JPS60117678A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60117678A
JPS60117678A JP22450683A JP22450683A JPS60117678A JP S60117678 A JPS60117678 A JP S60117678A JP 22450683 A JP22450683 A JP 22450683A JP 22450683 A JP22450683 A JP 22450683A JP S60117678 A JPS60117678 A JP S60117678A
Authority
JP
Japan
Prior art keywords
gate
layer
source
drain
high electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22450683A
Other languages
Japanese (ja)
Inventor
Yoshinori Yamada
義則 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22450683A priority Critical patent/JPS60117678A/en
Publication of JPS60117678A publication Critical patent/JPS60117678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To effect automatic alignment as necessary between a high electron density layer forming a source, drain and a gate Schottky contact in a fine- structure FET by a method wherein holes are provided for a source, drain, gate in an insulating film covering a dynamic layer. CONSTITUTION:An insulating film 11 is deposited on a dynamic layer 1a formed on a semi-insulating substrate 1, a source opening 13s, drain opening 13d, gate opening 13g are provided through a photoresist film 12 at locations whereat electrodes are to be built, and then ion implantation is performed for the formation of high electron density layers 14s, 14d, 14g. The photoresist film 12 is removed and then metal electrodes 15s for source, 15d for drain are built in the high electron density layers 14s, 14d. A process follows wherein the high electron density layer 14g is removed by ethcing for the formation of a gate metal electrode 15g. During this process, the position of Schottky contact is determined by the gate opening 13g, which means that a minor dislocation after alignment does not affect performance characteristics.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体装置の製造方法に係り、特に微細構造
の電界効果トランジスタにおける電極接触抵抗の低減と
ゲート形成域の設定をはかる製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device for reducing electrode contact resistance and setting a gate formation region in a finely structured field effect transistor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

以下に砒化ガリウム(GaAs)結晶をショットキノベ
リアゲート電界効果トランジスタ(以下FETと略称す
る)を例示して説明する。
Below, a gallium arsenide (GaAs) crystal will be explained using a Schottky Noveria gate field effect transistor (hereinafter abbreviated as FET) as an example.

低雑音、電力用FETの特性向上をはかるために、チャ
ネル抵抗、オーム性電極の接触抵抗など寄生素子抵抗を
極力小にすることは重要であり、中でも電極接触抵抗を
小にするためにソース、ドレイン電極下に高電子濃度層
が心入される。この高電子濃度層は気相成長またはイオ
ン注入で形成できるが、特に大径ウェーハを使用して濃
度、厚みの面内ばらつきを小さく抑えるためにはイオン
注入技術の利用は有効である。また、マスクを使用して
選択的に形成するととも容易であり、近年とみに使用さ
れる技術になっている。
In order to improve the characteristics of low-noise power FETs, it is important to minimize the resistance of parasitic elements such as channel resistance and contact resistance of ohmic electrodes. A high electron concentration layer is placed under the drain electrode. This high electron concentration layer can be formed by vapor phase growth or ion implantation, but the use of ion implantation technology is particularly effective in suppressing in-plane variations in concentration and thickness when using large-diameter wafers. Furthermore, it is easy to selectively form using a mask, and has become a commonly used technique in recent years.

イオン注入技術を使用したFETの製造方法の代表的な
ものに第1図(a)〜(b)に示すものがある。
A typical FET manufacturing method using ion implantation technology is shown in FIGS. 1(a) to 1(b).

まず、図(a)に示すように、GaAs半絶縁性基板(
1)にイオン注入を施してN型動作(la)を形成した
のち、図(b)に示すように、フォトレジスト膜(2)
によってソース、ドレインの描画を行ない、これにマス
クとしてイオン注入を施し高電子濃度層(3)を形成す
る1次に、図(C)に示すように、前記ソース、ドレイ
ン領域の高電子濃度層(3)上に金属電極(4)、(5
)を形成しこれに加熱を施してオーム性接触としたのち
1図(d)に示すようにソース、ドレイン電極間にゲー
ト電極(6)を形成する。
First, as shown in Figure (a), a GaAs semi-insulating substrate (
After performing ion implantation on 1) to form an N-type behavior (la), as shown in Figure (b), a photoresist film (2) is formed.
The source and drain regions are drawn by lithography, and ions are implanted using this as a mask to form a high electron concentration layer (3). As shown in Figure (C), the high electron concentration layer in the source and drain regions is (3) Metal electrodes (4), (5) on top
) is formed and heated to form an ohmic contact, and then a gate electrode (6) is formed between the source and drain electrodes as shown in FIG. 1(d).

このとき、ゲート電極の位置合せはソース、ドレイン電
極、あるいは高電子濃度層に対して行なわれるのである
が、一般に合わせずれは避けられず、高電子濃度層の間
隔が小になるとゲー・ト電極が高電子濃度層に接触する
ことも起こりうる。電力用FETでは図(d)に示すF
ETをユニットとし、これを多数並列動作させるが、ゲ
ート電極に対する所望位置からのずれを生じた場合、例
えば第2図に示すように、第1のゲート電極(6a)は
ソース電極(4a)に近接し、第2のゲート電極(6b
)はソース電極(4b)から離れて位置するなど、個々
のFETは均一な特性を有している。そして、これらの
特性値が合成されたこのFETは均一な特性を有してい
る。そして、これらの特性値が合成されたこのFETの
特性値は個々が位置ずれのない場合に比して劣ることが
明らかになっている。
At this time, the alignment of the gate electrode is performed with respect to the source, drain electrode, or high electron concentration layer, but misalignment is generally unavoidable, and when the distance between the high electron concentration layers becomes small, the gate electrode It is also possible that the electrons come into contact with the high electron concentration layer. For power FET, F shown in figure (d)
A large number of ETs are operated in parallel as a unit, but if a deviation from the desired position with respect to the gate electrode occurs, for example, as shown in FIG. The second gate electrode (6b
) is located away from the source electrode (4b), and the individual FETs have uniform characteristics. This FET, in which these characteristic values are combined, has uniform characteristics. It has been revealed that the characteristic value of this FET, which is a combination of these characteristic values, is inferior to the characteristic value of the FET when there is no positional deviation.

上記問題点を除去するために第3図(a)、(b)に示
す改良された製造方法がある。これは図(a)に示すよ
うに動作層を有して従来と変わらない半導体基板上にま
ずゲート電極(6c)を形成し、これをマスクとしてイ
オン注入を行ない、高鼻処理により注入イオンを活性化
させゲート電極の両側に高電子濃度層(3)、(3)を
形成する。次に図(b)に示すように、高電子濃度層(
3)、(3)上にソース電極(4)およびドレイン電極
(5)を形成して製造を達成する。
In order to eliminate the above problems, there is an improved manufacturing method shown in FIGS. 3(a) and 3(b). As shown in Figure (a), a gate electrode (6c) is first formed on a semiconductor substrate that has an active layer and is the same as before, and ions are implanted using this as a mask, and the implanted ions are activated by a high nose treatment. High electron concentration layers (3), (3) are formed on both sides of the gate electrode. Next, as shown in Figure (b), a high electron concentration layer (
3), forming a source electrode (4) and a drain electrode (5) on (3) to achieve manufacturing.

上記製造方法によると、高電子濃度層がゲート電極に自
動的に常に近接して形成されるので、高電圧動作を行な
う電力用FETに使用することは難しく適用素子も限ら
れる。
According to the above manufacturing method, the high electron concentration layer is automatically and always formed close to the gate electrode, so it is difficult to use it in power FETs that operate at high voltages, and the number of devices to which it can be applied is also limited.

〔発明の目的〕[Purpose of the invention]

この発明は上記従の問題点を除去するためになされたも
ので、微細構造のF E Tにおけるソース、ドレイン
の高電子濃度層と、ゲーI−ショット接触を自動的にか
つ、所望の位置に位置合せできるようにした製造方法髪
提供することを目的とする。
The present invention has been made to eliminate the above-mentioned problems, and it is possible to automatically make the gate I-shot contact with the high electron concentration layer of the source and drain in a finely structured FET at a desired position. It is an object of the present invention to provide a method of manufacturing hair that allows alignment.

〔発明の概要〕[Summary of the invention]

この発明にかかる半導体装置の製造方法は、高比抵抗の
半導体基板の一方の主面側に動作層を形成する工程と、
前記動作層に絶縁膜を被着しこれにソース、ドレインの
各領域形成予定域およびこれらの各々に対し所望の相関
位置に設定さ肛たグー1−形成予定域に開孔する工程と
、前記開孔部にイオン注入を施して前記動作層よりも浅
い低比抵抗層を形成する工程と、前記注入されたイオン
を活性化するための加熱工程と、前記絶縁膜のソース、
ドレインの開孔部に金属電極を形成したのち加熱してオ
ーム性接触させる工程と、前記絶縁膜のゲート開孔部の
低比抵抗層をエツチング除去しシJットキ型の金属電極
を形成する工程とからなる。
A method for manufacturing a semiconductor device according to the present invention includes a step of forming an active layer on one main surface side of a high resistivity semiconductor substrate;
a step of depositing an insulating film on the active layer and opening holes in the regions where the source and drain regions are to be formed and holes set at desired correlation positions with respect to each of these regions; a step of implanting ions into the opening to form a low resistivity layer shallower than the active layer; a heating step for activating the implanted ions; a source of the insulating film;
A step of forming a metal electrode in the drain hole and then heating it to bring it into ohmic contact; and a step of etching away the low resistivity layer in the gate hole of the insulating film to form a shuttling type metal electrode. It consists of

〔発明の実施例〕[Embodiments of the invention]

次にこの発明の1実施例を図面を参照して説明する。 Next, one embodiment of the present invention will be described with reference to the drawings.

第4図(a)〜(d)に製造工程を示す。GaAs半絶
縁性基板(1)にSi+のイオン注入を施しN型動作層
(1a)を形成する。このイオン注入は3128を4X
10I2c+n−2゜500KeVの条件で打ち込み、
予想される電子濃度のピーク値とその深さは夫々約I 
XIO”cm−3,4400人である(図(a))。
The manufacturing process is shown in FIGS. 4(a) to 4(d). Si+ ions are implanted into a GaAs semi-insulating substrate (1) to form an N-type operating layer (1a). This ion implantation is 4X 3128
10I2c+n-2゜Implemented under the conditions of 500KeV,
The expected electron concentration peak value and its depth are approximately I
XIO"cm-3,4400 people (Figure (a)).

次に上記気導体基板上に3000人の厚さに窒化けい素
(SiN) (i’)絶縁[(11)をプラズマCvD
にて堆積させる。この絶縁膜上にフォトレジスト膜(1
2)によりソース、ドレイン、ゲー1〜の描画を行ない
レジスト用孔部の絶縁膜をケミカルドライエツチング(
CDE)法で除去し、電極形成予定域に開孔を施しソー
ス開孔部(13g) 、ドレイン開孔部(13d) 、
ゲート開孔部(13g)を設は核部にGaAs面を露出
させる(図(b))。ついで各開孔部にイオン注入を施
して高電子濃度層(14g) 、 (14d) 、 (
14g)を形成する。
Next, silicon nitride (SiN) (i') insulation [(11)
Deposit at A photoresist film (1
2), the source, drain, and gate 1 are drawn, and the insulating film in the resist hole is chemically etched (
CDE) method, and holes are formed in the area where electrodes are to be formed, forming a source hole (13g), a drain hole (13d),
A gate opening (13g) is provided to expose the GaAs surface in the core (Figure (b)). Next, ions are implanted into each opening to form high electron concentration layers (14g), (14d), (
14g).

この注入条件は51211を2 X 1013c+m−
2,60KeVで打ち込み、推定ピーク濃度の位置は表
面から約500人で、先のN型動作層(1a)に比べて
浅く形成することがこの発明の要点である。ついで、フ
ォトレジストをプラズマ灰化装置によって除去し、絶縁
膜(11)を残したまま砒素雰囲気で高温アニールを施
す。このアニール条件は850℃、15分間で施した。
This injection condition is 51211 at 2 x 1013c+m-
The key point of this invention is to implant at 2,60 KeV and to form the estimated peak concentration approximately 500 m from the surface, which is shallower than the N-type active layer (1a). Next, the photoresist is removed using a plasma ashing device, and high-temperature annealing is performed in an arsenic atmosphere while leaving the insulating film (11). This annealing condition was performed at 850° C. for 15 minutes.

次に、ソース、ドレイン開孔部(13s) (13d)
に露出した高電子濃度層(14s) = (14d)に
金属型11(15s)。
Next, source and drain openings (13s) (13d)
High electron concentration layer (14s) exposed to (14s) = metal mold 11 (15s) to (14d).

(15d)を形成する。この金属としてAuGc(Ga
 l 孔%)を1000人の厚さにリフトオフによって
形成した。ついで、上記AuGe金属電極を水素雰囲気
中にて400℃、30秒間の熱処理を施してオーム性接
触とした(図(C))。
(15d) is formed. This metal is AuGc (Ga
l holes%) were formed by lift-off to a thickness of 1000 mm. Next, the AuGe metal electrode was heat-treated at 400° C. for 30 seconds in a hydrogen atmosphere to form ohmic contact (Figure (C)).

次に、ゲート開孔部(13g) (図(C))に形成さ
れた高電子濃度層(14g)をエツチング除去し、さら
に適当な電流制御を施してフォトレジストによるリフト
オフにてゲートのアルミニウム電極(15g)を1μm
の厚さに形成する。このとき図(c)のゲート開孔部に
位置合わせを行なうが、ショットキ接触の位置はゲート
開孔部で決められているので、多少の位置合わせずれは
特性上問題にならない。
Next, the high electron concentration layer (14g) formed in the gate opening (13g) (Figure (C)) is removed by etching, and with appropriate current control, the aluminum electrode of the gate is removed by lift-off using photoresist. (15g) to 1μm
Form to a thickness of . At this time, alignment is performed with the gate opening shown in FIG. 3(c), but since the position of Schottky contact is determined by the gate opening, a slight misalignment does not pose a problem in terms of characteristics.

この実施例では図(b)に示すゲート開孔部の寸法を約
0.5μmにて行なっており、高電子濃度層(13g)
 、 (13d)の間隔は4μ四に設計している。図(
d)に示すゲート電極(15g)の上部の寸法は2μm
であり、このパターンが0.5μ川を覆うように位置合
わせすればよく、大きな困難はない。(図(d))。
In this example, the size of the gate opening shown in Figure (b) is approximately 0.5 μm, and the high electron concentration layer (13 g) is
, (13d) is designed to be 4μ4. figure(
The upper dimension of the gate electrode (15g) shown in d) is 2μm
Therefore, it is sufficient to align the pattern so that it covers the 0.5μ river, and there is no major difficulty. (Figure (d)).

次に、この発明におけるゲート電極(15g)の形成方
法を次のように行なってもよい。すなわち、第4図(c
)に示すように形成したのち、ゲート電極となる金属層
を全面に被着し、高電子濃度層間の領域をレジストで被
覆してエツチングを施す。
Next, the method for forming the gate electrode (15g) according to the present invention may be performed as follows. That is, Fig. 4 (c
), a metal layer that will become the gate electrode is deposited over the entire surface, and the regions between the high electron concentration layers are covered with resist and etched.

さらに、レジスト被覆下の部分の金属層のサイドエツチ
ングをゲート開孔部(13g)に向けて進めて行くもの
である。このようにすれば、図(d)におけるゲート電
極(15g)の上部の寸法をさらに小にできる。すなわ
ち、絶縁膜上に形成されるグー1〜電極の面積をできる
限り小さくすることからゲート電極が絶縁膜に対しても
つ寄生容量を小さくするのに有効である。
Further, side etching of the metal layer under the resist coating is performed toward the gate opening (13g). In this way, the size of the upper part of the gate electrode (15g) in Figure (d) can be further reduced. That is, since the area of the electrode formed on the insulating film is made as small as possible, it is effective in reducing the parasitic capacitance that the gate electrode has with respect to the insulating film.

また、この発明では高電子濃度層をN型動作層よりも浅
く形成する特徴において、イオン注入に特有のピーク濃
度の位置を結晶の表面付近に制御性良く実現させるため
に、例えば第4図(b)に示す構造をもつ半導体基板の
全面にチタニウム、あるいはアルミニウムなどの金属薄
膜を堆積させたのちイオン注入を行なってもよい。
In addition, in this invention, in the feature of forming the high electron concentration layer shallower than the N-type active layer, in order to realize the position of the peak concentration peculiar to ion implantation near the surface of the crystal with good controllability, for example, as shown in FIG. Ion implantation may be performed after a thin film of metal such as titanium or aluminum is deposited on the entire surface of the semiconductor substrate having the structure shown in b).

〔発明の効果〕〔Effect of the invention〕

叙゛上の如く、この発明によれば、ソース、ドレイン電
極領域の高電子濃度(低比抵抗)層に対するゲートショ
ットキ接触の位置を自動的に、しかも所望する位置に決
めることができる。イオン注入技術による高電子濃度層
の形成は多くの用途のFET素子に適用されているが、
特に電力用FETでは高電圧動作を行なわせるために、
ゲート電極とドレイン電極領域の高電子濃度層との距離
を大にする必要があり、逆にソース電極領域に対しては
ゲート電極を近接させることが性能向上に有効である。
As described above, according to the present invention, the position of the gate Schottky contact with the high electron concentration (low resistivity) layer in the source and drain electrode regions can be automatically determined at a desired position. Formation of a high electron concentration layer using ion implantation technology is applied to FET devices for many purposes.
Especially in power FETs, in order to perform high voltage operation,
It is necessary to increase the distance between the gate electrode and the high electron concentration layer in the drain electrode region, and conversely, it is effective for improving performance to bring the gate electrode closer to the source electrode region.

さらに、ユニットのFETを多数並列動作させるために
個々のFETが均一な特性、すなわちグー1〜電極が所
望の位置からずれて形成されな1)構造を有しているこ
とが特性向上に必要である。
Furthermore, in order to operate a large number of FETs in a unit in parallel, it is necessary for each FET to have uniform characteristics, that is, to improve the characteristics, it is necessary to have a structure in which the electrodes are not formed out of position. be.

斜上の各種の効果を含め従来の製造方法で克服されなか
シだすべてをこの発明は解決するものである。
This invention solves all the problems that cannot be overcome with conventional manufacturing methods, including various effects of slanting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)はFETの従来の製造方法を工程
順に示すいずれも断面図、第2図は電力用FETの一部
を示す断面図、第3図(a) 、 (b)はF E T
の従来の製造方法を工程順に示すいずれも断面図。 第4図(a)〜(d)はこの発明の1実施例にがかるF
ETの製造方法を工程順に示すいずれも断面図である。 なお1図中、同一符号は同一または相当部分を示すもの
とする。 1・・・・・・半絶縁性基板 la・・・・・・動作層 11・・・・・・絶縁層 13(5,g、d)・・・開孔部(ソース、ゲート、ド
レイン)14(s、g、d)・・・高電子濃度層(ソー
ス、ゲート、ドレイン)15(s’、g、d)・・・電
極(ソース、ゲート、ドレイン)代理人 弁理士 井 
上 −男 第1図 (d) 、 l l (ムン /d @2図 第 3 図 d 第 4 図 (υ) (b)− /4s 鉢〆
Figures 1 (a) to (d) are cross-sectional views showing the conventional manufacturing method of FET in the order of steps, Figure 2 is a cross-sectional view showing a part of a power FET, and Figures 3 (a) and (b). ) is FET
Both are cross-sectional views showing the conventional manufacturing method in order of steps. FIGS. 4(a) to 4(d) show an F according to an embodiment of the present invention.
All are cross-sectional views showing the method for manufacturing ET in the order of steps. In addition, in FIG. 1, the same reference numerals indicate the same or corresponding parts. 1... Semi-insulating substrate la... Active layer 11... Insulating layer 13 (5, g, d)... Opening part (source, gate, drain) 14 (s, g, d)... High electron concentration layer (source, gate, drain) 15 (s', g, d)... Electrode (source, gate, drain) agent Patent attorney I
Top - Male Fig. 1 (d), l l (mun/d @ Fig. 2 Fig. 3 d Fig. 4 (υ) (b) - /4s Pot 〆

Claims (1)

【特許請求の範囲】[Claims] 高比抵抗の半導体基板の一方の主面側に動作層を形成す
る工程と、前記動作層に絶縁膜を被着しこれにソース、
ドレインの各領域形成予定域およびこれらの各々に対し
所望の相関位置に設定されたゲート形成予定域に開孔す
る工程と、前記開孔部にイオン注入を施して前記動作層
よりも浅い低比抵抗層を形成する工程と、前記注入され
たイオンを活性化するための加熱工程と、前記絶縁膜の
ソース、ドレインの開孔部に金属電極を形成したのち加
熱してオーム性接触させる工程と、前記絶縁膜のゲート
開孔部の低比抵抗層をエツチング除去しショットキ型の
金属電極を形成する工程とからなる半導体装置の製造方
法。
A step of forming an active layer on one main surface side of a high resistivity semiconductor substrate, depositing an insulating film on the active layer, and applying a source layer to the active layer.
A step of opening holes in each region of the drain region and a region of the gate region set at a desired relative position with respect to each region, and implanting ions into the openings to form a low-ratio layer shallower than the active layer. a step of forming a resistance layer; a heating step for activating the implanted ions; and a step of forming metal electrodes in the source and drain openings of the insulating film and then heating them to bring them into ohmic contact. . A method for manufacturing a semiconductor device, comprising the steps of: etching away the low resistivity layer in the gate opening of the insulating film to form a Schottky-type metal electrode.
JP22450683A 1983-11-30 1983-11-30 Manufacture of semiconductor device Pending JPS60117678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22450683A JPS60117678A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22450683A JPS60117678A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60117678A true JPS60117678A (en) 1985-06-25

Family

ID=16814862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22450683A Pending JPS60117678A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60117678A (en)

Similar Documents

Publication Publication Date Title
KR920002090B1 (en) Method of manufacturing field effect transistor
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
JPS59229876A (en) Manufacture of schottky gate type field effect transistor
JP2673109B2 (en) Method of manufacturing self-aligned T-gate gallium arsenide metal semiconductor field effect transistor
JPH0324060B2 (en)
JPS60117678A (en) Manufacture of semiconductor device
JP3035917B2 (en) Field effect type semiconductor device and method of manufacturing the same
JP2726730B2 (en) Manufacturing method of field effect transistor
JP2541230B2 (en) Method for manufacturing field effect transistor
JPS5893290A (en) Manufacture of schottky barrier field effect transistor
JPS6258154B2 (en)
JPH01251669A (en) Manufacture of field effect transistor
JPS6086871A (en) Manufacture of field effect transistor
JPS6347982A (en) Semiconductor device
JPH06260510A (en) Field effect transistor and its manufacturing method
JPS61265870A (en) Manufacture of field effect transistor
JPS6223175A (en) Manufacture of semiconductor device
JPH0684954A (en) Manufacture of semiconductor device
JPS6329420B2 (en)
JPS59119764A (en) Manufacture of field effect type semiconductor device
JPH06310710A (en) Fabrication of compound semiconductor device
JPH04346442A (en) Manufacture of field-effect transistor
JPH0870011A (en) Manufacture of semiconductor device
JPH0156537B2 (en)
JPS6348868A (en) Manufacture of schottky gate type field effect transistor