる不都合が生じている。従ってかかる電
極層9上に選択的にフォトレジスト膜を形成し、素子分
離領域の電極層9をエツチング除去するか、あるいは、
前記電極層9を形成すべきP ’l)T e半導体基板
1面上の素子分離領域にあらかじめフォトレジスト膜を
選択的に形成した状態で金電極層を厚く鍍着し、その後
前記レジスト膜を除去してへき開による素子分離を容易
化するととも考えられるが、前者は金メッキ層が厚いの
で選択的なエツチング除去が容易でなく、また後者にあ
っては、前記レジヌト膜上に厚い金メッキ層がまわり込
み、該レジスト膜の完全な除去が困難となる欠点があっ
た。
By the way, in the semiconductor laser device having the above-mentioned configuration,
The reason why the electrode layer 9 provided on the p-conductivity type PI)Te semiconductor region l side has a two-layer structure made of Au-Pt is as follows.
When the electrode layer 9 is composed of only a gold (Au) vapor-deposited layer, the In solder interposed when connecting the gold ribbon lead 13 on the gold vapor-deposited layer and the gold vapor-deposited layer become alloyed, and over a long period of time In order to eliminate the harmful inconvenience in the electrode structure in which the alloyed metal contacts with the p-conductivity type PbTe semiconductor region and acts as a donor, increasing the connection resistance with the gold ribbon lead 13, A Pt layer is stacked on the gold vapor deposited layer to prevent alloying of Au and In. However, when the above-mentioned alloying is suppressed by the Pt layer, the adhesive strength between the wL electrode layer and the gold ribbon lead 13 bonded through the In solder decreases, and the gold ribbon lead 18 becomes It had the disadvantage of being easy to peel off. In order to eliminate this drawback, an attempt has been made to construct the electrode layer 9 with a thick (about several tens of micrometers) gold plating layer using a plating method. A difficult inconvenience has arisen. Therefore, a photoresist film is selectively formed on the electrode layer 9 and the electrode layer 9 in the element isolation region is removed by etching, or
A photoresist film is selectively formed in advance on the element isolation region on the surface of the P'l)T e semiconductor substrate 1 where the electrode layer 9 is to be formed, and then a gold electrode layer is deposited thickly, and then the resist film is removed. However, in the former case, selective etching is not easy because the gold plating layer is thick, and in the latter case, the thick gold plating layer is surrounded by a thick gold plating layer on the resin film. However, there was a drawback that it was difficult to completely remove the resist film.

(c)  発明の目的 本発明は」1記従来の欠点に鑑みなされたもので、金リ
ボンリードを接続すべき厚い電極層をメッキ法によって
、へき開による素子分離を阻害することなく容易に形成
することができる〆新規な半導体レーザ素子の製造方法
を提供することを目的とするものである。
(c) Purpose of the Invention The present invention has been made in view of the drawbacks of the conventional art described in 1. It is possible to easily form a thick electrode layer to which a gold ribbon lead is to be connected by a plating method without interfering with element separation by cleavage. The object of the present invention is to provide a novel method for manufacturing a semiconductor laser device.

((1)  発明の構成 そしてこの目的は本発明によれば、化合物半導体基板の
表面に夫々平行に複数のメサストライプ状の発光領域を
設け、該各発光領域の頂面以外の基板表面上に絶縁膜を
選択的に被着形成し、次いで北記乱板全表面上、および
該基板の裏面上に金属蒸着膜を被着しだ後、前記基板裏
面の金属蒸着膜上で各レーザ素子間の境界となる素子分
離領域に絶縁膜を選択的に形成する工程と、該絶縁膜上
を除く前記金属蒸着膜上に金属層を鍍着する工程と、前
記絶縁膜部分でへき開して複数個の半導体レーザ素子に
分割する工程とを行うことを特徴とする半導体レーザ素
子の製造方法を提供することによって達成される。
((1) Structure and object of the invention According to the present invention, a plurality of mesa stripe-shaped light emitting regions are provided in parallel to each other on the surface of a compound semiconductor substrate, and a plurality of mesa stripe-shaped light emitting regions are provided on the surface of the substrate other than the top surface of each of the light emitting regions. After selectively depositing an insulating film and then depositing a metal vapor deposited film on the entire surface of the board and the back surface of the substrate, the metal vapor deposited film on the back surface of the substrate is formed between each laser element. a step of selectively forming an insulating film in an element isolation region that is a boundary of the insulating film; a step of plating a metal layer on the metal vapor deposited film except on the insulating film; and cleaving the insulating film portion into a plurality of metal layers. This is achieved by providing a method for manufacturing a semiconductor laser device, which comprises the step of dividing the semiconductor laser device into two semiconductor laser devices.

(e)  発明の実施例 以下図面を用いて本発明の実施例について詳細に説明す
る。
(e) Embodiments of the invention Embodiments of the invention will be described in detail below with reference to the drawings.

第3図乃至第6図は本発明に係る半導体レーザ素子の製
造方法の一実施例を工程順に示す斜視図である。なお以
下の各図において第1図、第2図と同等部分には同一符
号を付した。オず第3図に示すようにp4電型のPbT
e拭板l上に通常の製造方法によってp導電型のpb’
reからなるバッファ層2、p導電型のPb5nTeか
らなる活性層8、およびn導電型のPbTeからなるト
ップ層4を順に形成する。しかる後上記基板1の表面に
前記バッファ層2に達する深さのストライプ状の溝5を
所定間隔で平行に複数本設けてメサヌトライプ発光領域
6を画定し、さらにかかる基板1表面に、メ→ノーヌト
ライグ発光領域6の頂面を除いて選択的にS:1−02
等からなる絶縁膜7を形成する。次いで前記絶縁膜7を
含む前記基板1表面、および該基板l裏面に上に、それ
ぞれ金(Au)からなる電極層8.9を被着形成する。
3 to 6 are perspective views showing one embodiment of the method for manufacturing a semiconductor laser device according to the present invention in the order of steps. In each figure below, parts equivalent to those in FIGS. 1 and 2 are given the same reference numerals. As shown in Figure 3, PbT of p4 type
P conductivity type pb' is placed on the e-wiping plate l by a normal manufacturing method.
A buffer layer 2 made of RE, an active layer 8 made of Pb5nTe of p conductivity type, and a top layer 4 made of PbTe of n conductivity type are formed in this order. Thereafter, a plurality of stripe-like grooves 5 having a depth reaching the buffer layer 2 are provided in the surface of the substrate 1 in parallel at predetermined intervals to define a mesanutraipe light emitting region 6, and further, a mesanutraipe light emitting region 6 is formed on the surface of the substrate 1. S:1-02 selectively except for the top surface of the light emitting region 6
An insulating film 7 made of the following materials is formed. Next, electrode layers 8.9 made of gold (Au) are formed on the front surface of the substrate 1 including the insulating film 7, and the back surface of the substrate 1, respectively.

ここまでの工程は従来の方法と同一である。しかして本
発明においては次に前記基板ト裏面の電極層9上にSi
O2からなる酸化絶縁膜を被着し、該絶縁膜をかかる基
板l裏面の’cl t1層9上で各レーザ素子間の境界
となる所定の素子分離領域に前記絶縁膜が選択的に被覆
されるようにパターニングして第4図に示すように絶縁
膜パターン31を形成する。そして該絶縁膜パターン3
1が施された前記電極層9上に、例えばメッキ法によっ
て数1011m程度の厚い金メッキ層32を形成する。
The steps up to this point are the same as the conventional method. However, in the present invention, next, Si is deposited on the electrode layer 9 on the back surface of the substrate.
An oxide insulating film made of O2 is deposited, and the insulating film is selectively coated on the 'clt1 layer 9 on the back surface of the substrate in a predetermined element isolation region serving as a boundary between each laser element. Then, patterning is performed to form an insulating film pattern 31 as shown in FIG. and the insulating film pattern 3
A thick gold plating layer 32 having a thickness of about several thousand meters is formed on the electrode layer 9 coated with the gold plating layer 3 by, for example, a plating method.

この場合前記絶縁膜パターン31」二には第す図に示す
ように金メッキ層32が鍛着されないので実質的に素子
分離がなされた形となる。従って次に金メッキが施され
ていないAiJ 記絶縁膜バクーン31領域を利用して
その各縁端部分88,84,85よシへき開することに
よって第6図に示す如きレーザ素子36を容易に複数制
得ることができる。
In this case, the gold plating layer 32 is not forged onto the insulating film pattern 31''2, as shown in FIG. 2, so that the elements are substantially isolated. Therefore, by using the area of the AiJ insulating film backing 31 that is not plated with gold and cleaving the edge portions 88, 84, and 85, it is possible to easily control a plurality of laser elements 36 as shown in FIG. Obtainable.

このようにして得られた半導体レーザ素子36はトップ
層4と接続された電極層8を介してヒートシンク基台1
2上にInによって固着されると共に、他方の厚い金メ
ッキ層32からなる電極に金リボンリード18を工nを
介してボンディング接続するようにすれば、電極が厚い
金メッキ層32で形成されているので、該金メッキ層3
2と合金化された工nが容易に素子側のp導を型PbT
e半導体領域に達して接触することがなく、接続抵抗が
増加するといった不都合が解消されると共に、前記金リ
ボンリード13が工nを介して前記厚い金メッキ層32
からなる電極と相互に合金化した形で接続されるため、
その接着強度も向上する。
The semiconductor laser device 36 obtained in this manner is transferred to the heat sink base 1 through the electrode layer 8 connected to the top layer 4.
If the gold ribbon lead 18 is bonded to the other electrode made of the thick gold plating layer 32 through the wire, the electrode is formed of the thick gold plating layer 32. , the gold plating layer 3
2 and alloyed with PbT easily convert the p-conductivity on the element side into PbT type.
e The inconvenience of increasing connection resistance without reaching the semiconductor region and making contact is eliminated, and the gold ribbon lead 13 is connected to the thick gold plating layer 32 through the process n.
Because it is connected in an alloyed form with the electrode consisting of
The adhesive strength is also improved.

(0発明の効果 以上の説明から明らかなように本発明に係る半導体レー
ザ素子の製造方法によれば、複数のメサストライプ発光
領域が形成された半導体基板の金リボンリードを接続す
べき電極層を、最終工程での前記基板のへき開による素
子分離を阻害することなく、メッキ法によって容易に厚
く形成することが可能となる。よって該厚い金メッキ層
からなる電極に金リボンリードを工nを介してボンディ
ング接続することにより従来の如き接続抵抗が増加する
といった不都合が解消されると共に、金リボンリードの
接着強度も向上する利点を有し、信頼性のよい半導体レ
ーザ素子が得られる等、この種の鉛カルコゲン系の化合
物半導体レーザ素子の製造に限らずその他の化合物半導
体レーザ素子の製造等に適用して極めて有利であり、実
用上優れた効果が発揮される。
(0) Effects of the Invention As is clear from the above explanation, according to the method for manufacturing a semiconductor laser device according to the present invention, the electrode layer to which the gold ribbon leads of the semiconductor substrate on which a plurality of mesa stripe light emitting regions are to be connected is , it is possible to easily form a thick layer using a plating method without interfering with device separation by cleaving the substrate in the final process.Therefore, gold ribbon leads can be attached to the electrodes made of the thick gold plating layer through a process. This type of bonding eliminates the disadvantage of increasing connection resistance as in conventional methods, and also has the advantage of improving the adhesive strength of the gold ribbon leads, making it possible to obtain highly reliable semiconductor laser devices. It is extremely advantageous to apply not only to the manufacture of lead chalcogen-based compound semiconductor laser elements but also to the manufacture of other compound semiconductor laser elements, and excellent practical effects are exhibited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の半導体レーザ素子の製造方
法を説明する斜視図、第3図乃至第6図は本発明に係る
半導体レーザ素子の製造方法の一実施例を工程順に示す
斜視図である。 図面において、lは化合物半導体基板、2はバッファ層
、3は活性層、4はトップ層、5はストライブ状の溝、
6はメサストライプ発光領域、7は絶縁膜、8.9は電
極層、31は絶縁膜パターン、82は金メッキ層、83
,34.35は縁端部分、36は半導体レーザ素子を示
す。 第1図 第2図 j 第3図 第4図
1 and 2 are perspective views illustrating a conventional method for manufacturing a semiconductor laser device, and FIGS. 3 to 6 are perspective views illustrating an example of a method for manufacturing a semiconductor laser device according to the present invention in the order of steps. It is. In the drawing, l is a compound semiconductor substrate, 2 is a buffer layer, 3 is an active layer, 4 is a top layer, 5 is a striped groove,
6 is a mesa stripe light emitting region, 7 is an insulating film, 8.9 is an electrode layer, 31 is an insulating film pattern, 82 is a gold plating layer, 83
, 34 and 35 are edge portions, and 36 is a semiconductor laser element. Figure 1 Figure 2 j Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体基板の表面に夫々平行に複数のメサストラ
イプ状の発光領域を設け、該各発光領域の頂面以外の基
板表面」二に絶縁膜を選択的に被着形成し、次いで上記
基板全表面上、および該基板の裏面上に金属蒸着膜を被
着した後、前記基板裏面の金属蒸着膜上で各レーザ素子
間の境界となる素子分離領域に絶縁膜を選択的に形成す
る工程と、該絶縁膜上を除く前記金属蒸着膜上に金属層
を鍍着する工程と、前記絶縁膜部分でへき関して複数個
の半導体レーザ素子に分割する工程とを行うことを特徴
とする半導体レーザ素子の製造方法。
A plurality of mesa stripe-shaped light emitting regions are provided parallel to each other on the surface of a compound semiconductor substrate, an insulating film is selectively deposited on the surface of the substrate other than the top surface of each light emitting region, and then an insulating film is formed on the entire surface of the substrate. After depositing a metal vapor deposited film on the upper surface and the back surface of the substrate, selectively forming an insulating film in an element isolation region serving as a boundary between each laser element on the metal vapor deposited film on the back surface of the substrate; A semiconductor laser device comprising the steps of: depositing a metal layer on the metal vapor deposited film except on the insulating film; and dividing the semiconductor laser device into a plurality of semiconductor laser devices by separating the insulating film portion. manufacturing method.
JP57140331A 1982-08-11 1982-08-11 Manufacture of semiconductor laser element Pending JPS5929486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57140331A JPS5929486A (en) 1982-08-11 1982-08-11 Manufacture of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57140331A JPS5929486A (en) 1982-08-11 1982-08-11 Manufacture of semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS5929486A true JPS5929486A (en) 1984-02-16

Family

ID=15266332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57140331A Pending JPS5929486A (en) 1982-08-11 1982-08-11 Manufacture of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS5929486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176880A2 (en) * 1984-09-26 1986-04-09 Siemens Aktiengesellschaft Process for producing laser diodes with adjusted integrated heat sinks
US7664152B2 (en) * 2004-04-06 2010-02-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176880A2 (en) * 1984-09-26 1986-04-09 Siemens Aktiengesellschaft Process for producing laser diodes with adjusted integrated heat sinks
US7664152B2 (en) * 2004-04-06 2010-02-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device

Similar Documents

Publication Publication Date Title
US5047364A (en) Method for making a multi-point emission type semiconductor laser device
JPH0644642B2 (en) Method for manufacturing light emitting diode array head
KR0184372B1 (en) Semiconductor device and method for manufacturing the same
US4182025A (en) Manufacture of electroluminescent display devices
US3577631A (en) Process for fabricating infrared detector arrays and resulting article of manufacture
JPH1093191A (en) Manufacture of laser diode
JPS5929486A (en) Manufacture of semiconductor laser element
JPH0531317B2 (en)
JP2008112883A (en) Light emitting diode array and manufacturing method of same
JPH01103867A (en) Transistor
KR940003436B1 (en) Semiconductor light emitting device
JPH08125270A (en) Laminated semiconductor laser
JPS6184890A (en) Semiconductor laser
JP2657214B2 (en) Manufacturing method of surface emitting laser device
JP2838473B2 (en) Semiconductor light emitting device
JP2523110Y2 (en) Multi-beam semiconductor laser device
JPS60153188A (en) Semiconductor laser output device utilizing heat pipe
JPH11168075A (en) Manufacture of semiconductor device
JPH03101233A (en) Electrode structure and its manufacture
JPH0349406Y2 (en)
JPH0444285A (en) Semiconductor light emitting element
JP2822916B2 (en) Method for manufacturing semiconductor device
JPH07176546A (en) Semiconductor device
JPS58147188A (en) Semiconductor laser device
JP4292651B2 (en) LED array chip and manufacturing method thereof