JPS60102555A - Ultrasonic flaw detection apparatus - Google Patents

Ultrasonic flaw detection apparatus

Info

Publication number
JPS60102555A
JPS60102555A JP58209008A JP20900883A JPS60102555A JP S60102555 A JPS60102555 A JP S60102555A JP 58209008 A JP58209008 A JP 58209008A JP 20900883 A JP20900883 A JP 20900883A JP S60102555 A JPS60102555 A JP S60102555A
Authority
JP
Japan
Prior art keywords
flaw
polar coordinates
flaw detection
refraction
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58209008A
Other languages
Japanese (ja)
Inventor
Shoichi Naito
正一 内藤
Itsuo Yamamoto
山元 逸男
Kimio Kanda
神田 喜美雄
Shuichi Tani
秀一 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP58209008A priority Critical patent/JPS60102555A/en
Publication of JPS60102555A publication Critical patent/JPS60102555A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To easily estimate the position of a flaw, by transmitting and receiving a plurality of angles of refraction by a probe due to a multi-channel system and displaying the peak distribution of reflected echos to the same polar coordinates. CONSTITUTION:A probe of a multi-channel system is placed to the surface of an arranged pipe and driven so as to scan the same. For example, the multi-channel system is constituted of three channels and ultrasonic pulse beams are transmitted from the probe at angles of refraction of 0 deg., 45 deg. and 60 deg. from a scanning position in order to perform vertical flaw detection and oblique angle flaw detection while the receiving signals from the arranged pipe are digitalized to be received and stored in a memory circuit. In the next step, these signals are inputted to an operation circuit and signals of channels different in angle of refraction are operated to discriminate the position of a flaw to fabricate polar coordinates. The polar coordinates display flaw echos a0, a45, a60 on concentric circles d1, d2, d3 at every channel refraction angles 0 deg., 45 deg., 60 deg.. Therefore, the flaw detection echo peak distribution of the flaw can be displayed by polar coordinates constituted of concentric multiple circles and comparison becomes easy and the estimation of the position of the flaw, especially, at the welded part of the arranged pipe becomes easy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波装置に係り、特にマルチチャンネル方式
探触子で探傷した反射パルスのエコー高さを同一極座標
に表示できる超音波探傷装置kに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an ultrasonic device, and particularly relates to an ultrasonic flaw detection device k that can display the echo height of a reflected pulse detected by a multi-channel probe on the same polar coordinates. .

〔発明の′ハ景〕[A view of the invention]

従来の超音波探傷装置では、垂直探触子、斜角探触子を
使用し、屈折角0°、45°、60°等の探傷を行い、
エコー高さの分布を各々の極座標にプロットしていた。
Conventional ultrasonic flaw detection equipment uses vertical probes and oblique angle probes to detect flaws at refraction angles of 0°, 45°, 60°, etc.
The echo height distribution was plotted on each polar coordinate.

この/ζめ、各々の極座標にプロットする時間が多大で
あることと各々の相互比較が簡単にでセないという欠点
がめった。
This /ζ has the disadvantage that it takes a lot of time to plot each polar coordinate and that it is not easy to compare each other.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記した従来技術の欠点をなくし、マル
チチャンネル方式の探触子で複数の屈折角で受波した反
射パルスのエコー高さの分布を同一の極座標に表示でき
る超音波探1易装置を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to provide an ultrasonic probe that can display the echo height distribution of reflected pulses received at multiple refraction angles using a multi-channel probe on the same polar coordinates. The goal is to provide equipment.

〔発明の概要〕[Summary of the invention]

本発明は、配管溶接部の溶接線と平行な任意断面におけ
るエコー高さの分布をN8の多重円で構成する極座標に
屈折角毎に表示すること、すなわち、同−図に伏数加折
角のエコー高さの分布を極座標表示することによシ、上
記の目的を達成しようとするものである。
The present invention is to display the echo height distribution in an arbitrary cross section parallel to the weld line of a pipe welded part in polar coordinates composed of N8 multiple circles for each refraction angle. The above objective is achieved by displaying the echo height distribution in polar coordinates.

〔錐明の火7A!1例〕 以下、本発明の一実施例を図面を用いて説明するっ 第1図は本’jb IJJによる超H波探偽装置の一実
施例の全体6゛4成は・示すブロック図である。配に表
面に閘かれている探m(子11は図示しない走査カメ。
[Kimei no Fire 7A! 1 Example] Hereinafter, one embodiment of the present invention will be explained with reference to the drawings. Figure 1 is a block diagram showing the overall structure of an embodiment of an ultra-H wave detector by IJJ. be. A probe 11 is a scanning camera (not shown) mounted on the surface.

動系によって(X、、Y)方向に互いに喘定しながら移
動する。送受波回路10は探jt!、l+子11での超
音波発生fljlll笹(1(Ill )及び探PJh
子11で受波した受波信号の受4n (L?、 )とを
行う。なお、一般には、1゛u 超)J 波パルスビー
ムであり、lLtよ反射パルスビームである。送受波回
路lOtよ反射パルスビームを検波し、ナシタル化回路
14は倹波出カをテジタル信号に変換する。データメモ
リ15は、位置検出器13の位置(X、Y)とラーンタ
ル化回路14の反射パルス1も及び超音波の屈折角、伝
播速度等の探傷条件が記憶でき、又、このデータメモリ
15には、探触子位1t(x、y)と反射パルス11の
波高値及び伝播時間が順次配列記憶される。
The dynamic system moves them in the (X,,Y) direction while maintaining mutual control. The wave transmitting/receiving circuit 10 is searchable! , l + ultrasonic wave generation fljlll bamboo in child 11 (1 (Ill ) and probe PJh
The received signal received by the child 11 is received 4n (L?, ). In addition, in general, it is a J-wave pulsed beam (more than 1゛u) and a reflected pulsed beam. The wave transmitting/receiving circuit lOt detects the reflected pulse beam, and the digitalization circuit 14 converts the wave output into a digital signal. The data memory 15 can also store the position (X, Y) of the position detector 13, the reflected pulse 1 of the Larntalizing circuit 14, and flaw detection conditions such as the refraction angle and propagation velocity of the ultrasonic wave. The probe position 1t(x, y), the wave height value and the propagation time of the reflected pulse 11 are sequentially arrayed and stored.

演算処理器16は、データメモリ15に格納されている
データを選択的に取込み、欠陥位置の自動的な標定及び
その結果を表示装置に出力する。
The arithmetic processor 16 selectively takes in the data stored in the data memory 15, automatically locates the defect position, and outputs the results to a display device.

、以下、データメモリ15への位置情報等の格納、結果
の表示処理について詳述する。
Hereinafter, the process of storing position information, etc. in the data memory 15 and displaying the results will be described in detail.

第2図は、探触子11を配管表面上を各走査ラインL+
 + Lx +・・・L+・・・ に沿って移動制御さ
れ、この移動時に各ラインL上の各送受波位置で超音波
ビームの送受波を行う。位置情報としては、配管周方向
はX、軸方向はyとしている。これ罠よシ、データメモ
リ15には第3図に示すごときデータが形成される。
Figure 2 shows how the probe 11 is scanned at each scanning line L+ on the piping surface.
+ Lx +...L+... During this movement, the ultrasonic beam is transmitted and received at each transmission and reception position on each line L. As for the position information, the circumferential direction of the pipe is set as X, and the axial direction is set as y. In this case, data as shown in FIG. 3 is formed in the data memory 15.

第3図は、位置検出錯13.デジタル化回路14を介し
て取込んでなるオンライン情報の格納状況を示す。第3
図(イ)は、各走査位置毎に形成される(HN#Tif
、!pす、図−ru、 走査位置(Xt 、Y+ )及
び走査位置(x+ * Yz )の一部の様子とが示し
である。探触子11はマルチチャンネル方式を採用して
おシ、3チヤンネルを弔するものとする。
Figure 3 shows position detection illusion 13. The storage status of online information captured via the digitization circuit 14 is shown. Third
Figure (a) is formed for each scanning position (HN#Tif
,! p, Figure-ru shows the scanning position (Xt, Y+) and a portion of the scanning position (x+*Yz). It is assumed that the probe 11 adopts a multi-channel system and supports three channels.

3チヤンネルとは、走査位置直下の探晦を行うチャンネ
ル(θ−=θ°)、走査位置より45°の斜角探傷を行
うチャンネル(θ−45° )、走査位置より60°の
斜角探傷を行うナヤンネル(θ−60° )である。但
し、第3図では、θ=00゜θ=45°、θ−600の
代りに、θ−θ!、θ−θ2.θ−θ3と一般化してい
る。↑1j′報領域Ai’l 1 、 Ai’12 、
 Ai’13は送受波位置での波高値A、及び伝播時間
Il+を格納する領域である。又、niは各II′!報
領域のデータ個数を示す。第3図(ロ)は、情報線域A
TIIの細部構成を示すもので4組の波高価及び伝播時
間(All、Tll。
The 3 channels are a channel for detecting directly below the scanning position (θ-=θ°), a channel for performing oblique flaw detection at 45° from the scanning position (θ-45°), and a channel for performing oblique flaw detection at 60° from the scanning position. It is a Nayannel (θ-60°) that performs the following. However, in Figure 3, instead of θ=00° θ=45° and θ-600, θ-θ! , θ−θ2. It is generalized as θ−θ3. ↑1j' information area Ai'l 1, Ai'12,
Ai'13 is an area for storing the wave height value A and the propagation time Il+ at the wave transmitting/receiving position. Also, ni is each II'! Indicates the number of data in the information area. Figure 3 (b) shows information line area A.
This shows the detailed configuration of TII, and shows four sets of wave heights and propagation times (All, Tll.

(A12.T12)、(A13.T13)。(A12.T12), (A13.T13).

(Al 4. ′1’ 14 )を取込み、格納し−C
いる。、第3図(ハ)は、情報A’l’12の事例であ
り、3組の波高値及び伝播時間?1:示している。第4
図は演算処理器16を中心とする処理のフローチャー1
・を示ず。
Take in (Al 4. '1' 14 ) and store -C
There is. , Fig. 3 (c) is an example of information A'l'12, and three sets of wave height values and propagation times? 1: Shown. Fourth
The figure shows a flowchart 1 of processing centered on the arithmetic processor 16.
・Not shown.

フロー100は、第5図に示すように、配管溶接線Wと
平行な任意位置YLと配管軸方向yの表示範囲幅りを設
定する。
In the flow 100, as shown in FIG. 5, an arbitrary position YL parallel to the pipe welding line W and a display range width in the pipe axis direction y are set.

フロー101は、反則パルス情報領域から波高1直A、
伝播時間+1’l、探触子位置(Xtylを胱出し、フ
ロー102で欠陥位置(X、Y、Z)の算出を行う。第
6図は欠陥位@昇出の詳細を示しだ図である。探j独子
位置(Xt + Y+ )の時の欠陥f1 までのイム
播時曲1.から路程長tI を(1)式でめる。■は被
検査体12の伝播速度である。
Flow 101 is a wave height 1 direct A from the foul pulse information area,
Propagation time +1'l, the probe position (Xtyl is taken out of the bladder, and the defect position (X, Y, Z) is calculated in flow 102. Figure 6 shows the details of the defect position @ elevation. .The path length tI from the time distribution 1. to the defect f1 at the only child position (Xt + Y+) is determined by the equation (1). ■ is the propagation speed of the object 12 to be inspected.

t、=V−t、 ・・・(1) さらに(1)式でめた路程長1.と屈折角θから欠陥f
、の座標(XI、Yl、Zl )を(2)〜(4)式で
める。
t,=V-t,...(1) Furthermore, the path length 1 determined by equation (1). and the defect f from the refraction angle θ
The coordinates (XI, Yl, Zl) of , are determined by equations (2) to (4).

X1=Xl ・・・(2) Yl−=alsinθ+Y+ −(3)Zl=t1co
Sθ −(4) 以上によりめた欠陥f、の座標(xi、yi。
X1=Xl...(2) Yl-=alsinθ+Y+-(3) Zl=t1co
Sθ − (4) Coordinates (xi, yi) of defect f determined above.

Zl+から極座標表示範囲かどうかの判定をフロー10
3で行う。(5)式が成立時、表示範囲内となる。
Flow 10 to determine whether it is a polar coordinate display range from Zl+
Do it in 3. When formula (5) is satisfied, it is within the display range.

Yb:Y+則力方向任意位 置AY袖方内方向表示1ota 四 104、105,106で各々、脂折角Q O1屈折角
45°.屈折角60°の極座標に前記欠陥flのエコー
高さAIをプロットする。第7図に極座標表示レリを示
ず。d,の円はJalセ1角0°,d2の円は7jJ折
角45°r d3の円は屈折角60°を示し、各々,線
上がエコー高さ0%の位置となる。
Yb: Y+ law Any position in the force direction AY sleeve inward direction display 1ota 4 104, 105, 106 respectively, fat refraction angle Q O1 refraction angle 45°. The echo height AI of the defect fl is plotted on polar coordinates with a refraction angle of 60°. The polar coordinate display is not shown in Fig. 7. The circle d shows a refraction angle of 0°, the circle d2 shows a refraction angle of 45°r, and the circle d3 shows a refraction angle of 60°, and the echo height is 0% on each line.

d,の円はスケールであり、配管周方1ijl X00
The circle d is a scale, and the circumference of the pipe is 1ijl X00
.

〜360°を示す。欠陥f1に対する香々の屈vi角の
エコー高さa。+ a45 + alloから相互の比
較が容易にでき、明らかに欠陥がf+在しでいるという
判(す■が容易にfil能となる。
~360° is shown. Echo height a of the bending angle of the defect f1. + a45 + allo makes it easy to compare each other, and it is clear that there is a defect f+.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各屈折角による探傷のエコー高さ分布
が同−図で表わすことができ、(へ座標表示作成の時間
がi41 f17iされる。又、同−図において、エコ
ー市さの分布比軸かり能となり、欠陥位置の推定等が容
易に行うことができる,。
According to the present invention, the echo height distribution of flaw detection at each refraction angle can be expressed in the same diagram, and the time for creating the coordinate display (i41 f17i) is reduced. The distribution ratio axis can be used to easily estimate defect locations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例’ji /l<すブロック図
、第2図は探傷の走査手順を示す図、第3図(イ)、(
口)。 (ハ)はメモリ内のテーブル図、m34図は処理のフロ
ーチャート、495図はパラメータ設定説明図、第6図
は欠陥位置算出説明図、第7図は極座標表示例を示す図
である。 IO・・・送受信器、1工・・・探醇子、12・・・岐
検査体、13・・・位置検出器、14・・・デジタル化
回路、15・・・データメモリ、16・・・演算処理器
、17・・・表示第 1 口 第20 第 3 口 ¥ 40 箔 5[] 2 躬 6 日 第1頁の続き 0発 明 者 谷 秀 −日立市幸町3丁目社内
Fig. 1 is a block diagram of one embodiment of the present invention, Fig. 2 is a diagram showing the scanning procedure for flaw detection, and Fig. 3 (A), (
mouth). (C) is a table diagram in the memory, Figure m34 is a flowchart of processing, Figure 495 is a diagram explaining parameter settings, Figure 6 is a diagram explaining defect position calculation, and Figure 7 is a diagram showing an example of displaying polar coordinates. IO...Transmitter/receiver, 1st...probe, 12...branch inspection object, 13...position detector, 14...digitization circuit, 15...data memory, 16... Arithmetic processor, 17...Display 1st entry 20th entry 40 Foil 5[] 2 6th day 1st page continued 0 Inventor Hide Tani - 3-chome Saiwaimachi, Hitachi City In-house

Claims (1)

【特許請求の範囲】 1、被検査体に探触子を介して超音波パルスビームを発
して、被検査体内に存在する反射体からの反射パルスを
受信し、該反射パルスの伝播時間、波高値及び探触子位
置等から反射体位置を標定し。 該標定結果等を表示可能な超音波探傷装置において、配
管溶接部の溶接線に平行な任意断面におけるエコー高さ
の分布をN8の多氷円で構成する極座標に屈折角毎に表
示することを特徴とした超音波探傷装置。 2、特許請求範囲の化1項において、3重円で構成する
極座標に対し、内側の円から各々屈折角0°、45°、
60°と割判けて任息i1i面における3力バ折角分の
エコー高さの分布を極座標表示することを特徴とする超
音波探傷装置。
[Claims] 1. Emit an ultrasonic pulse beam to an object to be inspected via a probe, receive a reflected pulse from a reflector existing inside the object, and determine the propagation time and waveform of the reflected pulse. Locate the reflector position from the high value and probe position. In an ultrasonic flaw detection device capable of displaying the orientation results, etc., it is possible to display the distribution of echo height in an arbitrary cross section parallel to the weld line of a pipe welded part for each refraction angle on polar coordinates consisting of an N8 multi-ice circle. Features of ultrasonic flaw detection equipment. 2. In claim 1, for polar coordinates consisting of triple circles, the refraction angles are 0°, 45°, and 45° from the inner circle, respectively.
An ultrasonic flaw detection device characterized by displaying in polar coordinates the distribution of echo heights corresponding to the three-force deflection angle on an arbitrary i1i plane divided by 60 degrees.
JP58209008A 1983-11-09 1983-11-09 Ultrasonic flaw detection apparatus Pending JPS60102555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58209008A JPS60102555A (en) 1983-11-09 1983-11-09 Ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58209008A JPS60102555A (en) 1983-11-09 1983-11-09 Ultrasonic flaw detection apparatus

Publications (1)

Publication Number Publication Date
JPS60102555A true JPS60102555A (en) 1985-06-06

Family

ID=16565757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58209008A Pending JPS60102555A (en) 1983-11-09 1983-11-09 Ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JPS60102555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233144A (en) * 2003-01-29 2004-08-19 Daido Steel Co Ltd Method and apparatus for inspecting junction part
KR101103899B1 (en) * 2009-12-09 2012-01-12 한전케이피에스 주식회사 A volume inspection system for small bore socket weld

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233144A (en) * 2003-01-29 2004-08-19 Daido Steel Co Ltd Method and apparatus for inspecting junction part
KR101103899B1 (en) * 2009-12-09 2012-01-12 한전케이피에스 주식회사 A volume inspection system for small bore socket weld

Similar Documents

Publication Publication Date Title
JP5535044B2 (en) Circuit device for ultrasonic nondestructive testing of subjects
CN105699492B (en) A kind of ultrasonic imaging method for weld seam detection
CN102893145B (en) Method for subjecting structure form of weld to imaging and device therefor
CN101726540A (en) Portable ultraphonic phased array detection imager
JP4792440B2 (en) Pipe weld inspection system
CN109239184B (en) Ultrasonic phased array detection method for pipe seat fillet weld
CN103901104A (en) TOFD (time of fight diffraction) detection method and TOFD detection system for docking ring welding seams of cylinder
US20130081468A1 (en) Method and apparatus for ultrasonic testing
JPS60102555A (en) Ultrasonic flaw detection apparatus
CN110988132A (en) Welding seam single-side TOFD detection method
KR100220084B1 (en) Portable automatic supersonic probe using multi-axis portable scanner
CN113109436A (en) Omnibearing phased array detection method for welding seam of small-diameter tube of power station boiler
JP3616193B2 (en) Method and apparatus for determining wounds to be inspected
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
CN111077227B (en) Ultrasonic array scanning inversion method, system, storage medium and equipment
JPS58156853A (en) Ultrasonic flaw detector
JPS6411143B2 (en)
JP2021139821A (en) Ultrasonic flaw detection method for round bar material
JPH10253599A (en) Ultrasonic flaw detection method and device therefor
JP2023166653A (en) Ultrasonic inspection device and method
JP2021167730A (en) Ultrasonic flaw detection method for round bar material
JPS5963560A (en) Automatic ultrasonic flaw detector
JPH0474961A (en) Ultrasonic inspector
CN117110432A (en) Ultrasonic flaw detection method suitable for 60 steel rails
JPH0727752A (en) Method and apparatus for electronic scanning-type ultrasonic flaw detection