JPS599123A - 直流透磁率の高い無方向性電磁鋼板の製造方法 - Google Patents

直流透磁率の高い無方向性電磁鋼板の製造方法

Info

Publication number
JPS599123A
JPS599123A JP57118984A JP11898482A JPS599123A JP S599123 A JPS599123 A JP S599123A JP 57118984 A JP57118984 A JP 57118984A JP 11898482 A JP11898482 A JP 11898482A JP S599123 A JPS599123 A JP S599123A
Authority
JP
Japan
Prior art keywords
rolling
annealing
steel
magnetic
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57118984A
Other languages
English (en)
Other versions
JPH034606B2 (ja
Inventor
Isao Ito
伊藤 庸
Hiroshi Matsumura
松村 洽
Michiro Komatsubara
道郎 小松原
Hiroto Nakamura
中村 広登
Takashi Sekida
関田 貴司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57118984A priority Critical patent/JPS599123A/ja
Publication of JPS599123A publication Critical patent/JPS599123A/ja
Publication of JPH034606B2 publication Critical patent/JPH034606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 この発明は高エネルギー粒子発生用の加速器に用いられ
る直a、笛、磁石など、各種用途の直流電磁石に用いる
に適した直流磁化特性の優れた無方向性T#を磁鋼板の
製造方法に関し、特に直流透磁率が高くしかも磁気余効
の小さい冷間圧延無方向性電磁鋼板を提供するものであ
る。
一般に直流筒5磁石の用途としては、その吸引力を利用
する用途、例えばリフマグ、電磁リレー、磁気浮揚等の
用途と、その発生磁界を利用する用途、例えば種々の計
測装置や加速器、あるいは交流発電機の回転子や直流発
電機の磁極等の用途の2種類に大別されるが、これらの
用途においてはいずれも透磁率が高いこと、および応答
性が良好で制御性が良いことが要求され、交流用の如き
低鉄損性は要求されない。
ところでこれらの用途、特に加速器においては、膨大な
数の電磁石を必要とするため、その電磁石に使用される
電磁鋼板としても極めて大量のものが必要とされ、した
かっ−C材料コスト低減のため安価でしかも磁気特性の
優れた電磁鋼板の開発が強く要請されている。すなわち
、高エネルギー粒子発生装置である加速器としては、高
周波加速装置を直線状に設置した所謂線型加速器と、粒
子を円運動させ、その円軌道の途中に高周波加速装置を
配置した所謂円型加速器とがあるが、両者を比較すれば
、前者においては高エネルギーの運動粒子を得るために
長い直線加速領域を必要とするのに対し、(&渚は粒子
の旋回運動によ。て同一の高周波加速装置を幾度でも通
過させ得るから、線型加速器よりも少ない設置面積で効
率良く高エネルギー粒子が得られ、そのだめ今日では円
型加速器が一般的となっている。しかるに円型加速器に
おいては粒子の軌道を曲げて円運動させるため、大所の
直流電磁石を円軌道の周囲に配置する必要があり、しか
も高エネルギー粒子はど軌道の曲率半径が大きくなるだ
め、益々大着の電磁石が必要とされる。特に最近では素
粒子理論をより一層深く検証するだめ、益々犬型の円型
加速器が要求されるようになり、その建設コストが美大
なものとなっている。そして例えば直径1−の円型加速
器では電磁石用材料として0千トンもの電磁鋼板が必要
となり、そのためコスト削減のため安価でしかも磁気特
性に曳れた市、磁鋼板の開発が強く要請されでいるので
ある。また加速器は、素粒子理論の探究のだめのみなら
ず、医学や生物学、工学等の分野においてもその応用範
囲が拡大し、そのため加速器の建設が数多くなる傾向に
あるが、円型加速器は小型のものでも建設コストが相当
に高く、そのコスト削減の一方策として安価な電磁石用
材料の開発が望まれている。さらに加速器に限らず、他
の自流電磁石を使用する用途においても、安価な市1磁
鋼板の開発が望まれていることは勿論である。
ところで電磁鋼板の製造コストに最も大きな影響を与え
るのは、SiおよびAgの含有酸である。
すなわち、Siおよび届は鋼中添加のコストが高いのみ
ならず、SiやAeの含有量が高くなれば製造の各工程
における歩留りが著しく低下するからである。したがっ
て電磁鋼板の製造コストを低減するだめには、Si、A
召の含有量を小量に抑えることが最も有効であると考え
られる。そこで本発明者等は、これらの成分の最大含有
酸をSi0.6%、/J 0.3 %に抑えだ低Si1
低局の電磁鋼板を開発することとしだ。
このようにSi、/Jの含有量を低減させた場合、従来
は飽和磁束密度に近い領域を除いて直流透磁率が著しく
低ドすると考えられていた。また直流電磁石の製造コス
トをFげる一つの手段として、電磁鋼板の打抜後に歪取
焼鈍等の特別の熱処理を施さずに電磁石に組込むことが
考えられるが、従来は歪取焼鈍を省略した場合にも直流
透磁率が著しく低卜するとされていた。しだがって従来
は低S I +低Ag化や歪取焼鈍の省略により、低コ
スト化と同時に優れた直流磁気特性を得ることは困雌と
思われていたのが実情である。(7がしながら本発明者
停が神々実験・検討を重ねだところ、従来の常識に反し
、低u1低Siとした場合でも適切な成分含有量、適切
な圧延条件とすることによって1憂れだ直流磁気特性が
得られ、しかもその場合歪取焼鈍を行なわずに優れた特
性が得られることを見出したのである。したがってこの
発明の基本的な目的は、A形、Si含有叶を少…に抑制
して低コストとすると同時に摩れだ直流磁気特性、すな
わち高い直流透磁率が得られるようにした無方向性電磁
鋼板を提供するにある。
一方、低S1とししかもu量を極小量に抑制した場合、
後に詳述するように本発明者等の実験によれば著しい磁
気余効現象、すなわち設定磁場において所定の磁束密度
に達するまでの遅れ時間が著しく大きくなる現象が生じ
、直流市、磁石として応答性が著しく悪くなり、制御性
が低ドすることが判明しだが、各成分含有散や圧延条件
を適切に選ぶことによって、低AI 、低sIでも磁気
余効現象を防止し得ることを見出した。したがって低S
i、低A、8にしてしかも磁気余効が少ない電磁鋼板を
提供することもこの発明の重要な目的である。
前述のごとくこの発明は箱、磁鋼板の成分および圧延条
件についての詳細な実験・検討の結果得られた種々の知
見に基いてなされたものである。そこで先ずこれらの知
見について説明する。
従来から鋼中のCは電磁鋼板の鉄損や透磁率、抗鑓、力
に悪影響を及ぼすことが知られており、したがってC含
有量は可能な限り低減することが望ましいとされている
。しかしながら工業的規模での製造においてはC含有量
の低減にも限界がある。
十こで本発明者等は03チsI鋼において、製鋼段階で
C含有量を種々変化させ、通常の熱間圧延後、1回の冷
間圧11らと・1尭純によって得た製品の直流透磁率を
調べたところ、第1図忙示を結果がf4+られだ。第1
図から、C含有量が低い程直流透磁率が高くなるが、0
0 (13%以F″CI″iその傾向が明確ではなく、
ばらつきの範囲内となることが判明した。このばらつき
は各成分含有酸の微小なばらつきや圧延条件、焼鈍条件
のばらつきに起因するものと思われ、これらを規制する
ことは工業的に非常な困難を能う。しだがって低5if
i4において高い1@流透磁率を得るだめには、少くと
もC含有量(1003係以トに規制する必要があるとの
新規な知見を得たのである。なおC含有量の規制は最終
製品においてなされれば良く、途中工作において脱炭処
理がなされる場合にはCの初期き有情は0、0 (13
%より高くても良いことは勿論である。
次に本発明者等は03%Si&l1%において、1’!
!鋼段階でA−g含有針を0.0 (11〜0.3チの
範囲内で変化させて、前述のCの場合と同様な実験を行
ない、M含有量(酸化溶届)と直流透磁率との関係を調
べたところ、この程度の小量のAeC含有量は直流透磁
率はほとんど変化しないことが判明した。
しかしながらxg含有量が極端に少ない場合には、設定
磁場に対応する磁束密度に達するまでに時間遅れが存在
する緩和現象、すなわち磁気余効が発生することが判明
した。例えIf:;ffl Ag含有計が(1,002
%の場合、1.0Tの磁束密度に到達するまでに、約1
分間程も時間を必要とした。このような磁気余効け、直
流型、磁石の制御性を著しく害するため好ましくない。
すなわち、特に高速制御や高速動作が要求される加速器
用、百1測器用、プリントハンマー用等の電磁石におい
ては10〜10 (l ミ17秒オーダーの応答性が必
要とされるが、前述のような著しい磁気余効が存在すれ
ば制御性の点からこれらの用途には実際上使用不能とな
る。
本発明者等は実験の結果AI含有計が0.01%程度よ
り多い鋼においては磁気余効が小さくなることを見出し
だが、さらに実験・検羽を進めた結果、この磁気余効現
象はFe原子間に用済したN原子が磁場中で拡散するこ
とに起因するとの結論を得、その結果N原子をMNとし
て固定することが磁気余効の低減に有効であることを見
出したのである。
すなわち通常の実用規模の製造工程で得られる電磁鋼板
中のNは特に少ない場合で10ppm、/侍に多い場合
でも60ppm、通常は20〜501)I)m程度であ
るから、Mを001%程度以上含有させることによりN
をA−eNとして固定して、磁気余効現象を防止するこ
とが可能となる。但し届は一部が酸に溶けない”205
として存在するから、A6NのA6としては酸可溶へβ
として分析することが必要である。さらに、Nを固定す
る元素としては屁のほか、Ti 、 Zr 、 Bが知
られているが、本発明者等は実験によりこれらの元素の
うちBが直流透磁率を低ドさせないで磁気余効を低減さ
せる効果が得られることが判明した。そこでこれらの知
見に基づき、本発明者等はA8およびBの添加液をNと
の関係において変化させ、磁気余効を起さない酸可溶U
およびBの計を検討した結果、第2図に示す関係を得だ
。但し第2図では]、、 OTでの磁気余効が1秒未満
の場合に実質的に磁気余効かないものと判定して0印を
附し、同じ(’J、(ITでの磁気余効が1秒以上の場
合を磁゛気余効低減が不光分と判定して×、印を附した
。第2図から、酸可溶MとBの含有量をN量に応じて、 (酸可溶A6(%)/2N(%月+2 B (%)/N
(チ)≧1に保つことにより磁気余効を低減し得るとの
知見を得た。但しBによりNを固定した材料を円型加速
器に使用することは好ましくない。すなわち、Bはシン
クロトロン軌道放射によってα崩壊し7、Nの固定力を
失うから、円型加速器に使用した場合には使用期間中に
磁気余効が増大するおそれがある。
次に低Si、低層の電磁鋼板についての圧延および熱処
理条件の知見について述べる。
低Si、低へ〇の通常の電磁鋼板の圧延集合組織につい
て本発明者等が調べたところ、鋼板圧延面内においては
(222)面強度が強いことが判明した。(222)面
はその面内に磁化容易軸である(100>軸を全く有し
ていないため磁化特性が悪く、このことが通常の低Ne
1低Siの電磁鋼板の直流透磁率の低い原因の一つとな
っている。
そこで本発明者等が圧延および熱処理の組合せについて
種々実験・検討を繰返した結果、熱延鋼帯を長時間焼鈍
して1回の冷間圧延とその後の連続焼鈍(仕上焼鈍)に
より製品とする製法(以F「゛長時間焼鈍1回冷延法」
と称する)と、熱延鋼帯を中間圧延を含む2回の冷間圧
延で最終板厚とし、その後連続焼鈍(仕上焼鈍)して製
品とする製法(以FrZ回玲延法」と称する)とが低S
i。
低heの電磁鋼板における(222)面強度を低下させ
、直流透磁率を高める上において効果的であることを見
出し、かつそれぞれの製法における各工程の最適条件を
見出したのである。
すなわち、前者の長時間焼鈍1回冷延法では、冷延前の
熱延鋼帯に長時間焼鈍を施すことによって結晶粒を粗大
化させ、これにより最終的な仕ト焼1鈍後の山板の(2
22)面強度を低下させて直r&透磁率を高めることが
できるのである。この長時間焼鈍の温度条件については
、本発明者等が0.3%5iflllの熱延鋼帯につい
て種々の温度で長時間(5時間)焼鈍し、冷間圧延後連
続焼鈍により仕上焼鈍した場合の(222)面強度と長
時間焼鈍の温度との関係を調べたところ、第3図に示す
結果が得られた。なおこの実験において長時間焼鈍後の
冷間圧延は圧下率:30%とし、また仕上焼鈍け800
 ’CX 1分とした。第3図から、(222)面強度
を低Fさせるためには、750〜850℃の温度範囲で
長時間焼鈍する必要があることが判明した。
一方後者の2回冷延法では、熱延鋼帯に対して冷間圧延
と焼鈍を2回繰返し、特に1回目の冷間圧延で強圧延を
加えることにより集合組織を改善して(222)面強度
を低下させ、直流透磁率を高めるのである。本発明者等
が0.3%8i@lの熱延鋼帯について種々の圧下率で
gt回目の冷間圧延を施し、中間焼鈍として800 ℃
X 1分間の連続焼鈍を行ない、さらに第2回目の冷間
圧延を50係の圧F率で行ない、仕上焼鈍として800
℃×1分間の連続焼鈍全行った場合における第1回目の
冷間圧延圧下率と最終的な(222)面強度との関係を
調べだところ、第4図に示す結果が得られだ。第4図か
ら、(222)面強度を充分に小さくするためには、第
1回目の冷間圧IΦの圧F率を50〜80%とする必要
がちることが判明した。
さらに本発明者等は前者の長時間焼鈍1回冷延法にお、
ける冷間圧延の圧F率および後者の2回冷延法におりる
第2回目の冷間圧延の圧−F率と、吊終的な直流透磁率
との関係を調べだところ、第5図(長時間焼鈍1回冷延
法)および第6図(2回冷延法)に示す結果が得られた
。なおこの実験において長時間焼鈍1回冷延法では0.
3チSi′J9IIの熱延鋼帯に対し800℃において
5時間の長時間1!ス鈍を栴した後、種々の圧F率で冷
間圧延し、さらに仕上焼鈍として800 ’CX 1分
の連続焼鈍を行ない、一方2回冷処法では0,3%S+
鋼の熱延鋼帯に対し第1回の冷間圧延どして75%圧ド
率で圧延し、中間焼鈍として8()0℃×1分の連続焼
鈍を行ない、第2回目の冷間圧延として種々の圧下率で
圧延し、さらに仕上焼鈍として800℃×1分の連続焼
鈍を行った。また試料はいずれの方法においても後述す
る理由により仕上焼鈍後の巻取り後においてレベラーに
よる平坦化処理を行なった。まだ試料の採取は圧延方向
および圧延直角方向がそれぞれ半量となるように行ない
、かつ磁気測定は0.5 T 、 1.OT 、 1.
5 Tにおいてそれぞ □れ直流エプスタイン測定器を
用いて行なった。
長時間焼鈍1回冷延法では第5Mに示すように圧F率4
0%未満では1.5Tの透磁率が低くなって各種直流磁
石用の電磁鋼板として不適当となり、また圧下率が70
%を越えれば各磁束密度領域の全般にわたって透磁率が
低くなって好ましくなくなり、結局圧F率40〜70チ
が適当であることが判明した。
また2回冷延法では第6図に示すように第2回目の冷間
圧延の圧下率が15〜60%の場合に各磁束密度領域の
全般にわたって高透磁率が得られることが判明した。ま
た圧下率が40〜60%の場合には特に1.5Tにおけ
る透磁率の改善が著しくなることが判明した。このよう
な高磁束密度領域での透磁率が高い材料は、特に円型加
速器に使用される電磁石のうち、粒子ビーム絞υ用電磁
石である四極型または大極型7h、磁石に好適である。
すなわち、この種の市、磁石は局所的忙著しく磁束密度
の高い領域が存在するからである。
この発明は以上のような低Si1低A、eの電磁鋼板に
ついての各成分含有量に関する知見、および加工、熱処
理条件、特に冷間圧延と焼鈍条件についての知見に基い
てなされたものである。
すなわち、第1の発明の製造方法は前述の長時間焼鈍1
回冷延法に相当するものであって、5i06%以ド、N
 O,(1050%以F、 Mn 0.1〜0.6係、
P 0.1%以下、C0,O15チ以Fを含有し、かつ
Iv60.30%以下およびB O,0(14%以丁の
1種以上を (酸可溶A召C%)/2N(%月+2B(チ)//N≧
1なる範囲内で含有し、残部実質的にFeよりなる鋼を
素材とし、これを熱間圧延した後、750〜850℃の
温度範囲内にて3〜10時間焼鈍し、C含有量を(1,
003%以丁に規制した後酸洗し、40〜70%の圧F
率で冷間圧延し、さらに800〜900℃の温度で30
秒〜3分間連続焼鈍することを11?徴とするものであ
る。
また第2の発明の製造方法は、前述の2回冷延法に相当
するものであって、前記第1発明の場合と同じ組成の鋼
を素材とし、これを熱間圧延した後酸洗し、圧ド率50
〜80チでの第1回目の冷間圧延を施しだ後、700〜
850℃の温度範囲にて1〜3分間連続焼鈍(中間焼鈍
)し、C含有量を(1,003チ以ドに規制した後、圧
下率15〜60チでの第2回目の冷間圧延を施し、さら
に8 (10〜900℃の温度にて30秒〜:3分間連
続焼鈍することを特徴とするものである。
以下この発明の方法についてさらに詳細に説明する。
先ずこの発明の方法に使用される鋼の成分限定理由につ
いて説明する。
C: Cは前述のように製品中の含有量が0.003チ
を越えれば直流透磁率が低下するから、製品中のC含有
酸、すなわち脱炭処理を行った場合には脱炭後のC含有
量を0003チ以Fに規制する。
但し鋼塊中のC含有量が00■5チを越えれば製品中り
C含有量が0.0 +13%以Fとなるように脱炭する
ことが芥躬でなくなるから、鋼塊中のC含有酸を0.0
15チ以Fに規制する。鋼塊中のC含有量が0.015
%以Fであれば、後述する焼鈍を脱炭性雰囲気で行った
り、鋼板表面の酸化スケールによる脱炭で極めて容易に
000 :3%以Fまで脱炭することができる。もちろ
んlu鋼段階において一塊中のCが(1,0(13%以
「となるようにした344合には、その後の段階で特に
脱炭処理を行う必要jdない。
N: Nはその液が多ければ磁気余効を低減し難くなる
から、’J及的に少ないことが望ましいが、製鋼段階で
無理にN含有量を少くしようとすれば製鋼コストの上昇
を招くから、この発明では従来の通潜の市1磁鋼板と同
様に0.005%以Fとする。
A、g、B:/lならびにBは、前述のようにNをke
N 、 BNとして固定して、磁気余効を低減するのに
有効であるが、その効果を得るためには、N含有量に応
じて酸UJ溶MおよびBが [f12tiJ溶Afi(%’)/2NC%) l +
 2B($)/N 、; 1を満足する酸としなければ
ならない。ここでM。
Bはいずれか一方まだは双方が添加されていれば良いが
、前述のごと<13によりNを固定した材料では円型加
速器に使用した場合使用中に磁気余効が増大するおそれ
があるから、製品の用途に応じてA、6 、 Bを選択
する必ザがある。なお局はその含有量が03%を越えれ
ば添加の割にはNの固定効果の向上が昭められず、かつ
鋼の価格上昇、特に製鋼工程等における歩留り低Fを招
くから、その含有量の上限を0.3係とする。またBの
含有針が0.004%を越えれば鋼の機械的性質を劣化
させ、−まだ価格の上昇を招き、しかもこれ以上Nの固
定効果は向上されないから、Bの含有液の上限を1)、
 OO4%とする。
Si:  この発明の目的は本来低コスト化のために低
SIとした電磁鋼板について直流透磁率特性を改善する
ことにあり、高Siでは製造コストが高くなってこの発
明の目的に沿わなくなるから、Si含有喰の上限を06
%とした。
Mn :  Mnは熱間圧延性改善のだめ少くとも01
%以上必要であるが、o6チを越えれば価格の一ト昇を
招き、かつ脱炭性を悪くするから、01〜06係の範囲
とした。
P: Pは不可僻的不純物として含有される元素である
が、01係を越えれば鋼板の/)間圧延性を害するから
、01係以[に規制する。
次にト述のような成分の綱を用いたとの発明の製造方法
について説明する。
ifJ記成銭に溶製された溶@d1、連続鋳造によりス
ラブとするか、或いは鋳型を用いて鋼塊とし、分塊圧延
によりスラブとした後、常法にしたがって熱間圧延する
。熱間圧延後の1程としては、第1の発明の方法では先
ず熱延鋼帯f Ac5変態点以Fの温度である750〜
850 ’Cの温度域にて長時間焼鈍して粒成長させた
後、酸洗し、さらに冷間圧延後、仕上焼鈍としての連続
焼鈍を施す。ここで熱延鋼帯の長時間焼鈍の目的は、前
述の如く結晶粒を粗大化させて仕上焼鈍後の(222)
面強度を低Fさせることにあるから、焼鈍の条件は高温
f番時間であることが嗜ましいが、AC,、変態点以上
の温度では逆に結晶粒の細粒化が生じてしまうから、前
述の実験結果(第3図)に基いて焼鈍温度を750〜8
50℃の間とした。まだ焼鈍時間はこの温度域では3時
間以上あれば良いが、10時間以上ではコスト的に不利
となるから、3〜10時間とした。長時間焼鈍後の冷間
圧延における圧F率は、前述の実験結果(第5図)から
、40係未満では高磁束密度領域(1,5T)における
透磁率が低トし、一方70チを越えればいずれの磁束密
度領域においても透磁率が低下することが判明しだので
、40〜70チの範囲とした。冷間圧延後の仕上焼鈍は
再結晶が目的であり、短時間で再結晶させるため、従来
と同様に800〜900°Cにおいて30秒〜3分間連
続焼鈍すれば良い。なお熱間圧延後の鋼板のC含有量が
0.0(13〜0.015%の場合には、熱延鋼帯の長
時間焼鈍を脱炭性雰囲気で行ったり、鋼板表面の酸化ス
ケールによる脱炭で、C含有量を0.003 %以下に
規制する必要がある。但し、仕−に焼鈍で脱炭を行うこ
とは、鋼板表面に酸化物を生成させるので好ましくない
一方IA2の発明の方法では、熱間圧延後、その熱延鋼
帯を酸洗し、中間焼鈍を間に挾んで2回の冷間圧延を行
って最終板厚にしだ後、仕上焼鈍とj−ての連続焼鈍を
施す。この方法における第1の冷間圧延での圧F率は、
前述の実験結果(第4図)から判明した如く、仕上焼鈍
後の鋼板の(222)面強度を弱めて直流透磁率を高め
るだめには50〜8()チが必要である。第1回目の冷
間圧延後の中間焼鈍の温度は、短時間で再結晶させるた
めに700〜850℃とする。この中間焼鈍においても
、Ac5変態点以上に温度を上げることは集合組織上好
ましくない。まだこの中間焼鈍は連続焼鈍によって行う
から、その時間は1分から13分行えば良い。第2回目
の冷間圧延における圧F率は、前述の実験結果(第6図
)から判明したように、15%未満では高磁束密度領域
(1,5T)における透磁率が低下し、60%を越えれ
ば全般的に透磁率の低Fが認められるから、高透磁率を
得るためには15〜60チが適当である。そして特にJ
、 51’の如く高磁束密度領域での透磁率を重視する
場合には40〜60%の圧F率が最適である。
第2回目の冷間圧延後の仕上焼鈍は、第1の発明による
方法の場合と同様に、短時間で再結晶させるだめ、80
0〜900℃の温度で30秒〜3分間連続焼鈍すれば良
い。なお熱間圧延後の鋼板中のC含有量が0003〜(
1,015係の場合には、中間焼鈍の雰囲気を脱炭性と
して、中間焼鈍後のC含有量を0.003%以下に規制
する必要がある。
世し仕上焼鈍で脱炭することは、鋼板表面に酸化物を生
成させるため好ましくない。
以上の各方法により得られた電磁鋼板には、仕上焼鈍後
に絶縁用のコーディングを施すことがあるが、円型加速
器用電磁石材料の場合には有機質コーティング材料は使
用中に放射線損傷による絶縁劣化を招くおそれがあるか
ら、無機質系のコーティング材料を使用することが望ま
しい。それ以外の用途においては有機質系無機質系のい
ずれのコーティング材料を用いても良い。
なおこの発明の方法により得られた電磁鋼板を用いて1
?3.磁石を製造する場合、その市1磁石の#造コスト
を削減するためには、使用する鋼板の板厚を可及的に大
きくすることが望ましく、斯くすれば鋼板の打抜工程や
積み工程に要lる費用の低減を図ることができる。この
ように板厚を大きくすることは、磁気特性に対しては直
接的には影響はない。しかしながらこの発明の材料の場
合、板厚を大微くシた場合に仕上焼鈍後の巻取りによる
永久企、すなわち所s円コイルセットが残留し、これに
より磁気特性が極端に劣化することがあることが判明し
た。すなわち鋼板をコイル状に巻取った鳴合、板厚を1
1コイルの最小巻径を2rとすれば1、鋼板表面に最大
t/2rの歪が導入されるが、低51w1である仁の発
明の鋼においては降伏応力が低いブζめ、板厚を大きく
して導入歪1が増大すれは、ある限界以上で永久企とし
て鋼板に残留してしまう。このようなコイルセクトを除
去する方法としてはスキンバス法およびレベラー法トが
あるが、本発明者等はレベラーによる平坦化処理が磁気
特性を比較釣書さないことを見出した。したがって板厚
が大きい嚇合にはコイル巻取後にし≧ラーによる平坦化
処理を行うことが望ましい。
以上にこの発明の実施例を記す。
#h4施E21 転炉吹錬後に真空脱ガス処理(7て第1表の鋼種記号I
〜Vに示す成分の溶鋼を溶製した。イリし1〜■の鋼種
ばこの発明の鋼塊成分範囲内であり、そのうちl〜■の
鋼種はBを積極的に添加しなかったもの、また■の鋼種
けBを添加したものである。一方■の鋼種はM、B含有
酸がこの発明の範囲外のものである。これらの各鋼種の
溶鋼を連続鋳造しで、各鋼種につきそれぞれ4個のスラ
ブ(以Fこれらを区別してA、B、C,Dと記す)を作
成し、各々を1200°Cの温度に加熱した後熱間圧延
し、各鋼種についてBのスラブは20咽の板厚の熱延鋼
帯とし、A、 、 C、Dのスラブは4、1) mmの
板厚の熱延鋼帯としだ。
次いで各鋼種1〜VにおけるAおよびBの熱延鋼帯につ
いては750℃において1()時間の長時間焼鈍全行っ
た。この長時間焼鈍は、雰囲気ガスとして非脱炭性のH
NXガス(H23% s CO015チ、CO20,1
2弼、残部N2)を用い、各銅帯を固く巻いたままの状
態で行ったが、各銅帯は鋼板表面の酸化スケールによっ
て脱炭され、例えば鋼種■においてはAコイルが0.0
02%、Bコイルが(l O03%と、いずれのコイル
においてもC含有I% (+、 OO3%以下が達成さ
れた。続いて各鋼種I〜■のA、8両コイルを酸洗し、
冷間圧延により板厚1醍とした。したがってこの冷間1
F延における圧F率はAコイルは75チ(この発明の範
囲外)、Bコイルは50%(この発明の範囲内)となっ
ている。次いで各鋼種1〜■のA、8両コイルを850
 ’(、:の温度で1分間連続焼鈍して仕上げだ。
なお各コイルの一部を、レベラーによる平坦化処理の影
響を調べるだめ、500Mφの径で巻取った後、レベラ
ーによる平坦化処理を行った。
−・方各鋼種l〜■におけるCおよびDの熱延鋼帯につ
いては、酸洗した後圧1率7()係で第1回目の冷間圧
延を行なって板厚1.20 mlとし、さらに字種■に
ついては露点40℃のH260係、残部N2からなる脱
炭性雰囲気中で、他の鋼種■〜Vについては前述のII
Xガス雰囲気中にて、それぞれ820℃で2分間の中間
溶錬を行なった。なおこの中間焼鈍後の各コイルはいず
れもC含有縫が0、003チ以丁となっていた。次いで
各鋼種I〜■のCコイルについては圧下率30 % K
て、またDコイルについては圧下率50%でそれぞれ第
2回目の冷間圧延を行ない、それぞれ板厚0841、o
、72mmとした。続いて各コイルを850℃の温度で
1分間連続焼鈍して仕上げだ。なお各コイルの一部は、
500wnφの径で巻取った後、レベラーにより平坦化
処理した。
以上の実施例により得られた各鋼種の各コイル(レペラ
ーにより平坦化処理したものおよびしないもの)につい
て、圧延方向と圧延直角方向がそれぞれ手縫となるよう
に:30 X 280 Mの試料を切出し、直流エプス
タイン測定器により直流磁気特性を調べだところ、第2
表に示す結果が得られた。
第2表に示される結果から、この発明の方法により得ら
れた電磁鋼板はいずれも直流透磁率が高り、シかもレベ
ラーにより平坦化処理した場合の直流透磁率0ff(F
も少なく、かつ寸だ磁気余効時間も比較的短かいことが
明らかである。特に各鋼種のスラブ記号りのものは第2
の発明の方法において第2回目の/夕間圧延砂二おける
FF’F率を50チとしだものであるが、この場合には
同じく第2回[」の冷間圧延における圧F率を;80係
としたスラブ記号[)のものとト]−較して、高磁束密
度領域(+、5T)における直流透磁率が著し2く高い
ことが明らかでちるっなお′萌(重記号■のものは磁気
余効時間が皆しく長いが、これfd A/J 、 Hの
含有量が極めて少ないため、Nが固定されなかったため
と思われる。
μ上の説明で明らかなようにこの発明の製造方f人によ
れば、Siおよびklの含有はが少ない素材を用いるだ
め製造コストが低順であると同時に直流透磁率が高くし
かも磁気余効が小さい無方向性11i磁鋼板を得ること
ができ、したがってこの発明の方法は、今後益々需要増
大が期待される加速器や各種計測器等に使用される直流
箪磁石用の電磁鋼板の製造方法として工業上極めて有益
なものである。
【図面の簡単な説明】
第1図は03%Si電磁鋼板におけるC含有量と直流透
磁率との関係を示す相関図、第2図は03チSi電磁鋼
板におけるB(係)および酸浴A6 (%)とN (%
)との関係が磁気余効時間に及ぼす影響を示す相関図、
第3図け03チSi鋼の熱延銅帯を長時間焼鈍1回冷延
法によって処理した場合の長時間焼鈍の温度と仕上焼鈍
後の(222)面強度との関係を示す相関図、第4図は
0.:3%Si鋼の熱延鋼帯を2回冷延法によって処理
した場合の第1回目の冷間圧延における圧下率と仕上焼
鈍後の(222)面強度との関係を示す相関図、第5図
は0.3%Si@の熱延鋼帯を長時間焼鈍1回冷延法に
よって処理した場合の冷間圧延の圧下率と各線速密度(
0,5T、 1.OT11.5 T )における直流透
磁率との関係を示す相関図、第6図は0.3%Si(憫
の熱延鋼帯を2回l粂延法によって処理した場合の第2
回目の冷間圧延の圧F率と各磁束密度における10流A
磁率との間係を示す相関図である。 出願人 川崎製鉄株式会社 第1図 012345     10     15    2
00壱へ−t(メIQ−”/、) 第2図 o  i、OTて゛の石区気依突力鴫貨1リー未膚日(
%)、//N(Q10) 第3図 第10々藺江延−斤下年(%) 第5図 ン々r昌FL廷の五下卆 (%) 第6図 第2回目の斤ツLの圧下率 (%)

Claims (2)

    【特許請求の範囲】
  1. (1)  SiO,6チ(重量係、以下同じ)以下、N
    O,0050%以下、Mn 0.1〜0.6 %、P 
    0.1 %以下、C0,O15チ以Fを含有し、かりA
    [0,30チ以FおよびB O,004elb以下の1
    種以上を(酸可溶層(チ)/2N(チ))+2B(チ)
    Δペチ)≧1なる範囲内で含有し、残部実質的にFeよ
    りなる鋼を素材とし、これを熱間圧延した後、750〜
    850℃の温度範囲内にて3〜lO時間焼鈍し、C含有
    量を0.003 %以下に規制した後酸洗し、40〜7
    0チの圧F率で冷間圧延踵さらに800〜900℃の温
    度で30秒間から3分間連続焼鈍することを特徴とする
    直流透磁率の高い無方向性電磁鋼板の製造方法。
  2. (2)  Si0.6%以下、N O,OO50%以下
    、?、In01〜06%、PO11%以’F、C0,0
    15チ以下を含有し、かツA/l? 0.30 %以ド
    およびB O,(104チ以丁の1 ff!以上を (酸可溶M(%)/2N(チ))+2B(チ)7へ(チ
    )≧1なる範囲内で含有し、残部実質的にFeよシなる
    鋼を素材とし、これを熱間圧延した後酸洗し、圧下率5
    0〜80%での第1の冷間圧延を施した後、700〜8
    50℃の温度範囲内にて1〜3分間連続焼鈍し、C含有
    量を0.003%以Fに規制した後、圧下率15〜60
    チでの第2の冷間圧延を施し、さらに800〜9()0
    ℃の温度範囲内にて130秒間から3分間連続焼鈍する
    ことを特徴とする直流透磁率の高い無方向性電磁鋼板の
    製造方法。
JP57118984A 1982-07-07 1982-07-07 直流透磁率の高い無方向性電磁鋼板の製造方法 Granted JPS599123A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57118984A JPS599123A (ja) 1982-07-07 1982-07-07 直流透磁率の高い無方向性電磁鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57118984A JPS599123A (ja) 1982-07-07 1982-07-07 直流透磁率の高い無方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
JPS599123A true JPS599123A (ja) 1984-01-18
JPH034606B2 JPH034606B2 (ja) 1991-01-23

Family

ID=14750126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57118984A Granted JPS599123A (ja) 1982-07-07 1982-07-07 直流透磁率の高い無方向性電磁鋼板の製造方法

Country Status (1)

Country Link
JP (1) JPS599123A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174330A (ja) * 1985-01-28 1986-08-06 Nisshin Steel Co Ltd 磁気特性のすぐれたシヤドウマスク用冷延鋼板の製造法
JPS62177123A (ja) * 1986-01-29 1987-08-04 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造法
JPS62284016A (ja) * 1986-05-31 1987-12-09 Nippon Steel Corp 電磁特性のすぐれた無方向性電磁鋼板の製造方法
US5084112A (en) * 1988-07-12 1992-01-28 Nippon Steel Corporation High strength non-oriented electrical steel sheet and method of manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392324A (en) * 1977-01-25 1978-08-14 Kawasaki Steel Co Decarburization anealing method of heat rolled silicon steel to be used for cold mill
JPS54163720A (en) * 1978-06-16 1979-12-26 Nippon Steel Corp Production of electric iron plate with excellent magnetic property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392324A (en) * 1977-01-25 1978-08-14 Kawasaki Steel Co Decarburization anealing method of heat rolled silicon steel to be used for cold mill
JPS54163720A (en) * 1978-06-16 1979-12-26 Nippon Steel Corp Production of electric iron plate with excellent magnetic property

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174330A (ja) * 1985-01-28 1986-08-06 Nisshin Steel Co Ltd 磁気特性のすぐれたシヤドウマスク用冷延鋼板の製造法
JPH0453930B2 (ja) * 1985-01-28 1992-08-28 Nisshin Steel Co Ltd
JPS62177123A (ja) * 1986-01-29 1987-08-04 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造法
JPS62284016A (ja) * 1986-05-31 1987-12-09 Nippon Steel Corp 電磁特性のすぐれた無方向性電磁鋼板の製造方法
JPH0450367B2 (ja) * 1986-05-31 1992-08-14 Shinnippon Seitetsu Kk
US5084112A (en) * 1988-07-12 1992-01-28 Nippon Steel Corporation High strength non-oriented electrical steel sheet and method of manufacturing same

Also Published As

Publication number Publication date
JPH034606B2 (ja) 1991-01-23

Similar Documents

Publication Publication Date Title
US3636579A (en) Process for heat-treating electromagnetic steel sheets having a high magnetic induction
US3632456A (en) Method for producing an electromagnetic steel sheet of a thin sheet thickness having a high-magnetic induction
Lobanov et al. Electrotechnical anisotropic steel. Part 1. History of development
JP6683724B2 (ja) 方向性電磁鋼板およびその製造方法
JPH0211728A (ja) 無配向性電気鉄板の超高速焼なまし
EP0307905B1 (en) Method for producing grainoriented electrical steel sheet with very high magnetic flux density
JPS599123A (ja) 直流透磁率の高い無方向性電磁鋼板の製造方法
JP2639227B2 (ja) 無方向性電磁鋼板の製造方法
US3144363A (en) Process for producing oriented silicon steel and the product thereof
JPH0713266B2 (ja) 鉄損の優れた薄手高磁束密度一方向性電磁鋼板の製造方法
JP2002294416A (ja) 低鉄損方向性電磁鋼板およびその製造方法と製造装置
JP3065853B2 (ja) 磁気特性の優れた一方向性電磁鋼板の安定製造方法
JP3386742B2 (ja) 磁気特性に優れる方向性電磁鋼板の製造方法
JP3357602B2 (ja) 磁気特性に優れる方向性電磁鋼板の製造方法
JPS60258414A (ja) 磁束密度の高い無方向性電気鉄板の製造方法
JP2560579B2 (ja) 高透磁率を有する高珪素鋼板の製造方法
JP2001040449A (ja) 磁束密度および鉄損が優れた一方向性電磁鋼板の製造方法と同鋼板製造用の最終冷間圧延前鋼板
JPH02274844A (ja) 磁気特性の優れた電磁鋼板及びその製造方法
US3586545A (en) Method of making thin-gauge oriented electrical steel sheet
JPH04224624A (ja) 磁気特性に優れた電磁鋼板の製造方法
RU2701599C1 (ru) Способ производства высокопроницаемой анизотропной электротехнической стали
JP3474741B2 (ja) 磁気特性に優れた方向性電磁鋼板の製造方法
JP2784661B2 (ja) 高磁束密度薄手一方向性電磁鋼板の製造方法
EP0585956A1 (en) Thick grain-oriented electrical steel sheet exhibiting excellent magnetic properties
JPH03111516A (ja) 方向性電磁鋼板の製造方法