JPS5999770A - Gate turn off thyristor - Google Patents

Gate turn off thyristor

Info

Publication number
JPS5999770A
JPS5999770A JP20960882A JP20960882A JPS5999770A JP S5999770 A JPS5999770 A JP S5999770A JP 20960882 A JP20960882 A JP 20960882A JP 20960882 A JP20960882 A JP 20960882A JP S5999770 A JPS5999770 A JP S5999770A
Authority
JP
Japan
Prior art keywords
layer
cathode
emitter
current
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20960882A
Other languages
Japanese (ja)
Other versions
JPH0547988B2 (en
Inventor
Katsuo Okabe
岡部 勝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20960882A priority Critical patent/JPS5999770A/en
Publication of JPS5999770A publication Critical patent/JPS5999770A/en
Publication of JPH0547988B2 publication Critical patent/JPH0547988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To reduce the ratching current during turning on time by a method wherein the distance between each divided cathode emitter of GTO is set up not to exceed the diffusion length of minor carrier in a base layer coming into contact with a cathode emitter. CONSTITUTION:A p type emitter 1, a p type base 3 are provided on both sides of an Si wafer to be an n type base 2 while n type cathode emitters 41, 42... divided into multiple numbers are arranged on the base 3 to provided cathode electrodes 51, 52.... Gate electrodes 6 are provided on the surface of the layer 3 encircling those electrodes while an anode electrode is provided on the p-layer 1. Besides, the arrayal gap W on the layer 4 is set up not to exceed the diffusion length of minor carrier on the p-layer 3. At this time, the minor carrier implanted from the n-layer 4 in case of turning on to be diffused laterally and obliquely reach below the adjoining n-layer 4 before they are recoupled to be extinguished to increase the carrier density in the region making turning on easier to reduce the overall ratching current.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、ダートターンオフサイ・リスク(以下GT
Oと呼ぶ)K係り、特に多・数に分割された・カソード
エミッタ構造をもつGloに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to dirt turn-off side risk (hereinafter referred to as GT
(referred to as O), especially Glo, which has a cathode-emitter structure divided into many parts.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

GTOは、ケ゛−ト電極に正の電位を与□え、グー□ト
電流を流すことによって導通状態にトリガされるサイリ
スクの一種で、4層半導体装置である。しかし、通常の
サイリスクが転流回路に主電流を転流することによって
ターンオフするのに対し、GTOはケ°、−ト電極に負
の電位を与えて負電流パルスを流すことに□よってター
ンオフする。このため、一般にGTOのカソード□エミ
ッタはターンオフしやすいように複数に分割し、単位エ
レメントの面積を小さくしたカソード構造がとられる。
GTO is a four-layer semiconductor device that is triggered into conduction by applying a positive potential to the gate electrode and causing a gate current to flow. However, while a normal Cyrisk is turned off by commutating the main current to the commutation circuit, GTO is turned off by applying a negative potential to the gate electrode and passing a negative current pulse. . For this reason, the cathode emitter of the GTO is generally divided into a plurality of parts so as to be easily turned off, and a cathode structure is adopted in which the area of the unit element is reduced.

特にGTOを高周波において動作させようとする場合、
ターンオフ時間を短縮するために、さらに細かく分割さ
れたカソードエミッタ構造□にする必□要がある。一方
力ソードエミッタを細か□く:分割するほどカッ〜ドエ
ミノクとペースの接合長が長くなシその接合での再結合
が増加口、リーン電流が増加する。従って、有効電流′
力を減シターンオン時のラッチング電流が増加する。こ
こでサイリ1メタにおけるシソチングミ電流と癲、ダー
ト電極に正の電位を与え、ダート・カソード間にゲート
オンパルス電流を流し、サイリスクをターンオンせしめ
、かつ前記ダートオンパルス電流を除去しても、サイリ
スタが連続して導通状態を維持することが可能な最少ア
ノード電流のことである。したがって、サイリスクをダ
ートコントロールする際には前記ラッチング電流が小さ
い程、主電流を小電流から大電流まで制御できることに
なるため、ラッチング電流は小さい程制御性がすぐれて
いると云える。しかし、GTOは、自己消弧型の半導体
素子であるため一般のサイリスタと比べるとターンオフ
しやすくできておシ、ターンオンはしにくい。例えば、
電力素子の場合ラッチング電流は従来のサイリスクの数
倍高い値である。
Especially when trying to operate GTO at high frequency,
In order to reduce the turn-off time, a more finely divided cathode emitter structure □ is required. On the other hand, make the force sword emitter finer □: The more you divide it, the longer the junction length between the cut and the pace increases, and the recombination at that junction increases, and the lean current increases. Therefore, the effective current′
By reducing the force, the latching current at turn-on increases. Here, even if a positive potential is applied to the dart electrode, a gate-on pulse current is passed between the dart and the cathode, and the gate-on pulse current is turned on, and the dart-on pulse current is removed, the thyristor is the minimum anode current that can maintain continuous conduction. Therefore, when dart controlling the silicate, the smaller the latching current is, the more the main current can be controlled from a small current to a large current, so it can be said that the smaller the latching current is, the better the controllability is. However, since the GTO is a self-extinguishing semiconductor element, it is easier to turn off than a general thyristor, but it is difficult to turn on. for example,
In the case of power devices, the latching current is several times higher than the conventional cyrisk.

このことは、GTOを用いた回路の最少の制御可能な電
流が高いことを意味し、制御性が悪い。
This means that the minimum controllable current of a circuit using GTO is high, and controllability is poor.

そのため、他の特性を損わずにラッチング電流を低減化
できる方法が望まれていた。
Therefore, a method that can reduce the latching current without impairing other characteristics has been desired.

従来は、カソードエミッタの分割数を制限し、カソード
エミッタとベースの接合長を短くしたり、キャリアライ
フタイム制御工程において通常よシキャリアライフタイ
ムを長くすることによシキャリアの再結合を抑制し、う
、チングミ流の小さいGTOを提供してきた。しかし、
これらの方法はターンオン時のラッチング電流を小さく
できてもター、ンオフ時間が長くなるため1ターンオフ
能力の低下を招くことになる。
Conventionally, carrier recombination was suppressed by limiting the number of cathode emitter divisions, shortening the junction length between the cathode emitter and the base, and increasing the carrier lifetime in the carrier lifetime control process. Well, we have been offering a small GTO in the Chingumi style. but,
Although these methods can reduce the latching current at turn-on, the turn-off time becomes longer, resulting in a decrease in the one-turn-off ability.

〔発明の目的〕[Purpose of the invention]

本発明は、上記欠点についてなされたもので、特に多数
に分割されたカソードエミッタをもつGTOにおいて、
ターンオフ能力を低下させることなくターンオン時のラ
ッチング電流を小さくすることを可能にしたGTOを提
供することを目的とする。
The present invention has been made to solve the above-mentioned drawbacks, and particularly in a GTO having a cathode emitter divided into many parts.
It is an object of the present invention to provide a GTO that makes it possible to reduce the latching current during turn-on without reducing the turn-off ability.

〔発明の概要〕[Summary of the invention]

本発明に係るGTOは、分割された各カソードエミ、り
間の離間距離を、カソードエミッタに接するベース層の
少数キャリア拡散長以下となるように設定したことを特
徴とする。
The GTO according to the present invention is characterized in that the distance between the divided cathode emitters is set to be equal to or less than the minority carrier diffusion length of the base layer in contact with the cathode emitter.

〔発明の効果〕〔Effect of the invention〕

従来のGTOでは、ターンオフ時カソードエミッタから
ベースに注入されたキャリアは、縦方向に拡散して直接
ター/オンに寄与するものの他に、横方向および斜め方
向に拡散して再結合により消滅するものがあった。本発
明では、横方向および斜め方向に拡散する少数キャリア
が再結合して消滅するまえに隣のカソードエミッタ下に
到達するようにカソードエミッタ間隔がとっである。こ
の結果、消滅せずに隣のカソードエミッタ下に到達した
キャリアはそのカソードエミッタ領域のキャリア密度を
上げターンオンしやすくシ、従って全体のう、チングミ
流を下げることになる。
In conventional GTOs, the carriers injected from the cathode emitter to the base during turn-off are not only diffused vertically and directly contribute to turn-on, but also diffused laterally and diagonally and annihilated by recombination. was there. In the present invention, the spacing between the cathode emitters is such that minority carriers diffusing laterally and diagonally reach below the adjacent cathode emitter before recombining and disappearing. As a result, the carriers that reach the area under the adjacent cathode emitter without disappearing increase the carrier density in the cathode emitter region, making it easier to turn on, thereby reducing the overall tingling flow.

なお少数キャリア拡散長りはL−〆肝と表わせる。ここ
で、Dは少数キャリアの拡散定数、τは少数キャリアの
ライフタイムである。通常カソードエミッタ側のベース
層は、τ=10μsec程度だから、D=26(1)2
/ Beeとすると少数キャリアの拡散長L=160μ
mとなシ、カソードエミッタの間隔Wは160μm以下
になるように配置すれば良い。
Note that the minority carrier diffusion length can be expressed as L-terminal. Here, D is the diffusion constant of minority carriers, and τ is the lifetime of minority carriers. Normally, the base layer on the cathode emitter side is about τ=10μsec, so D=26(1)2
/ Bee, minority carrier diffusion length L = 160μ
m, the spacing W between the cathode emitters may be 160 μm or less.

第1図に少数キャリア拡散長り対カソードエミッタ間隔
Wとラッチング電流の関係を示す。
FIG. 1 shows the relationship between the minority carrier diffusion length, the cathode-emitter distance W, and the latching current.

ラッチング電流は2本のカソードエミッタを集合した時
の値である。図から、WとLの比が1付近を境にラッチ
、ング電流の値が急激に変化することがわかる。
The latching current is the value when two cathode emitters are combined. From the figure, it can be seen that the values of the latching and latching currents change rapidly when the ratio of W to L approaches 1.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。第2図(a)。 The present invention will be explained in detail below. Figure 2(a).

(b)は一実施例の要部を示す平面図とそのA −A’
断面図である。図において、1はp型の第1エミッタ層
(アノードエミ、り層)、2はn型の第1ベース層、3
はp型の第2ベース層であシ、第2ベース層3上に複数
個に分割されたn型の第2エミッタ層(カソードエミツ
タ層)4(41゜42 、・・・)が配列形成されてい
る。各カソードエミ、り層4にはカソード電極5(5!
 、52゜・・・)が形成され、これを取シ囲むように
第2ベース層3の表面にはダート電極6が形成され、ま
たアノードエミツタ層1には全面アノード電極7が形成
されている。
(b) is a plan view showing the main parts of one embodiment and its A-A'
FIG. In the figure, 1 is a p-type first emitter layer (anode emitter layer), 2 is an n-type first base layer, and 3 is a p-type first emitter layer (anode emitter layer).
is a p-type second base layer, and a plurality of divided n-type second emitter layers (cathode emitter layers) 4 (41°42, . . . ) are arranged on the second base layer 3. It is formed. Each cathode emitter layer 4 has a cathode electrode 5 (5!
, 52°...), a dart electrode 6 is formed on the surface of the second base layer 3 so as to surround this, and an anode electrode 7 is formed on the entire surface of the anode emitter layer 1. There is.

ここで、各カソードエミツタ層4の配列間隔Wは、第2
ペース層3の少数キャリア拡散長以下に設定している。
Here, the arrangement interval W of each cathode emitter layer 4 is the second
It is set below the minority carrier diffusion length of the pace layer 3.

よシ具体的なデータをもって本実施例を説明する。第2
ペース層2となる厚さ600μm、比抵抗180Ω−口
のn型Si  ウェハを用い、まずこの両面に表面濃度
5X10  cm  で深さ70μmにp型不純物を拡
散して第1エミッタ層1および第2ペース層3を形成す
る。次に第2ペース層表面から表面濃度4X10  o
n  のn型層を18μm拡散形成し、これを弗硝酸の
エツチング液によシ島状に分割し、カソードエミツタ層
4とした。このときカソード電極ゾ・・夕層tの商隔W
を150μmに設定した。次にアルミニウムの蒸着によ
シカンード及びダート電極5,6を形成し、各カソード
電極の集合化はアルミニウムのワイヤーをボンディング
して行った。
This example will be explained using more specific data. Second
An n-type Si wafer with a thickness of 600 μm and a resistivity of 180 Ω is used as the space layer 2, and p-type impurities are first diffused on both sides of the wafer to a depth of 70 μm at a surface concentration of 5×10 cm to form the first emitter layer 1 and the second emitter layer 2. A paste layer 3 is formed. Next, from the surface of the second paste layer, the surface concentration is 4×10 o
An n-type layer of 18 .mu.m thick was formed by diffusion, and this was divided into island shapes using a fluoronitric acid etching solution to form the cathode emitter layer 4. At this time, the cathode electrode z... quotient distance W of the evening layer t
was set to 150 μm. Next, the cathode electrodes 5 and 6 were formed by vapor deposition of aluminum, and the cathode electrodes were assembled by bonding aluminum wires.

本実施例の結果は第3図に示すとおシである。The results of this example are shown in FIG.

横軸はカソードエミッタを集合化した個数、縦軸はカソ
ードエミッタ1個あたシのラッチング電流である。図か
ら明らかなように、Wを150μmにした時のカソード
エミッタ1個のラッチング電流は15mA程度であった
が、30個集合化すると1個あたシのラッチング電流は
約Zの4rnA程度に改善さ、れている。
The horizontal axis represents the number of aggregated cathode emitters, and the vertical axis represents the latching current per one cathode emitter. As is clear from the figure, when W was set to 150 μm, the latching current for one cathode emitter was about 15 mA, but when 30 pieces were assembled, the latching current for each cathode emitter improved to about 4rnA, which is about Z. Yes, it is.

上記実施例+は、メサ型のカソードエミッタ構造につい
て行ったが、プレーナ構造においても本発明を同様に適
用できるのは当然である。
Although the above embodiment + was carried out using a mesa-type cathode emitter structure, it goes without saying that the present invention can be similarly applied to a planar structure.

またカソードエミッタの配列は放射状であっても二次元
マトリ、、クス状であってもよい。
Further, the arrangement of the cathode emitters may be radial, two-dimensional matrix, or box-like.

、4、図面の簡単な説明 第1図は本発明の詳細な説明するための図、第2図(a
) I (b)は本発明の一実施例のGTOを示す平面
図とそのA −A’断面図、第3図は同実施例の効果を
説明するだめの図である。
, 4. Brief description of the drawings Figure 1 is a diagram for detailed explanation of the present invention, Figure 2 (a
) I (b) is a plan view showing a GTO according to an embodiment of the present invention and its sectional view taken along line A-A', and FIG. 3 is a diagram for explaining the effects of the embodiment.

1・・・第1エミッタ層、2・・・第1ペース層、3・
・・第2ベースN、’ (41r 42  +・・・)
・・・第2エミッタ層(カソードエミツタ層)、5(5
1+52 、・・・)・・・カソード電極、6・・・ダ
ート電極、7・・・アノード電極。
DESCRIPTION OF SYMBOLS 1... First emitter layer, 2... First paste layer, 3...
...Second base N,' (41r 42 +...)
...Second emitter layer (cathode emitter layer), 5 (5
1+52,...)...Cathode electrode, 6...Dart electrode, 7...Anode electrode.

第1図 05     1     1.5     2第2図Figure 1 05 1 1.5 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 第1・導電型の第1エミッタ層、第2導電型の第1ペー
ス層および第1導電型の第2ペース層がこの順に積層さ
れ、前記第2ペース層上に複数個に分割された第2導電
型の第2エミッタ層を配列形成してなるダートターンオ
フサイリスクにおいて、前記第2エミッタ層を、前記第
2ペース層内の少数キャリア拡散長以下の離間距離をも
って配列したととを特徴とするダートターンオフサイリ
スク。
A first emitter layer of a first conductivity type, a first paste layer of a second conductivity type, and a second paste layer of a first conductivity type are laminated in this order, and a plurality of divided emitter layers are stacked on the second paste layer. A dirt turn-off silicon risk formed by arranging second emitter layers of two conductivity types, characterized in that the second emitter layers are arranged with a separation distance equal to or less than the minority carrier diffusion length in the second paste layer. Dirt turn-off Sailisk.
JP20960882A 1982-11-30 1982-11-30 Gate turn off thyristor Granted JPS5999770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20960882A JPS5999770A (en) 1982-11-30 1982-11-30 Gate turn off thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20960882A JPS5999770A (en) 1982-11-30 1982-11-30 Gate turn off thyristor

Publications (2)

Publication Number Publication Date
JPS5999770A true JPS5999770A (en) 1984-06-08
JPH0547988B2 JPH0547988B2 (en) 1993-07-20

Family

ID=16575619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20960882A Granted JPS5999770A (en) 1982-11-30 1982-11-30 Gate turn off thyristor

Country Status (1)

Country Link
JP (1) JPS5999770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005065A (en) * 1989-04-06 1991-04-02 General Electric Company High current gate turn-off thyristor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145088A (en) * 1974-05-10 1975-11-21
JPS5117680A (en) * 1974-08-05 1976-02-12 Hitachi Ltd Geeto taan ofu sairisuta

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145088A (en) * 1974-05-10 1975-11-21
JPS5117680A (en) * 1974-08-05 1976-02-12 Hitachi Ltd Geeto taan ofu sairisuta

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005065A (en) * 1989-04-06 1991-04-02 General Electric Company High current gate turn-off thyristor

Also Published As

Publication number Publication date
JPH0547988B2 (en) 1993-07-20

Similar Documents

Publication Publication Date Title
JP2950025B2 (en) Insulated gate bipolar transistor
JPS6141145B2 (en)
US3696273A (en) Bilateral, gate-controlled semiconductor devices
JPS61183966A (en) Manufacture of thyristor
JPS5999770A (en) Gate turn off thyristor
JPH025307B2 (en)
JP2855540B2 (en) Semiconductor device
JPS59201466A (en) Gate turn off thyristor
JPH0347592B2 (en)
JPS59201467A (en) Gate turn off thyristor
EP0130669A1 (en) Gate turn off thyristor with mesh cathode structure
JPS63209167A (en) Manufacture of semiconductor device
JPS60116170A (en) Semiconductor device
JP2604176B2 (en) Semiconductor switching element
JP2866174B2 (en) Gate turn-off thyristor
JPH06334173A (en) Reverse-conduction gate turn-off thyristor
JPS621271A (en) Gate turn-off thyristor
JPS5996766A (en) Gate turn off thyristor
JPS603791B2 (en) Mesa type gate turn-off thyristor
JPH01125864A (en) Self-arc-exitnguishing semiconductor device
JPH04162777A (en) Bidirectional voltage checking semiconductor device
JPH02267968A (en) Gate turn-off thyristor
JPS62141774A (en) Gate turn off (gto) thyristor
JPS63205957A (en) Electrostatic induction thyristor
JPS61263162A (en) Gate turn-off thyristor