JPS63209167A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63209167A
JPS63209167A JP4152487A JP4152487A JPS63209167A JP S63209167 A JPS63209167 A JP S63209167A JP 4152487 A JP4152487 A JP 4152487A JP 4152487 A JP4152487 A JP 4152487A JP S63209167 A JPS63209167 A JP S63209167A
Authority
JP
Japan
Prior art keywords
layer
emitter layer
type
emitter
concentration impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4152487A
Other languages
Japanese (ja)
Other versions
JPH0560667B2 (en
Inventor
Shunei Ujihara
氏原 俊英
Shuroku Sakurada
桜田 修六
Tadashi Sakagami
阪上 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4152487A priority Critical patent/JPS63209167A/en
Publication of JPS63209167A publication Critical patent/JPS63209167A/en
Publication of JPH0560667B2 publication Critical patent/JPH0560667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To reduce the number of diffusion processes by a method wherein the emitter layer on one side and the high density impurity layer of the base layer on other side adjoining to the other emitter layer and the high density impurity layer of the other base layer adjoining to the emitter layer on one side are formed simultaneously. CONSTITUTION:A p-type base layer 4 is formed on an n-type semiconductor substrate 31, and then an n-type high density impurity layer 3 and an n-type emitter layer 6 are formed. Subsequently, a stepping is formed on both sides of the n-type emitter layer 6 by performing etching thereon, and then a p-type high density impurity layer 7 and a p-type emitter layer 5 are formed by diffusing p-type impurities simultaneously from the main surface on the side of the n-emitter layer by applying self-alignment, and also from the main surface on the opposite side by performing an overall diffusion method. As the diffusing process is performed on the p-type high density impurity layer 7 and the p- emitter layer 5 under the same condition, almost same depth can be obtained. Also, said diffusion process is performed in such a manner that the depth of the p-emitter layer is shallower than the depth of the n-type high density impurity layer 3 by controlling the diffusion properly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゲートターンオフサイリスタ(以下GTOサ
イリスタという)の製造方法に係り1%に、製造工程数
を少なくしたGTOサイリスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a gate turn-off thyristor (hereinafter referred to as a GTO thyristor), and relates to a method for manufacturing a GTO thyristor in which the number of manufacturing steps is reduced by 1%.

〔従来の技術〕[Conventional technology]

GTOサイリスタの構造に関する従来技術として例えば
、特開昭55−39619号公報、特開昭57−201
078号公報等に記載された技術が知られている。
As prior art related to the structure of the GTO thyristor, for example, Japanese Patent Application Laid-Open No. 55-39619, Japanese Patent Application Laid-Open No. 57-201
A technique described in Publication No. 078 and the like is known.

これらの従来技術によるGTOサイリスタホ、ゲート端
子が低抵抗接触されていないペース層内の同じ導電、型
の半導体による高濃度不純物層を隣接するエミッタ層よ
り厚く形成することにより、このベース層をアノード端
子に低抵抗接触させるようにしたものであり、また、ゲ
ート端子を一方のベース層に低抵抗接触させるために、
このペース層に同じ導電型の半導体による高濃度不純物
層を形成したものである。
In these prior art GTO thyristor stacks, the gate terminal is not connected to a low resistance by forming a highly concentrated impurity layer made of a semiconductor of the same conductivity and type in the paste layer to be thicker than the adjacent emitter layer, so that this base layer can be used as an anode. In order to make low resistance contact with the terminal, and also make low resistance contact of the gate terminal with one of the base layers,
A high concentration impurity layer made of a semiconductor of the same conductivity type is formed on this paste layer.

以下、このような従来技術によるGTOサイリスクの構
造と製造方法を図面により説明する。
Hereinafter, the structure and manufacturing method of GTO Cyrisk according to the prior art will be explained with reference to the drawings.

第2図(at〜(dlは従来技術による製造方法を説明
する単位GTOサイリスタの断面図、第3図、第4図は
従来技術及び本発明によるGTOサイリスタの平面図及
び単位GTOサイリスタの断面図である。第2図〜第4
図において、1はペレット。
FIG. 2 (at to (dl) is a sectional view of a unit GTO thyristor explaining a manufacturing method according to the prior art, FIGS. 3 and 4 are a plan view of a GTO thyristor according to the prior art and the present invention, and a sectional view of a unit GTO thyristor. Figures 2 to 4
In the figure, 1 is a pellet.

2は単位GTOサイリスタ、3はn型高濃度不純物層、
3]はn型半導体基板、4はpベース層、5はpエミッ
タ層、6はnエミッタ層、7はp型高濃度不純物層、8
はカソード電極、9はアノード電極、10はゲート電極
である。
2 is a unit GTO thyristor, 3 is an n-type high concentration impurity layer,
3] is an n-type semiconductor substrate, 4 is a p-base layer, 5 is a p-emitter layer, 6 is an n-emitter layer, 7 is a p-type high concentration impurity layer, 8
9 is a cathode electrode, 9 is an anode electrode, and 10 is a gate electrode.

短絡エミッタ構造のG T Oサイリスタは、第3図に
示すように、ペレット1内に多数の単位GTOサイリス
タ2が配列されて構成されている。各GTOサイリスタ
2は、第4図に示すような断面構造を有している。この
断面は、第3図における1−1断面である。単位G T
 Oサイリスタ2は。
The short-circuit emitter structure GTO thyristor is constructed by arranging a large number of unit GTO thyristors 2 within a pellet 1, as shown in FIG. Each GTO thyristor 2 has a cross-sectional structure as shown in FIG. This cross section is the 1-1 cross section in FIG. Unit GT
O thyristor 2.

nエミッタ層6.pベース層4.nベース層となるn型
半導体基板31及びpエミッタ層5が順次積み重ねられ
て構成されており、nエミッタ層6にカソード電極8が
、pベース層4にpm高濃度不純物層7を介してゲート
電極10が低抵抗に接続されている。また、pエミッタ
層5とnベース層であるn型半導体基板31は、アノー
ド電極9に接続される。その際、アノード電極9とn型
半導体基板31とを低抵抗接触させるため、pエミッタ
層5に隣接する位置に、n型半導体基板31と同一の導
電型の高濃度n型不純物層が、pエミッタ層5より厚(
形成される。
n emitter layer 6. p base layer 4. An n-type semiconductor substrate 31 serving as an n-base layer and a p-emitter layer 5 are stacked one after another, and a cathode electrode 8 is connected to the n-emitter layer 6, and a gate is connected to the p-base layer 4 via a pm high-concentration impurity layer 7. Electrode 10 is connected with low resistance. Furthermore, the p-emitter layer 5 and the n-type semiconductor substrate 31, which is an n-base layer, are connected to the anode electrode 9. At this time, in order to bring the anode electrode 9 and the n-type semiconductor substrate 31 into low-resistance contact, a high concentration n-type impurity layer of the same conductivity type as the n-type semiconductor substrate 31 is placed adjacent to the p-emitter layer 5. Thicker than emitter layer 5 (
It is formed.

このような構成のGTOサイリスタの従来技術による製
造方法を単位GTOサイリスタ20部分のみの断面図に
よりその製造工程を示す第2図(a)〜[d)により説
明する。
A conventional manufacturing method for a GTO thyristor having such a configuration will be explained with reference to FIGS. 2(a) to 2(d), which show the manufacturing process using cross-sectional views of only the unit GTO thyristor 20 portion.

(1)n型半導体基板31を用意し、公知の選択拡散法
によって、このn型半導体基板31内にn型高濃度不純
物層3を形成する〔第2図(a)〕。
(1) An n-type semiconductor substrate 31 is prepared, and an n-type high concentration impurity layer 3 is formed in this n-type semiconductor substrate 31 by a known selective diffusion method [FIG. 2(a)].

(2)  次に、この半導体基板310両主面からp型
不純物1例えば、Gaを全面拡散し、pベース層4及び
pエミッタ層5を形成する〔第2図(a)〕。
(2) Next, a p-type impurity 1, for example, Ga, is diffused over the entire surface from both main surfaces of the semiconductor substrate 310 to form a p base layer 4 and a p emitter layer 5 [FIG. 2(a)].

(3)更に、公知の選択拡散法によって、pベース層4
0表面にnエミッタ層6を形成する〔第2図(C)〕。
(3) Furthermore, the p base layer 4 is
An n emitter layer 6 is formed on the 0 surface [FIG. 2(C)].

(4)  を後に、nエミッタ層60両側をエツチング
により段差形成し、特開昭57−201078号公報等
に示された公知の方法でp型高濃度不純物層7を形成す
る〔第2図(d)〕。
(4) After that, steps are formed on both sides of the n emitter layer 60 by etching, and a p-type high concentration impurity layer 7 is formed by a known method disclosed in Japanese Patent Application Laid-Open No. 57-201078 (see Fig. 2). d)].

これらの工程は、ペレット1上に構成される全ての単位
GTOサイリスタ2が同時形成されるように行われ、そ
の際、n型高濃度不純物層3の深さがpエミッタ層5の
深さより大きくなるようにその拡散が制御される。また
、これらの工程の終了後、カソード電極8.アノード電
極9及びゲート電極lOの取付けが行われる。
These steps are performed so that all the unit GTO thyristors 2 configured on the pellet 1 are formed at the same time, and at this time, the depth of the n-type high concentration impurity layer 3 is greater than the depth of the p emitter layer 5. Its diffusion is controlled so that Further, after these steps are completed, the cathode electrode 8. Attachment of the anode electrode 9 and gate electrode IO is performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来技術は、ベース電極が低抵抗接触されていない
nベース層となる基板31とアノード電極9とを低抵抗
接触させるため、隣接するpエミッタ層5より味いn型
高濃度不純物層3の形成のため[1工程を要しており、
素子製造原価低減の障害となっている。すなわち、前記
従来技術は、単位GTOサイリスタ2をペレット1内に
製造するために、4回の拡散工程を必要とし、製品コス
トの高いGTOサイリスタしか製造できないという問題
点を有している。
In the prior art, in order to bring the anode electrode 9 into low-resistance contact with the substrate 31, which is an n-base layer with which the base electrode is not in low-resistance contact, the n-type high-concentration impurity layer 3 is more concentrated than the adjacent p-emitter layer 5. For formation [1 process is required,
This is an obstacle to reducing device manufacturing costs. That is, the prior art requires four diffusion steps in order to manufacture the unit GTO thyristor 2 in the pellet 1, and has the problem that only GTO thyristors with high product costs can be manufactured.

本発明の目的は、前記従来技術の問題点を解決し、単位
GTOサイリスタ2をペレット1内に作り込むために必
要な拡散工程数を削減し、従来技術の場合と同一の接合
構造を持つGTOサイリスタを安価に製造することので
きるこの種半導体装置の製造方法を提供することにある
It is an object of the present invention to solve the problems of the prior art, reduce the number of diffusion steps required to form a unit GTO thyristor 2 into a pellet 1, and provide a GTO thyristor having the same bonding structure as the prior art. It is an object of the present invention to provide a method for manufacturing a semiconductor device of this type, which allows thyristors to be manufactured at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、前記目的は、従来技術におけるn型高
濃度不純物層3とnエミッタ層6の形成を1回の拡散工
程で行い、さらに、p型高濃度不純物層7とpエミッタ
層5の形成を1回の拡散工程で行うことにより達成され
る。
According to the present invention, the above object is to perform the formation of the n-type high concentration impurity layer 3 and the n emitter layer 6 in the prior art in one diffusion step, and further, to form the p-type high concentration impurity layer 7 and the p emitter layer 5 in one diffusion process. This is achieved by performing the formation in one diffusion step.

〔作用〕[Effect]

n型高濃度不純物層3とnエミッタ層6を形成する拡散
と、p型高濃度不純物層7とnエミッタ層5を形成する
拡散とを夫々1回の工程で行うことにより1本発明は、
3回の拡散工程で、ペレット内1にGTOサイリスタを
作り込むことができる。
By performing the diffusion to form the n-type high-concentration impurity layer 3 and the n-emitter layer 6 and the diffusion to form the p-type high-concentration impurity layer 7 and the n-emitter layer 5 in one process, the present invention can
A GTO thyristor can be built into the pellet 1 through three diffusion steps.

〔実施例〕〔Example〕

以下1本発明による半導体装置の製造方法の一実施例を
図面により詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a semiconductor device according to the present invention will be described in detail below with reference to the drawings.

第1図(a)、 (b)、 (c)は本発明の一実施例
の製造方法を説明する単位GTOサイリスタ2の断面図
である。第1図(a)〜(c)において1図面の符号は
第2図〜第4図の場合と同一である。
FIGS. 1(a), 1(b), and 1(c) are cross-sectional views of a unit GTO thyristor 2 for explaining a manufacturing method according to an embodiment of the present invention. In FIGS. 1(a) to 1(c), the reference numerals in one drawing are the same as those in FIGS. 2 to 4.

(1)  n型半導体基板31を用意し、このn型半導
体基板に対してその両生面からp型不純物1例えばGa
を全面拡散し、形成された片側のp型不純物層をラップ
等によって除去し、nベース層4を形成する〔第1図(
a)〕。
(1) Prepare an n-type semiconductor substrate 31, and apply a p-type impurity 1, for example, Ga, to the n-type semiconductor substrate from both sides.
is diffused over the entire surface, and the formed p-type impurity layer on one side is removed by lapping or the like to form an n-base layer 4 [Figure 1 (
a)].

(2)次に、公知の選択拡散法によって1両主面にn型
不純物1例えばpを拡散し、n型高濃度不純物層3及び
nエミッタ層6を形成する。この工程で形成されるn型
高濃度不純物層3及びnエミッタ層6は、同一条件で拡
散処理が行われるのでほぼ同一の深さとなる〔第1図(
b)〕。
(2) Next, an n-type impurity 1, eg, p, is diffused onto both main surfaces by a known selective diffusion method to form an n-type high concentration impurity layer 3 and an n emitter layer 6. The n-type high-concentration impurity layer 3 and the n-emitter layer 6 formed in this step have almost the same depth because the diffusion treatment is performed under the same conditions [Fig.
b)].

(3)  次に、nエミッタ層60両側をエツチングに
より段差形成し、その後、nエミッタ層6側の主面から
公知のセルフアライメント方式によって。
(3) Next, steps are formed on both sides of the n emitter layer 60 by etching, and then from the main surface on the n emitter layer 6 side by a known self-alignment method.

また反対側主面から全面拡散法によって、同時にp型不
純物を拡散し、p型高濃度不純物層7及びnエミッタ層
5を形成する。この工程によって形成されるp型高濃度
不純物層7及びnエミッタ層5は、同一条件で拡散処理
が行われるので、はぼ同一の深さになる。また、この工
程は、n型高濃度不純物層3の深さより、nエミッタ層
5の深さが小さくなるようにその拡散が制御される〔第
1図(C)〕。
Further, p-type impurities are simultaneously diffused from the opposite main surface by a full-surface diffusion method to form a p-type high concentration impurity layer 7 and an n emitter layer 5. Since the p-type high concentration impurity layer 7 and the n emitter layer 5 formed by this step are diffused under the same conditions, they have approximately the same depth. Further, in this step, the diffusion is controlled so that the depth of the n-emitter layer 5 is smaller than the depth of the n-type high concentration impurity layer 3 [FIG. 1(C)].

これらの工程が、ベレット1上に構成される全ての単位
GTOサイリスタ2を同時に形成するように行われる点
及び、これらの工程の終了後、カソード電極8.アノー
ド電極9.ゲート電極10を取付ける点は、従来技術の
場合と同様である、前述した本発明の一実施例の製造方
法により得られたGTOサイリスタは、nベース層4に
ゲート電極lOを低抵抗接触させるためのpm高濃度不
純物層7を有し、ゲート電極10が低抵抗接触されてい
ないnベース層に、アノード電極9を低抵抗接触させる
ための、隣接するnエミッタ層5の深さより深いn型高
濃度不純物層3を有する。第3゜4図に示した従来技術
によると同様な構造を有するものとなる。従って1本発
明の実施例によれば。
These steps are performed to simultaneously form all the unit GTO thyristors 2 formed on the pellet 1, and after these steps are completed, the cathode electrodes 8. Anode electrode9. The GTO thyristor obtained by the manufacturing method according to the embodiment of the present invention, in which the gate electrode 10 is attached in the same manner as in the prior art, has a structure in which the gate electrode 10 is brought into low-resistance contact with the n-base layer 4. In order to bring the anode electrode 9 into low-resistance contact with the n-base layer, which has a pm high-concentration impurity layer 7 and to which the gate electrode 10 is not in low-resistance contact, an n-type height layer deeper than the depth of the adjacent n-emitter layer 5 is formed. It has a high concentration impurity layer 3 . The conventional technique shown in FIG. 3-4 has a similar structure. Therefore, according to one embodiment of the present invention.

単位GTOサイリスタ2をペレツ)l内に製造するため
に、従来技術より少ない3回の拡散工程を必要とするの
みで、従来技術と同様な構造を有するGTOサイリスタ
を安価に製造し、提供することができる。
To manufacture and provide a GTO thyristor having a structure similar to that of the prior art at low cost by requiring only three diffusion steps, fewer than the prior art, in order to manufacture a unit GTO thyristor 2 in a pellet. Can be done.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、単位GTOサイ
リスタを3回の不純物拡散工程でペレット内に作り込む
ことができ、従来技術の場合と同一の性能を有するGT
Oサイリスタを安価に製造。
As explained above, according to the present invention, a unit GTO thyristor can be built into a pellet through three impurity diffusion steps, and the GT thyristor can have the same performance as the conventional technology.
Manufacture O-thyristors at low cost.

提供することができる。can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(at、 (b)、 Ic)は本発明の一実施例
の製造方法を説明する単位GTOサイリスタの断面図、
第2図(al、 (bL (cl、 (diは従来技術
による製造方法を説明する単位GTOサイリスタの断面
図、第3図。 第4図は従来技術及び本発明によるGTOサイリスタの
平面図及び単位GTOサイリスタの断面図である。 l・・・・・・ペレット、2・・・・・・単位GTOサ
イリスタ。 3・・・・・・n型高濃度不純物層、31・・・・・・
n型半導体基板、4・・・・・・nベース層、5・・・
・・・nエミッタ層、6・・・・・・nエミッタ層、7
・・・・・・p型高濃度不純物層。 8・・・・・・カソード電極、9・・・・・・アノード
電極、10・・・・・・ゲート電極。 第1図     第2図 7  P5!高濃崖千此kWJ局 31−n!!半導々4−反 13図 第4図
FIG. 1 (at, (b), Ic) is a cross-sectional view of a unit GTO thyristor for explaining a manufacturing method according to an embodiment of the present invention;
2 (al, (bL cl, (di) is a sectional view of a unit GTO thyristor explaining the manufacturing method according to the prior art, and FIG. 3 is a sectional view of the unit GTO thyristor. It is a sectional view of a GTO thyristor. 1... Pellet, 2... Unit GTO thyristor. 3... N-type high concentration impurity layer, 31...
n-type semiconductor substrate, 4...n base layer, 5...
...n emitter layer, 6...n emitter layer, 7
・・・・・・P-type high concentration impurity layer. 8... Cathode electrode, 9... Anode electrode, 10... Gate electrode. Figure 1 Figure 2 7 P5! Takanogai Senko kWJ station 31-n! ! Semiconductor 4-13 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、一対の主表面を有する半導体基板に、隣接する相互
間でその導電型が異なる中央の2つのベース層とその両
側のエミッタ層とによるpnpn接合が形成され、前記
半導体基板の一方の主表面に、一方のエミッタ層と該一
方のエミッタ層に隣接する一方のベース層の高濃度不純
物層が露出し、前記半導体基板の他方の主表面に、他方
のエミッタ層と該他方のエミッタ層に隣接する他方のベ
ース層の高濃度不純物層が露出し、前記一方のエミッタ
層にカソード、前記一方のベース層にゲート、前記他方
のエミッタ層と前記他方のベース層にアノードをそれぞ
れ低抵抗接触させて構成される半導体装置において、前
記一方のエミッタ層と前記他方のエミッタ層に隣接する
他方のベース層の高濃度不純物層とを同時に形成し、ま
た、前記他方のエミッタ層と前記一方のエミッタ層に隣
接する一方のベース層の高濃度不純物層とを同時に形成
することを特徴とする半導体装置の製造方法。
1. A pnpn junction is formed in a semiconductor substrate having a pair of main surfaces by two central base layers whose conductivity types differ between adjacent ones and emitter layers on both sides thereof, and one main surface of the semiconductor substrate The high concentration impurity layer of one emitter layer and one base layer adjacent to the one emitter layer is exposed, and the other emitter layer and the high concentration impurity layer adjacent to the other emitter layer are exposed on the other main surface of the semiconductor substrate. A high concentration impurity layer of the other base layer is exposed, a cathode is in low resistance contact with the one emitter layer, a gate is in contact with the one base layer, and an anode is in low resistance contact with the other emitter layer and the other base layer. In the semiconductor device configured, the one emitter layer and the high concentration impurity layer of the other base layer adjacent to the other emitter layer are formed simultaneously, and the other emitter layer and the one emitter layer are formed with a high concentration impurity layer. 1. A method of manufacturing a semiconductor device, comprising simultaneously forming a high concentration impurity layer of one adjacent base layer.
JP4152487A 1987-02-26 1987-02-26 Manufacture of semiconductor device Granted JPS63209167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152487A JPS63209167A (en) 1987-02-26 1987-02-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152487A JPS63209167A (en) 1987-02-26 1987-02-26 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS63209167A true JPS63209167A (en) 1988-08-30
JPH0560667B2 JPH0560667B2 (en) 1993-09-02

Family

ID=12610777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152487A Granted JPS63209167A (en) 1987-02-26 1987-02-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63209167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366916A2 (en) * 1988-10-04 1990-05-09 Kabushiki Kaisha Toshiba Shorted-anode semiconductor device and methods of making the same
JPH0282052U (en) * 1988-12-13 1990-06-25
US5248622A (en) * 1988-10-04 1993-09-28 Kabushiki Kashiba Toshiba Finely controlled semiconductor device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366916A2 (en) * 1988-10-04 1990-05-09 Kabushiki Kaisha Toshiba Shorted-anode semiconductor device and methods of making the same
US5148254A (en) * 1988-10-04 1992-09-15 Kabushiki Kaisha Toshiba Finely controlled semiconductor device
US5248622A (en) * 1988-10-04 1993-09-28 Kabushiki Kashiba Toshiba Finely controlled semiconductor device and method of manufacturing the same
JPH0282052U (en) * 1988-12-13 1990-06-25

Also Published As

Publication number Publication date
JPH0560667B2 (en) 1993-09-02

Similar Documents

Publication Publication Date Title
US4450467A (en) Gate turn-off thyristor with selective anode penetrating shorts
JPH05347413A (en) Manufacture of semiconductor device
JPH0642542B2 (en) High-voltage semiconductor device manufacturing method
US10461157B2 (en) Flat gate commutated thyristor
CN110047913B (en) Gate turn-off thyristor and manufacturing method thereof
JPH01274471A (en) Thyristor
JPH0878668A (en) Semiconductor device for power
JPS63209167A (en) Manufacture of semiconductor device
JP2692366B2 (en) Gate turn-off thyristor and method of manufacturing the same
JP2515017B2 (en) Thyristor
JPS62147769A (en) Gto thyristor
KR100222027B1 (en) Manufacturing method of gate turn off thyristor
JP2679292B2 (en) Method for manufacturing semiconductor device
JPS622781Y2 (en)
JPH04162777A (en) Bidirectional voltage checking semiconductor device
JPS60144968A (en) Semiconductor device
JPH0640580B2 (en) Semiconductor device
JPH09293852A (en) Power semiconductor device and its manufacture
JPS61263162A (en) Gate turn-off thyristor
JPS62244172A (en) Transistor
JPH07221288A (en) Semiconductor device and manufacture thereof
JPS6252967A (en) Gto thyristor
JPH07109883B2 (en) Method for manufacturing semiconductor device
JPS60198776A (en) Manufacture of semiconductor device
JPS5999770A (en) Gate turn off thyristor