JPS60110151A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS60110151A
JPS60110151A JP58219021A JP21902183A JPS60110151A JP S60110151 A JPS60110151 A JP S60110151A JP 58219021 A JP58219021 A JP 58219021A JP 21902183 A JP21902183 A JP 21902183A JP S60110151 A JPS60110151 A JP S60110151A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
silicon nitride
silicon layer
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58219021A
Other languages
Japanese (ja)
Inventor
Shigeru Takahashi
盛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58219021A priority Critical patent/JPS60110151A/en
Publication of JPS60110151A publication Critical patent/JPS60110151A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent the variation in the resistance value of a high resistance polycrystalline silicon layer as a resistor by removing at least the portion on the high resistance polycrystalline silicon layer of a silicon nitride film as a protecting film or an interlayer insulating film. CONSTITUTION:A P type silicon substrate 1, N<+> type source, drain regions 2, 2', a channel stopper region 3, a field oxide silicon film 4, gate electrodes 5, 5' form an N channel MOS transistors A, B. A flip-flop formed by using polycrystalline silicon layer 8 as a resistor form 1 bit. An interlayer insulating film 10 and aluminum wirings 11 are coated, and a PSG film 12 and a silicon nitride film 13 are used as protective films. However, the silicon nitride film of the portion of the polycrystalline silicon layer 8 is removed. Thus, the layer 8 as a resistor is not affected by the adverse influence of the film 13.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は半導体集積回路、特に抵抗体としての尚抵抗多
結晶シリコン層と保護膜又は層間絶縁膜としCの窒化シ
リコン膜とを有する半導体集積回路に関する。
Detailed description of the invention [Technical field to which the invention pertains] The present invention relates to a semiconductor integrated circuit, particularly a semiconductor integrated circuit having a resistive polycrystalline silicon layer as a resistor and a C silicon nitride film as a protective film or interlayer insulating film. Regarding circuits.

〔従来技術〕[Prior art]

半導体集積回路は、通猟その表面が保護膜でおおわれて
いる。汚染物質が半導体集積回路の内部に侵入するのを
防止して素子特性の劣化を防ぐとともに、空気中の水分
の侵入を防止して全極配線が腐蝕により断線するのを防
ぐためである。保賎膜の材料としては、従来よりリンシ
リケートガラス(以下、PSGという。)が広く使われ
ている。
The surface of a semiconductor integrated circuit is covered with a protective film. This is to prevent contaminants from entering the semiconductor integrated circuit to prevent deterioration of element characteristics, and to prevent moisture from entering the air to prevent all-pole wiring from breaking due to corrosion. Phosphorsilicate glass (hereinafter referred to as PSG) has been widely used as a material for the protective film.

PEGはリン(P)を多く含み、このリンにより汚染物
質を膜内に固定し、菓子内部へ拡散するのを防いでいる
。しかしリンの濃度によっては吸水性が強かったり、ま
たクラックが入りやすいという問題があり、表面保護膜
としては不完全である。
PEG contains a large amount of phosphorus (P), which fixes contaminants within the film and prevents them from diffusing into the interior of the confectionery. However, depending on the concentration of phosphorus, there are problems in that it has strong water absorption and is prone to cracking, making it incomplete as a surface protective film.

これに対し近年使われ始めたプラズマ気相成長法により
形成された窒化シリコン膜は、減圧ガス中でプラズマを
発生して反応を進行させるため低温で生成できる特徴が
あり、多層構造の層間絶縁膜として、あるいは汚染物質
が非常に拡散しにくい物質であることから、PSGより
強力な保護膜として注目されている。しかし窒化シリコ
ン膜にも問題点があり、内部応力が大きい事、又膜中に
アンモニアと水素を多量に含んでおり、これらがガスと
なって半導体集積回路の内部に拡散する事等により電気
的特性が変化する恐れがある。
On the other hand, silicon nitride films formed by the plasma vapor deposition method, which has started to be used in recent years, can be produced at low temperatures because plasma is generated in reduced pressure gas and the reaction proceeds. It is attracting attention as a stronger protective film than PSG because it is a substance that is difficult for pollutants to diffuse. However, silicon nitride films also have problems, such as high internal stress and large amounts of ammonia and hydrogen in the film, which can become gases and diffuse into the semiconductor integrated circuit, causing electrical problems. Characteristics may change.

発明者は、この度抵抗体とし′〔半導体集積回路内に組
み込まれた高抵抗多結晶シリコン層の抵抗値が、気相成
長法による窒化シリコン膜の被着により大幅に変動する
事を見出した。賢化シリコン膜全被着し°〔いない半導
体集積回路内の高抵抗多結晶クリコンの抵抗値がlOΩ
でめったのに対し゛C1窒化シリコン膜を被着した半導
体集積回路のそれはlOΩであった。抵抗値変動のメカ
ニズムが蟹化シリコン膜を被着した事により生じた内部
応力に起因するものか、あるいt;L膜中に含まれるガ
スに起因するものか必ずしも明確ではない。しかし抵抗
の絶対値をlOΩレベルで要求される場合この大幅な変
動は許容範囲を越えるものである。
The inventors have recently discovered that the resistance value of a high resistance polycrystalline silicon layer incorporated into a semiconductor integrated circuit as a resistor changes significantly when a silicon nitride film is deposited by vapor phase growth. The resistance value of high-resistance polycrystalline silicon in a semiconductor integrated circuit that is not fully coated with a silicone film is lOΩ.
In contrast, that of the semiconductor integrated circuit coated with the C1 silicon nitride film was lOΩ. It is not necessarily clear whether the mechanism of the resistance value fluctuation is due to internal stress caused by depositing the silicon nitride film, or whether it is due to the gas contained in the t;L film. However, when the absolute value of the resistance is required at the 10Ω level, this large variation is beyond the permissible range.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、抵抗体とし°〔の為抵抗多結晶シリコ
ン層の抵抗値変動をもたらす事なしに、窒化シリコン膜
を保護膜又は層間絶縁膜とし°C用いる事のできる半導
体集積回路tl−提供する事にある。
An object of the present invention is to provide a semiconductor integrated circuit which can use a silicon nitride film as a protective film or an interlayer insulating film without causing a change in the resistance value of the resistive polycrystalline silicon layer as a resistor. It is about providing.

〔発明の構成〕[Structure of the invention]

本発明の半導体集積回路は、抵抗体とし°Cの高抵抗多
結晶シリコン層と、保護膜又は層間絶縁膜とし”Cの窒
化シリコン膜とを有する半導体ff[を回路において、
前記窯化シリコン膜の少くとも茜抵抗多結晶シリコン層
上の部分が除去されてなる事から構成される。
The semiconductor integrated circuit of the present invention includes a semiconductor ff[ having a high resistance polycrystalline silicon layer at °C as a resistor and a silicon nitride film at °C as a protective film or an interlayer insulating film.
It is constructed by removing at least a portion of the silica silicon film above the red resistive polycrystalline silicon layer.

〔実施例の説明〕[Explanation of Examples]

以下、本発明の実施例につぃ°C図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図はそれぞれ本発明の一実施例の要部を
示す断面図で、スタティック型メモリセルの二つの方向
、すなわち、第1図は第2図のY−Y′、第2図は第1
図のx−x’に沿う方向の断面図を表わしCいる。
1 and 2 are cross-sectional views showing essential parts of an embodiment of the present invention, respectively, in two directions of a static memory cell, that is, FIG. The figure is the first
C represents a cross-sectional view taken along the line xx' in the figure.

本実施例は、抵抗体としての高抵抗多結晶シリコン層8
と、保護膜としての窯化シリコン膜13を有する半導体
集積回路において、窒化シリコン膜13の高抵抗多結晶
シリコン層8上の部分が除去されてなる事から構成され
る。
In this embodiment, a high resistance polycrystalline silicon layer 8 as a resistor is used.
In a semiconductor integrated circuit having a silica silicon film 13 as a protective film, the portion of the silicon nitride film 13 above the high-resistance polycrystalline silicon layer 8 is removed.

ここで、1はP型シリコン基板、2,2′はN+屋1の
ノース・ドレイン領域、3はチャネルストッ/”6JJ
L 4はフィールドシリコンDQ化ms s + s’
はゲート電徐でNチャネル呑シ5iosトランジスタA
、Llか形成され°Cいる。
Here, 1 is the P-type silicon substrate, 2 and 2' are the north drain regions of N+ya 1, and 3 is the channel stock/"6JJ
L4 is field silicon DQ ms s + s'
is a 5ios transistor A with a gate voltage of N channel
, Ll is formed at °C.

本実施例は、多結晶シリコン層8を迅抗として用いて形
成したソリツブフロップ回路が1ビツトを構成する。多
結晶シリコン層8の抵抗値はメモリ′チップのスタンド
バイ電流を法めるものであり。
In this embodiment, a solid flop circuit formed using a polycrystalline silicon layer 8 as a resistor constitutes one bit. The resistance value of the polycrystalline silicon layer 8 determines the standby current of the memory chip.

64ビツトスタテイツクメモリでは通’7410”Ω程
IWに設定される。抵抗値tよ通営多結晶シリコン層8
中にリンをイオン注入しCそのリン設置化によって決め
る。10” ’ /ctrt”程度のリン濃度が通常用
いられる。もちろん抵抗値いかんでリンをドープしない
事も、他の原子をドープする事もあり得る。
In a 64-bit static memory, IW is typically set to about 7410''Ω.
Phosphorus is ion-implanted into the material, and C is determined by the phosphorus installation. Phosphorus concentrations on the order of 10''/ctrt'' are commonly used. Of course, depending on the resistance value, phosphorus may not be doped, or other atoms may be doped.

抵抗体として用いられる多結晶シリコン層8の両端の部
分7及び7′には高濃度のリン又は砒素がドープされ′
Cおり導電層とし°C用いらCいる。多結晶クリコン層
7はyos )ランジスタAのソース・ドレイン領域2
に接続されており、多結晶7リコン#7′は電源電圧V
cc K接続されている。上記リン又は砒素のと−プは
シリコン酸化膜りをマスクとしておこなわれるが、多結
晶シリコン層7の領域の不純物はソース・ドレイン領域
2及び多結晶シリコン層であるゲート電極5′中の不純
物が拡散してドープされたものであり、−刃長結晶シリ
コン層7′の端が不純物ドープ用マスク用のシリコン酸
化膜9の内部Kまで入り込んでいるのは拡散によるもの
である。この抵抗体形成のために被着式れた多結晶シリ
コン層7.7′及び81−1M0B )ランジスタA及
びBのゲート電極5及び5′が第一層目の多結晶クリコ
ンであるのに対し°C第2層目である。これら両層間の
絶縁は層間絶縁膜6によってなされる。又、第2層目多
結晶シリコン層7゜7′及び8上Kt′1PSGで形成
された層間絶縁膜10が被着され、その上にアルミニウ
ム配線層11が被着形成され・Cいる。
Portions 7 and 7' at both ends of the polycrystalline silicon layer 8 used as a resistor are doped with phosphorus or arsenic at a high concentration.
C is used as a conductive layer. Polycrystalline silicon layer 7 is yos) Source/drain region 2 of transistor A
The polycrystalline 7 recon #7' is connected to the power supply voltage V
cc K connected. The above-mentioned phosphorus or arsenic step is carried out using a silicon oxide film as a mask, but the impurities in the polycrystalline silicon layer 7 are the impurities in the source/drain region 2 and the gate electrode 5' which is the polycrystalline silicon layer. It is doped by diffusion, and the reason why the edge of the -edge length crystalline silicon layer 7' penetrates into the interior K of the silicon oxide film 9 serving as a mask for impurity doping is due to the diffusion. Polycrystalline silicon layers 7.7' and 81-1M0B deposited to form this resistor.) Gate electrodes 5 and 5' of transistors A and B are made of polycrystalline silicon as the first layer. °C is the second layer. Insulation between these two layers is provided by an interlayer insulating film 6. Further, an interlayer insulating film 10 made of Kt'1PSG is deposited on the second polycrystalline silicon layers 7.7' and 8, and an aluminum wiring layer 11 is deposited thereon.

保護膜とし“CP8G膜12と更にその上に積層形成し
たプラズマ気相成長法による窒化シリコン膜13が2鳥
膜とし°〔用いられている。ただし抵抗体の多結晶シリ
コン層8上の部分の窒化シリコン膜は除去されている。
Two protective films are used: a CP8G film 12 and a silicon nitride film 13 layered on top of the CP8G film 13 by plasma vapor deposition. The silicon nitride film has been removed.

従って、抵抗体としての多結晶シリコン層8は窒化シリ
コン膜13の内部応力會受ける事は無く、又窒化クリコ
ン膜中に含有されるアンモニアガスや水素ガスの影響を
受ける事も無い。第1図および第2図に示した半導体基
板を500℃の温度に上昇し、その後特性を測定し抵抗
値が目的とおり10Ωであった事から、窒化シリコン膜
13の急影響が全く無い事を確認した。
Therefore, the polycrystalline silicon layer 8 as a resistor is not affected by the internal stress of the silicon nitride film 13, nor is it affected by the ammonia gas or hydrogen gas contained in the nitride film. The temperature of the semiconductor substrate shown in FIGS. 1 and 2 was raised to 500°C, and the characteristics were then measured, and the resistance value was 10Ω, as expected, indicating that there was no sudden effect of the silicon nitride film 13. confirmed.

窒化シリコン膜13の除去された部分の保獲はPEG膜
12のみでなれる事になるが、それ以外の大部分の領域
は窒化シリコン膜13により“Cなされる事になり、そ
の効果は全面を窒化シリコン膜で覆った場合と比べそれ
程劣るものではない。
The removed portion of the silicon nitride film 13 can be captured only by the PEG film 12, but most of the other area will be covered by the silicon nitride film 13, and the effect will be over the entire surface. It is not much inferior to the case where it is covered with a silicon nitride film.

なお、第1図および第2図上に更に第2層目の金柄配線
層を被着形成すれば窒化シリコン膜13は層間絶縁膜と
して用いられる事になるが、その場合にも上記同様の効
果が得られる。
Note that if a second metal wiring layer is further deposited on top of FIGS. 1 and 2, the silicon nitride film 13 will be used as an interlayer insulating film, but in that case, the same procedure as above will be applied. Effects can be obtained.

又、上記実施例はNチャネルMO8)ランジスタを用い
たけれども本発明はこれに限定される事はない。
Further, although the above embodiment uses an N-channel MO8 transistor, the present invention is not limited thereto.

〔発明の効果〕〔Effect of the invention〕

以上、計則に説明したとおり、本発明によれは、局抵抗
多結晶シリコン層上には蓋化シリコン膜が存在しないた
めに、その影智を受けることは無く、抵抗値が14%に
低くなることの無い、しかも尚抵抗多結晶シリコン層以
外の大ilV分の領域上には窒化シリコン膜が被着形成
されているために保護模あるいは層間に2縁膜としての
効果を十分にもたせΣことが可能であるところの半導体
集積回路が得られる。
As explained above, according to the present invention, since there is no capping silicon film on the local resistance polycrystalline silicon layer, the resistance value is as low as 14%. Moreover, since the silicon nitride film is deposited on the area of large ilV other than the resistive polycrystalline silicon layer, it has a sufficient effect as a protective pattern or a two-layer film between the layers. A semiconductor integrated circuit is obtained in which it is possible to perform the following steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の要部を示す断面図
で、第1図は第2図のY−4’ 、第2図は第1図のX
−Xtに沿う方向の断面図である。 l・・・・・・P型シリコン基板、2.2’・・・・・
・N型のソース・ドレイン領域、3・・・・・・チャネ
ルストツノ(領域、4・・・・・・フィールドシリコン
酸化膜、5.5’・・・・°°ゲグー′@極、6・・・
・・・層間絶縁膜、7.7’・・・・・・(導電層とし
ての)多結晶シリコン層、8・・・・・・品抵抗多結晶
シリコン層、9・・°°゛シリコン酸化膜、10・・・
・・・層間絶縁膜、11・・・・・・アルミニウム配線
層、12°°°・・°リンシリケートガラス膜、13・
・・・・・窒化シリコン膜、A、H・・・・・・Nチャ
ネルuMOsトランジスタ。 把2圀
1 and 2 are sectional views showing the main parts of the present invention, respectively.
It is a sectional view in the direction along -Xt. l...P-type silicon substrate, 2.2'...
・N-type source/drain region, 3...Channel horn (region, 4...Field silicon oxide film, 5.5'...°°gegu'@pole, 6 ...
...Interlayer insulating film, 7.7'...Polycrystalline silicon layer (as a conductive layer), 8...Resistance polycrystalline silicon layer, 9...°°゛Silicon oxide Membrane, 10...
... Interlayer insulating film, 11 ... Aluminum wiring layer, 12°° ... ° Phosphorus silicate glass film, 13.
...Silicon nitride film, A, H...N channel uMOs transistor. 2 territories

Claims (1)

【特許請求の範囲】[Claims] 抵抗体としての^抵抗多結晶シリコン層と、保護膜又は
層間絶縁膜としての窒化シリコン膜とを有する半導体集
積回路において、前記窒化シリコン膜の少くとも高抵抗
多結晶シリコン層上の部分が除去されてなる事を特徴と
する半導体集積回路。
In a semiconductor integrated circuit having a resistive polycrystalline silicon layer as a resistor and a silicon nitride film as a protective film or an interlayer insulating film, at least a portion of the silicon nitride film above the high-resistance polycrystalline silicon layer is removed. A semiconductor integrated circuit characterized by:
JP58219021A 1983-11-21 1983-11-21 Semiconductor integrated circuit Pending JPS60110151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219021A JPS60110151A (en) 1983-11-21 1983-11-21 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219021A JPS60110151A (en) 1983-11-21 1983-11-21 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS60110151A true JPS60110151A (en) 1985-06-15

Family

ID=16729006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219021A Pending JPS60110151A (en) 1983-11-21 1983-11-21 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS60110151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125939A (en) * 1987-11-11 1989-05-18 Seiko Instr & Electron Ltd Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726456A (en) * 1980-07-23 1982-02-12 Hitachi Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726456A (en) * 1980-07-23 1982-02-12 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125939A (en) * 1987-11-11 1989-05-18 Seiko Instr & Electron Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US4062707A (en) Utilizing multiple polycrystalline silicon masks for diffusion and passivation
JPS5810863B2 (en) semiconductor equipment
JPS6022497B2 (en) semiconductor equipment
US3972756A (en) Method of producing MIS structure
US4990998A (en) Semiconductor device to prevent out-diffusion of impurities from one conductor layer to another
US4161744A (en) Passivated semiconductor device and method of making same
US4114254A (en) Method for manufacture of a semiconductor device
JPH03222367A (en) Insulated gate type field effect transistor
JPH0818011A (en) Semiconductor device and its production
JPS60110151A (en) Semiconductor integrated circuit
US4224636A (en) Semiconductor device with thermally compensating SiO2 -silicate glass-SiC passivation layer
JPS5931226B2 (en) semiconductor equipment
JPS5923474B2 (en) semiconductor equipment
JP3167797B2 (en) Method for manufacturing semiconductor device
JPS5892268A (en) Manufacture of semiconductor device
JPS60224229A (en) Semiconductor device
JPS59169179A (en) Semiconductor integrated circuit device
JPH0462184B2 (en)
JPH0579184B2 (en)
JPH0154867B2 (en)
JPS62115868A (en) Manufacture of semiconductor device
JPH01200672A (en) Coplanar transistor and manufacture thereof
JPS584973A (en) Electrode for semiconductor device
JP2540724B2 (en) Method for manufacturing semiconductor device
JPS6118340B2 (en)