JPS5989457A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5989457A
JPS5989457A JP19891882A JP19891882A JPS5989457A JP S5989457 A JPS5989457 A JP S5989457A JP 19891882 A JP19891882 A JP 19891882A JP 19891882 A JP19891882 A JP 19891882A JP S5989457 A JPS5989457 A JP S5989457A
Authority
JP
Japan
Prior art keywords
oxide film
polycrystalline silicon
film
region
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19891882A
Other languages
Japanese (ja)
Inventor
Koichi Yamazaki
幸一 山崎
Yutaka Okada
豊 岡田
Kenji Kaneko
金子 憲二
Keizo Matsumoto
松本 圭三
Takahiro Okabe
岡部 隆博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP19891882A priority Critical patent/JPS5989457A/en
Publication of JPS5989457A publication Critical patent/JPS5989457A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve an insulation between a polycrystalline silicon layer and a metallic electrode, and to prevent a short circuit by forming an oxidation- resisting film to the upper section of polycrystalline silicon, independently oxidizing only a side wall section and thickly forming only the oxide film on the side wall section of the polycrystalline silicon. CONSTITUTION:A high-concentration N type region 2, a P type region 3 as a channel stopper, an N type epitaxial layer 4, an isolation oxide film 5, a high- concentration N type region 6 for extracting a collector and a P type region 7 as a base region are formed on a P type semiconductor substrate 1. A polycrystalline silicon layer 8 as a region for extracting an emitter, an oxide film 9 and a nitride film 10 are formed. The nitride film 10, the oxide film 9 and the silicon 8 are patterned, and an emitter electrode and a collector electrode are formed. An oxide film 11 is formed through oxidation, an emitter region 12 is formed through heat treatment, and the base region 7 is exposed. The film thickness of an upper section and a side section can be controlled because the oxide film 9 and 11 can be formed through separate processes.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、多結晶シリコンを用いた自己整合法によ多形
成した半導体装置の製造方法に係シ、特に従来問題とな
っていたショートを防止するのに好適な半導体装置の製
造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of manufacturing a multi-layered semiconductor device using a self-alignment method using polycrystalline silicon, and in particular, to prevent short circuits, which have been a problem in the past. The present invention relates to a method of manufacturing a semiconductor device suitable for manufacturing.

〔従来技術〕[Prior art]

高速な半導体装置を得るために半導体装置の微細化が行
なわれておシ、効率的に微細化するためにマスク合せの
不要な種々の自己整合法が提案されている。例えば■p
、3Tr1nsBctions on EDvol E
D−27A 8 August 1980  で発表さ
れている自己整合法は第1図に示すように、半導体基板
1に分離用酸化膜2を形成し、ペース領域3を形成し、
エミッタ領域および配線となる高不純物濃度の多結晶シ
リコン層4を形成し、次に酸化膜5を酸化あるいはCV
D法で形成し、バターニングを行い同図(a)のような
断面構造を形成する。
Semiconductor devices are being miniaturized in order to obtain high-speed semiconductor devices, and various self-alignment methods that do not require mask alignment have been proposed in order to efficiently miniaturize the devices. For example ■p
, 3Tr1nsBctions on EDvol E
D-27A 8 August 1980, the self-alignment method, as shown in FIG. 1, forms an isolation oxide film 2 on a semiconductor substrate 1, forms a space region 3,
A polycrystalline silicon layer 4 with a high impurity concentration is formed as an emitter region and wiring, and then an oxide film 5 is oxidized or CVD
It is formed by the D method and patterned to form a cross-sectional structure as shown in FIG.

次に酸化を行い多結晶シリコン4とベース領域3を酸化
し酸化膜7,8を形成する。このとき、多結晶シリコン
は高不純物濃度であるため、ペース領域3に比べて酸化
速度が早くなシ、酸化膜7は厚く、酸化膜8は薄く形成
される。この酸化工程中に多結晶シリコンを拡散源とし
てエミッタ拡散層6を形成し同図(b)のような断面を
得る。次に全面のエツチングを行い、自己整合法にょシ
ベース領域上の酸化膜8を完全に除去する。次にイオン
打込みによシ高濃度ペース層9を形成し、金属電極10
を形成して同図(C)に示す断面構造となる。
Next, oxidation is performed to oxidize polycrystalline silicon 4 and base region 3 to form oxide films 7 and 8. At this time, since polycrystalline silicon has a high impurity concentration, the oxidation rate is faster than that of the space region 3, and the oxide film 7 is formed thick and the oxide film 8 is formed thin. During this oxidation step, an emitter diffusion layer 6 is formed using polycrystalline silicon as a diffusion source to obtain a cross section as shown in FIG. 2(b). Next, the entire surface is etched to completely remove the oxide film 8 on the base region using the self-alignment method. Next, a high concentration paste layer 9 is formed by ion implantation, and a metal electrode 10 is formed.
is formed, resulting in a cross-sectional structure shown in FIG.

この方法はエミッタとベースコンタクトが自己整合で形
成できるために微細化に有効である。更にベースコンタ
クトがエミッタ周辺近傍に形成でき、ベース抵抗が減小
するため高速素子を得るのに優れた方法である。しかし
、多結晶シリコン4と金属電極10間を絶縁する酸化膜
の膜厚d3が、同図(b)で示した酸化膜7の膜厚d1
と酸化膜8の膜厚d2の差d3=d、−d2と薄くなる
ために絶縁不良やショートが発生しゃすい。また、金属
電極10とエミッタ拡散層6との距離は、前に述べた薄
い酸化膜厚と拡散層6の横方向拡散長との差となるため
、非常に小さくなシショートが発生しやすく、トランジ
スタのエミッタ、ベース間ショート不良が発生し易いと
いう大きな欠点があった。
This method is effective for miniaturization because the emitter and base contacts can be formed in self-alignment. Furthermore, since the base contact can be formed near the emitter periphery and the base resistance is reduced, this is an excellent method for obtaining high-speed devices. However, the film thickness d3 of the oxide film insulating between the polycrystalline silicon 4 and the metal electrode 10 is different from the film thickness d1 of the oxide film 7 shown in FIG.
Since the difference between the thickness d2 of the oxide film 8 and the thickness d3 of the oxide film 8 is d3=d, -d2, insulation defects and short circuits are likely to occur. Furthermore, since the distance between the metal electrode 10 and the emitter diffusion layer 6 is the difference between the thin oxide film thickness mentioned earlier and the lateral diffusion length of the diffusion layer 6, very small shorts are likely to occur. A major drawback was that short-circuits between the emitter and base of the transistor were likely to occur.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、拡散層、多結晶シリコン層と金属電極
の絶縁をよくし、ショートを完全に防止できる自己整合
法による半導体装置の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device using a self-alignment method that can improve the insulation between a diffusion layer, a polycrystalline silicon layer, and a metal electrode, and completely prevent short circuits.

〔発明の概要〕[Summary of the invention]

前に述べたように、多結晶シリコンと金属電極のショー
トが発生する原因は、多結晶シリコン側壁部の酸化膜厚
が薄いことであシ、多結晶シリコン側壁部の酸化膜を厚
く形成することによシ解決可能である。このことよシ、
多結晶シリコン側壁部の酸化膜だけを厚く形成するため
に、多結晶シリコン上部に耐酸化性膜を形成し、側壁部
のみを独立に酸化できる製造方法を発明した。
As mentioned earlier, the cause of short circuits between polycrystalline silicon and metal electrodes is the thin oxide film on the polycrystalline silicon sidewalls, and it is important to form a thick oxide film on the polycrystalline silicon sidewalls. It is solvable. This is it,
In order to form a thick oxide film only on the polycrystalline silicon sidewalls, we have invented a manufacturing method in which an oxidation-resistant film is formed on top of the polycrystalline silicon and only the sidewalls can be oxidized independently.

その工程は次の通υである。The process is as follows.

多結晶シリコンを用いた自己整合法による半導体装置に
おいて、多結晶シリコン成長後に酸化膜を形成する工程
、窒化膜を形成する工程、窒化膜、酸化膜、多結晶シリ
コンをバターニングする工程、窒化膜をマスクとして多
結晶シリコンの側壁を酸化する工程を含むものである。
In a semiconductor device using a self-alignment method using polycrystalline silicon, a process of forming an oxide film after growing polycrystalline silicon, a process of forming a nitride film, a process of buttering a nitride film, an oxide film, and polycrystalline silicon, a nitride film This process includes the step of oxidizing the sidewalls of polycrystalline silicon using the mask as a mask.

更に上記窒化膜のかわシに耐酸化性膜を用いることがで
きる。
Further, an oxidation-resistant film can be used to replace the nitride film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の第1の実施例を第2図によシ説明する。 A first embodiment of the present invention will be explained below with reference to FIG.

第2図は本発明によるnpn(pnp)トランジスタを
形成するための工程を示している。
FIG. 2 shows a process for forming an npn (pnp) transistor according to the present invention.

p(n)型半導体基板1の上に選択的に高濃度n(p)
影領域2を形成し、チャネルストッパとなるI)(n)
影領域3を形成し、n(p)型のエピタキシャル層4を
形成し、分離用酸化膜5を形成し、コレクタ取出し用高
濃度n(p)影領域6を形成し、ベース領域となるp(
n)型領域7を形成する。この領域7を形成するまでの
工程は、ここでは絶縁物分離法の場合を示したが、接合
分離法等の他の方法で形成してもよい。次にエミッタ取
シ出し用領域となる多結晶シリコン層8を2000〜4
000人程度形成する。形成で領域8の形成にはn(1
))形のドープされた多結晶シリコン層を堆積させるか
、あるいはイオン打込等によシネ鈍物を導入してもよい
。次にエミッタ取出し用の多結晶シリコン層の上に酸化
膜9を3000人程度形成する。ここで酸化膜9は、多
結晶シリコン層を酸化するか、あるいはCVD法によっ
て形成しても良い。この酸化膜は後述する様に、エミッ
タとベース電極間の絶縁膜となるものである。
Selectively high concentration n(p) on p(n) type semiconductor substrate 1
I)(n) forms a shadow region 2 and becomes a channel stopper
A shadow region 3 is formed, an n(p) type epitaxial layer 4 is formed, an isolation oxide film 5 is formed, a high concentration n(p) shadow region 6 for extracting the collector is formed, and a p (
n) forming a type region 7; Although the steps up to the formation of this region 7 are performed using an insulator separation method, they may be formed using other methods such as a junction separation method. Next, the polycrystalline silicon layer 8, which will become the emitter extraction area, is
Approximately 000 people will be formed. In the formation of region 8, n(1
)) type doped polycrystalline silicon layer may be deposited or a cine blunt may be introduced, such as by ion implantation. Next, an oxide film 9 of about 3000 layers is formed on the polycrystalline silicon layer for taking out the emitter. Here, the oxide film 9 may be formed by oxidizing a polycrystalline silicon layer or by a CVD method. As will be described later, this oxide film serves as an insulating film between the emitter and base electrodes.

次に窒化膜10を500〜2000A程度形成する。Next, a nitride film 10 having a thickness of about 500 to 2000 A is formed.

ここで窒化膜のかわシに耐酸化性膜を用いてもよい。こ
の工程までの断面図を第2図(a)に示す。
Here, an oxidation-resistant film may be used to replace the nitride film. A cross-sectional view up to this step is shown in FIG. 2(a).

次に、同図(b)の様に窒化膜10.酸化膜9、多結晶
シリコン8をパターニングし、エミッタ電極、コレクタ
電極を形成する。
Next, as shown in FIG. 2(b), the nitride film 10. The oxide film 9 and polycrystalline silicon 8 are patterned to form an emitter electrode and a collector electrode.

次に、酸化を行う。この酸化工程では、窒化膜10が存
在するために、多結晶シリコン層8の側面とベース領域
7の露出部のみが酸化され、2000〜5000人福度
の酸化膜11が形成できる。
Next, oxidation is performed. In this oxidation step, since the nitride film 10 is present, only the side surfaces of the polycrystalline silicon layer 8 and the exposed portions of the base region 7 are oxidized, and an oxide film 11 having a thickness of 2,000 to 5,000 can be formed.

この酸化工程中あるいは酸化後の適尚な熱処理によシ、
多結晶シリコンを拡散源としてエミッタ領域12を形成
する。このときの断面を同図(C)に示す。
By appropriate heat treatment during or after this oxidation process,
Emitter region 12 is formed using polycrystalline silicon as a diffusion source. The cross section at this time is shown in the same figure (C).

次に、窒化膜10をマスクとして、ドライエツチング等
の異方性エツチングによシ酸化膜のエツチングを行い、
ベース領域7を露出させる。このときの断面を同図(d
)に示す。図のように多結晶シリコン8の上部は酸化膜
9によシ、側部は酸化膜11によシ絶縁される。上述し
た様に、酸化膜9と11は別の工程によシ形成できる為
、上部と側部の酸化膜厚を独立に制御できる。
Next, using the nitride film 10 as a mask, the silicon oxide film is etched by anisotropic etching such as dry etching.
The base region 7 is exposed. The cross section at this time is shown in the same figure (d
). As shown in the figure, the upper part of the polycrystalline silicon 8 is insulated by an oxide film 9, and the side part is insulated by an oxide film 11. As described above, since the oxide films 9 and 11 can be formed in separate steps, the thickness of the oxide films on the top and sides can be controlled independently.

次に、ベース取出部にイオン打込を行い高濃度p(n)
領域13を形成し、窒化膜10を除去し多結晶シリコン
層のコンタクトを取るために酸化膜を選択的に除去し、
コンタクトホール14を形成し、金属電極15を形成し
て完成する。完成後の断面図を同図(e)に示す。以上
のように本発明では、簡単な工程を追加することによシ
、多結晶シリコンを絶縁するための酸化膜厚の上部と側
部を独立に制御でき、完成時に膜厚が薄くならないとい
う利点がある。このため多結晶シリコン層8およびエミ
ッタ拡散層12と金属電極15との距離を上部、側部独
立に大きくできるため、完全にショートを防止できると
いう効果がある。
Next, ions are implanted into the base extraction part to obtain a high concentration p(n).
forming a region 13, removing the nitride film 10 and selectively removing the oxide film to make contact with the polycrystalline silicon layer;
A contact hole 14 is formed and a metal electrode 15 is formed to complete the process. A cross-sectional view after completion is shown in figure (e). As described above, the present invention has the advantage that by adding a simple process, the top and side parts of the oxide film thickness for insulating polycrystalline silicon can be independently controlled, and the film thickness does not become thinner when completed. There is. Therefore, the distance between the polycrystalline silicon layer 8 and the emitter diffusion layer 12 and the metal electrode 15 can be increased independently in the upper and side parts, which has the effect of completely preventing short circuits.

次に本発明の第2の実施例を第3図によシ説明する。第
3図は本発明によるnpn (pnp))ランジスタを
形成するための工程を示しているgp(n)形半導体基
板1、n(I))形高濃度埋込層2.1)(n)形チャ
ネルストッパ3、n (1))形エピタキシャル層4、
分離用酸化膜5、コレクタ取出し用n(p)形高濃度層
6、p (n)形ベース層7の形成は第3図と同じであ
る。次に300〜1500人程度の酸化膜形成0を形成
し、エミッタ領域を選択的に除去する。次にn(p)形
の多結晶シリコンを2000〜4000人程度堆積させ
る形成あるいは多結晶シリコン堆積後イオン打込み等に
よシネ鈍物を導入してn(l形多結晶シリコン層8を形
成する。次に多結晶シリコン層の上部に酸化膜9を30
00人程度酸化あるいはCVD法による堆積等によシ形
成する。次に窒化膜10を500〜2000人程度形成
する形成こで窒化膜のかわシに耐酸化性膜を用いてもよ
い。またこれまでの工程途中の熱処理によシ多結晶シリ
コンを拡散源としてエミッタ領域12が形成できる。こ
こでエミッタ領域12は、酸化膜100のパターニング
の後にイオン打込等によって形成してもよい。この工程
までの断面図を同図(a)に示す。
Next, a second embodiment of the present invention will be explained with reference to FIG. FIG. 3 shows the steps for forming an npn (pnp)) transistor according to the present invention.gp(n) type semiconductor substrate 1, n(I) type heavily doped buried layer 2.1)(n) type channel stopper 3, n (1)) type epitaxial layer 4,
The formation of the isolation oxide film 5, the collector extraction n(p) type high concentration layer 6, and the p(n) type base layer 7 is the same as in FIG. Next, an oxide film of about 300 to 1500 layers is formed, and the emitter region is selectively removed. Next, an n(p) type polycrystalline silicon layer 8 is formed by depositing about 2,000 to 4,000 layers of n(p) type polycrystalline silicon, or by introducing a cine blunting material by ion implantation etc. after depositing the polycrystalline silicon. .Next, an oxide film 9 is formed on the top of the polycrystalline silicon layer for 30 minutes.
It is formed by oxidation or deposition by CVD method. Next, the nitride film 10 is formed by about 500 to 2000 people.An oxidation-resistant film may be used as the base of the nitride film. Furthermore, the emitter region 12 can be formed by using the polycrystalline silicon as a diffusion source through the heat treatment during the process up to now. Here, the emitter region 12 may be formed by ion implantation or the like after patterning the oxide film 100. A cross-sectional view up to this step is shown in Figure (a).

次に、エミッタ取出し領域、コレクタ取出し領域を決め
るバターニング工程において、窒化膜10、酸化膜9、
多結晶シリコン8を選択的に除去する。また多結晶シリ
コン層は1000〜3000人程度のオーバー形成チン
グを行い酸化膜9および窒化膜10がひさし状となるよ
うにする。このときの断面図を同図(b)に示す。
Next, in a patterning step to determine the emitter extraction region and the collector extraction region, the nitride film 10, the oxide film 9,
Polycrystalline silicon 8 is selectively removed. Further, the polycrystalline silicon layer is over-formed by about 1,000 to 3,000 times so that the oxide film 9 and the nitride film 10 form an eaves shape. A cross-sectional view at this time is shown in the same figure (b).

次に酸化を行う。この酸化工程では、多結晶シリコン上
部は窒化膜によシ酸化されず、多結晶シリコン層の側部
およびベース領域上のみが酸化され、2000人〜50
00人程度形成化膜102゜101が形成できる。この
ときの断面を同図(C)に示す。
Next, oxidation is performed. In this oxidation process, the upper part of the polycrystalline silicon is not oxidized by the nitride film, and only the sides and base region of the polycrystalline silicon layer are oxidized.
About 00 people can form a film 102°101. The cross section at this time is shown in the same figure (C).

次に、ドライエツチング等の異方性エツチングを用いて
、窒化膜10をマスクとして酸化膜のエツチングを行い
酸化膜101を除去する。この時の断面を同図(d)に
示す。
Next, the oxide film is etched using anisotropic etching such as dry etching using the nitride film 10 as a mask, and the oxide film 101 is removed. The cross section at this time is shown in FIG. 2(d).

次に、イオン打込みによシ高濃度ペース領域13を形成
し窒化膜10を除去し、多結晶シリコンにコンタクトを
取るために選択的に酸化膜を除去し、金属電極15を形
成して完成する。完成断面図を同図(e)に示す。以上
のように本発明によれば、多結晶シリコン層8と金属電
極15との絶縁は、上部は酸化膜9(より、側部は酸化
膜102によシ行なわれておシ、酸化膜9,102の膜
厚は独立に制御することができ、完成時に膜厚が薄くな
尾ないために、完全にショートを防止できる。
Next, a high concentration pace region 13 is formed by ion implantation, the nitride film 10 is removed, the oxide film is selectively removed to make contact with the polycrystalline silicon, and a metal electrode 15 is formed to complete the process. . A completed cross-sectional view is shown in figure (e). As described above, according to the present invention, the polycrystalline silicon layer 8 and the metal electrode 15 are insulated by the oxide film 9 on the upper part (and the oxide film 102 on the side parts). , 102 can be controlled independently, and since the film thicknesses are not too thin when completed, short circuits can be completely prevented.

またエミッタ拡散層12と金属電極15間はマスクによ
シ適正な距離を保つことができるためにショートを防止
できるという太き表効果がある。
Furthermore, since an appropriate distance can be maintained between the emitter diffusion layer 12 and the metal electrode 15 using a mask, there is a thick surface effect in that short circuits can be prevented.

次に本発明の第3の実施例を第4図により説明する。第
4図は本発明によるnpn (1)11)) トランジ
スタを形成するための工程を示している。
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 4 shows the steps for forming an npn(1)11)) transistor according to the invention.

p(n)形半導体基板1、n(1))形高濃度埋込層2
、p(n)形チャネルストッパ3、n(1))形エピタ
キシャル層4、分離用酸化膜5、コレクタ取出し用n(
p)形高濃度層6、I) (n)形ベース層7の形成は
第3図と同じである。次に300〜1500 形成度の
酸化膜100を形成し、500〜2000人程度窒化膜
2形成を形成する。ここで窒化膜のかわりに耐酸化性膜
を用いてもよい。この工程までの断面を同図(a)に示
す。
p(n) type semiconductor substrate 1, n(1) type high concentration buried layer 2
, p(n) type channel stopper 3, n(1) type epitaxial layer 4, isolation oxide film 5, collector extraction n(
The formation of the p) type high concentration layer 6 and the I) (n) type base layer 7 is the same as in FIG. Next, an oxide film 100 with a thickness of 300 to 1,500 is formed, and a nitride film 2 of about 500 to 2,000 is formed. Here, an oxidation-resistant film may be used instead of the nitride film. A cross section up to this step is shown in FIG.

次にエミッタ領域、コレクタ取出し領域のパターニング
を行い窒化膜200、酸化膜100を選択的に除去する
。次にエミッタ拡散層12をイオン打込により形成し、
2000〜4000人程度の多結晶シ形成ン層8を堆積
させる。ここでエミッタ領域12の形成は多結晶シリコ
ンからの拡散でも形成できる。このときの断面を(b)
に示す。
Next, the emitter region and the collector extraction region are patterned, and the nitride film 200 and oxide film 100 are selectively removed. Next, an emitter diffusion layer 12 is formed by ion implantation,
A polycrystalline silicon layer 8 of about 2,000 to 4,000 layers is deposited. Here, the emitter region 12 can also be formed by diffusion from polycrystalline silicon. The cross section at this time is (b)
Shown below.

次に酸化あるいはCVD法によ、り3000人程度の酸
化膜9を形成し、500〜2000人程度の窒化膜形成
を形成する。ここで窒化膜のかわシに耐酸化性膜を用い
てもよい。このときの断面を同図(C)に示す。
Next, by oxidation or CVD, an oxide film 9 of about 3,000 layers is formed, and a nitride film of about 500 to 2,000 layers is formed. Here, an oxidation-resistant film may be used to replace the nitride film. The cross section at this time is shown in the same figure (C).

次に、エミッタ領域をおおうように多結晶シリコンのパ
ターニングを行い窒化膜10、酸化膜9、多結晶シリコ
ン8を選択的に除去した後の断面を(d)に示す。次に
酸化を行う。窒化膜10,200が存在するために多結
晶シリコン層8の側部のみが酸化され2000〜500
0A程度の酸化膜102が形成される。このときの断面
を同図(e)に示す。
Next, a cross section after patterning polycrystalline silicon so as to cover the emitter region and selectively removing nitride film 10, oxide film 9, and polycrystalline silicon 8 is shown in FIG. Next, oxidation is performed. Due to the presence of the nitride films 10 and 200, only the sides of the polycrystalline silicon layer 8 are oxidized and
An oxide film 102 of about 0 A is formed. A cross section at this time is shown in FIG.

次に窒化膜の除去を行い、酸化膜100の除去を行い、
イオン打込により高濃度ベース領域13を形成し、多結
晶シリコン層から金属電極を取出す為にコンタクト部の
酸化膜を除去し、金属電極15を形成してnpn )ラ
ンジスタが完成する。
Next, the nitride film is removed, the oxide film 100 is removed,
A heavily doped base region 13 is formed by ion implantation, the oxide film at the contact portion is removed to take out the metal electrode from the polycrystalline silicon layer, and a metal electrode 15 is formed to complete the npn) transistor.

これを同図(f)に示す。以上のように本発明によれば
、多結晶シリコン8と金属電極15の絶縁は、上部は酸
化膜9によシ、側部は酸化膜102により行なわれ、酸
化膜9,102は独立に形成制御できる利点があるため
、ショートを完全に防止することができる。
This is shown in the same figure (f). As described above, according to the present invention, the polycrystalline silicon 8 and the metal electrode 15 are insulated by the oxide film 9 on the upper part and the oxide film 102 on the side parts, and the oxide films 9 and 102 are formed independently. Since it has the advantage of being controllable, short circuits can be completely prevented.

次に本発明の第4の実施例を第5図によシ説明する。第
5図は本発明を用いて、I”L(integrated
 工njection Logic)を形成するための
工程を示している。この製造工程の大部分は先に説明し
た実施例3と同じであるので、ここでは相違点について
のみ詳しく説明する。
Next, a fourth embodiment of the present invention will be explained with reference to FIG. FIG. 5 shows the I"L (integrated
1 shows a process for forming an injection logic. Since most of this manufacturing process is the same as in Example 3 described above, only the differences will be described in detail here.

p(n)形基板1、n(1))形高濃度埋込層2、エビ
タキンヤル層4、分離用酸化膜5の形成は第3の実施例
と同一である。次にI2L のインジェクタ°およびペ
ース領域となるp(n)膨拡散層70.71を形成する
。次に酸化膜100、窒化膜200を形成した後の断面
を同図(a)に示す。次に多結晶シリコン8、酸化膜9
、窒化膜101コレクタ拡散層12を形成しパターニン
グを行う。
The formation of the p(n) type substrate 1, the n(1) type high-concentration buried layer 2, the epitaxial layer 4, and the isolation oxide film 5 is the same as in the third embodiment. Next, p(n) swelling diffusion layers 70 and 71, which will become the injector and pace regions of I2L, are formed. Next, a cross section after forming an oxide film 100 and a nitride film 200 is shown in FIG. Next, polycrystalline silicon 8, oxide film 9
, a nitride film 101 and a collector diffusion layer 12 are formed and patterned.

ここで拡散層70.71で形成される横形トランジスタ
のペース領域をおおうようにパターニングを行う。この
ときの断面を同図(b)に示す。次に酸化を行い多結晶
シリコン層の側壁に酸化膜102を形成した後の断面を
同図(C)に示す。次に窒化膜10.200.酸化膜1
0′0の除去を行った後の断面を同図(d)に示す。次
にイオン打込みにより高濃度ペース領域72を形成し、
金属電極15゜16を形成して完成する。このときの断
面を同図(e)に示す。以上のように12L  もnp
n)ランジスタと同様に形成でき、多結晶シリコンと金
属電極とのショートを防止できる。
Here, patterning is performed so as to cover the space region of the lateral transistor formed by the diffusion layers 70 and 71. The cross section at this time is shown in FIG. Next, a cross section after oxidation is performed to form an oxide film 102 on the sidewalls of the polycrystalline silicon layer is shown in FIG. Next, nitride film 10.200. Oxide film 1
The cross section after removing 0'0 is shown in FIG. 4(d). Next, a high concentration pace region 72 is formed by ion implantation,
Metal electrodes 15 and 16 are formed to complete the process. A cross section at this time is shown in FIG. As above, 12L is also np
n) It can be formed in the same way as a transistor, and short circuits between polycrystalline silicon and metal electrodes can be prevented.

次に本発明の第5の実施例を第6図に示す。これは第1
の実施例でI”Lを形成した場合であり、酸化膜50を
形成し、これをマスクとしてインジェクタおよびベース
層70.71を形成する以外は、第1の実施例と同様で
あり、1はp(n)形基板、2はn(p)形高濃度埋込
層、4はn (p)形エピタキシャル層、5は分離用酸
化膜、8は多結晶シリコン、9.11は酸化膜、15.
16は金属電極、72は高濃度p(n)形ベース層であ
る。第1の実施例と同様に多結晶シリコンと金属電極の
ショートを防止できる。
Next, a fifth embodiment of the present invention is shown in FIG. This is the first
This is the case where I''L is formed in Example 1, and is the same as Example 1 except that the oxide film 50 is formed and the injector and base layers 70 and 71 are formed using this as a mask. p (n) type substrate, 2 is n (p) type high concentration buried layer, 4 is n (p) type epitaxial layer, 5 is isolation oxide film, 8 is polycrystalline silicon, 9.11 is oxide film, 15.
16 is a metal electrode, and 72 is a high concentration p(n) type base layer. Similar to the first embodiment, short circuits between the polycrystalline silicon and the metal electrode can be prevented.

次に本発明の第6の実施例を第7図に示す。これは第2
の実施例でI2L  を形成した場合であり、インジェ
クタおよびベース拡散層となるI)(n)膨拡散層70
.71を形成する以外は第2の実施例と同様であシ、多
結晶シリコンと金属電極のショートを防止できる。
Next, a sixth embodiment of the present invention is shown in FIG. This is the second
This is the case where I2L is formed in the embodiment of I) (n) swelling diffusion layer 70 which becomes the injector and base diffusion layer.
.. The second embodiment is the same as the second embodiment except that 71 is formed, and a short circuit between the polycrystalline silicon and the metal electrode can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、多結晶シリコ
ン層の上部と側部の酸化膜厚を独立に制御することが可
能であシ、また酸化膜形成時の膜厚と完成時の膜厚の変
化を非常に小さくすることが可能であるので、プロセス
条件の広い範囲にわたって、ショートの発生がない自己
整合法による微細な半導体装置を容易に形成できるとい
う効果がある。
As described above, according to the present invention, it is possible to independently control the oxide film thickness on the top and side parts of the polycrystalline silicon layer, and also to Since it is possible to make the change in film thickness extremely small, there is an effect that a fine semiconductor device can be easily formed by a self-alignment method that does not cause short circuits over a wide range of process conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術での製造方法を示す断面図、第2図は
本発明の第1の実施例を示す断面図、第3図は本発明の
第2の実施例を示す断面図、第4図は本発明の第3の実
施例を示す断面図、第5図は本発明の第4の実施例を示
す断面図、第6図は本発明の第5の実施例を示す断面図
、第7図は本発明の第6の実施例を示す断面図である。 1・・・半導体基板、2・・・埋込層、3・・・チャネ
ルストッパ、4・・・エピタキシャル層、5,9,10
0゜101.102・・・酸化膜、6・・・コレクタ取
出し用拡散層、7,13・・・ベース拡散層、8・・・
多結晶シリコン、10,200・・・窒化膜、12・・
・エミツタ吊 2  図 (d、) (e) ■ 3  図 (叉) (b) 爾 3  n (1) (ご) ”fa  J  図 ■4図 (d) (e) 第 5  図 <b) Y 5 図 (cl) (e) 第 6 図 罵 7 図 第1頁の続き ■出願  人 日立マイクロコンピュータエンジニアリ
ング株式会社 小平市上水本町1479番地
FIG. 1 is a sectional view showing a manufacturing method according to the prior art, FIG. 2 is a sectional view showing a first embodiment of the present invention, and FIG. 3 is a sectional view showing a second embodiment of the present invention. 4 is a sectional view showing a third embodiment of the invention, FIG. 5 is a sectional view showing a fourth embodiment of the invention, and FIG. 6 is a sectional view showing a fifth embodiment of the invention. FIG. 7 is a sectional view showing a sixth embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Buried layer, 3... Channel stopper, 4... Epitaxial layer, 5, 9, 10
0゜101.102... Oxide film, 6... Diffusion layer for collector extraction, 7, 13... Base diffusion layer, 8...
Polycrystalline silicon, 10,200...Nitride film, 12...
・Emi-vine hanging 2 Fig. (d,) (e) ■ 3 Fig. (fork) (b) 3 n (1) (go) ”fa J Fig. ■ Fig. 4 (d) (e) Fig. 5<b) Y 5 Figure (cl) (e) Figure 6 7 Continuation of figure 1 ■ Applicant Hitachi Microcomputer Engineering Co., Ltd. 1479 Josui Honmachi, Kodaira City

Claims (1)

【特許請求の範囲】 1、多結晶シリコンを用いた自己整合法による半導体装
置において、多結晶シリコン成長後に酸化膜を形成する
工程、窒化膜を形成する工程、窒化膜、酸化膜、多結晶
シリコンをバターニングする工程、窒化膜をマスクとし
て多結晶シリコンの側壁を酸化する工程を含むことを特
徴とする半導体装置の製造方法。 2、上記窒化膜のかわシに耐酸化性膜を用いたことを特
徴とする特許請求の範囲第1項記載の半導体装置の製造
方法。 3、特許請求の範囲第1項記載のバターニング工程にお
いて窒化膜をひさし状に形成する工程、窒化膜をマスク
として多結晶シリコンの側壁を酸化する工程、窒化膜を
マスクとして酸化膜を除去する工程を含むことを特徴と
する半導体装置の製造方法。
[Claims] 1. In a semiconductor device using a self-alignment method using polycrystalline silicon, a step of forming an oxide film after growing polycrystalline silicon, a step of forming a nitride film, a nitride film, an oxide film, polycrystalline silicon 1. A method for manufacturing a semiconductor device, comprising the steps of: buttering the polycrystalline silicon; and oxidizing the sidewalls of polycrystalline silicon using a nitride film as a mask. 2. The method of manufacturing a semiconductor device according to claim 1, wherein an oxidation-resistant film is used as a base for the nitride film. 3. In the buttering step described in claim 1, a step of forming a nitride film in a canopy shape, a step of oxidizing the sidewall of polycrystalline silicon using the nitride film as a mask, and a step of removing the oxide film using the nitride film as a mask. 1. A method of manufacturing a semiconductor device, the method comprising the steps of:
JP19891882A 1982-11-15 1982-11-15 Manufacture of semiconductor device Pending JPS5989457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19891882A JPS5989457A (en) 1982-11-15 1982-11-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19891882A JPS5989457A (en) 1982-11-15 1982-11-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5989457A true JPS5989457A (en) 1984-05-23

Family

ID=16399116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19891882A Pending JPS5989457A (en) 1982-11-15 1982-11-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5989457A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229362A (en) * 1985-03-23 1986-10-13 ノーザン テレコム リミテッド Bipolar transistor and manufacture thereof
JPS63200568A (en) * 1987-01-30 1988-08-18 テキサス インスツルメンツ インコーポレイテツド Bipolar transistor employing cmos technology and manufacture of the same
US4803174A (en) * 1984-12-20 1989-02-07 Mitsubishi Denki Kabushiki Kaisha Bipolar transistor integrated circuit and method of manufacturing the same
JPH0199257A (en) * 1987-09-14 1989-04-18 Motorola Inc Manufacture of bipolar semiconductor device in silicide contact
JPH01165168A (en) * 1987-09-26 1989-06-29 Samsung Semiconductor & Teleommun Co Ltd Manufacture of bipolar transistor
US4933295A (en) * 1987-05-08 1990-06-12 Raytheon Company Method of forming a bipolar transistor having closely spaced device regions
US5064773A (en) * 1988-12-27 1991-11-12 Raytheon Company Method of forming bipolar transistor having closely spaced device regions
US5516709A (en) * 1993-11-22 1996-05-14 Nec Corporation Method of manufacturing bipolar transistor with reduced numbers of steps without increasing collector resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128286A (en) * 1977-04-12 1978-11-09 Philips Nv Method of producing semiconductor
JPS56114368A (en) * 1980-02-13 1981-09-08 Mitsubishi Electric Corp Manufacture of semiconductor ic device
JPS56129371A (en) * 1980-03-12 1981-10-09 Mitsubishi Electric Corp Manufacture of semiconductor ic device
JPS5740975A (en) * 1980-08-25 1982-03-06 Toshiba Corp Manufacture for semiconductor device
JPS57122571A (en) * 1981-01-22 1982-07-30 Toshiba Corp Manufacture of semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128286A (en) * 1977-04-12 1978-11-09 Philips Nv Method of producing semiconductor
JPS56114368A (en) * 1980-02-13 1981-09-08 Mitsubishi Electric Corp Manufacture of semiconductor ic device
JPS56129371A (en) * 1980-03-12 1981-10-09 Mitsubishi Electric Corp Manufacture of semiconductor ic device
JPS5740975A (en) * 1980-08-25 1982-03-06 Toshiba Corp Manufacture for semiconductor device
JPS57122571A (en) * 1981-01-22 1982-07-30 Toshiba Corp Manufacture of semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803174A (en) * 1984-12-20 1989-02-07 Mitsubishi Denki Kabushiki Kaisha Bipolar transistor integrated circuit and method of manufacturing the same
JPS61229362A (en) * 1985-03-23 1986-10-13 ノーザン テレコム リミテッド Bipolar transistor and manufacture thereof
JPS63200568A (en) * 1987-01-30 1988-08-18 テキサス インスツルメンツ インコーポレイテツド Bipolar transistor employing cmos technology and manufacture of the same
US4933295A (en) * 1987-05-08 1990-06-12 Raytheon Company Method of forming a bipolar transistor having closely spaced device regions
JPH0199257A (en) * 1987-09-14 1989-04-18 Motorola Inc Manufacture of bipolar semiconductor device in silicide contact
JPH01165168A (en) * 1987-09-26 1989-06-29 Samsung Semiconductor & Teleommun Co Ltd Manufacture of bipolar transistor
US5064773A (en) * 1988-12-27 1991-11-12 Raytheon Company Method of forming bipolar transistor having closely spaced device regions
US5516709A (en) * 1993-11-22 1996-05-14 Nec Corporation Method of manufacturing bipolar transistor with reduced numbers of steps without increasing collector resistance

Similar Documents

Publication Publication Date Title
JPH10294463A (en) Trench dmos and its manufacture
JPH05206451A (en) Mosfet and its manufacture
US4045249A (en) Oxide film isolation process
JPS5989457A (en) Manufacture of semiconductor device
JPS63207177A (en) Manufacture of semiconductor device
JPS5923475B2 (en) Method for forming electrodes for semiconductor devices
JPS5911644A (en) Manufacture of semiconductor device
JPS5856436A (en) Manufacture of semiconductor device
JPS603157A (en) Manufacture of semiconductor device
JPS6188543A (en) Manufacture of semiconductor device
JPH0377376A (en) Manufacture of semiconductor device
JPS63215069A (en) Semiconductor device and manufacture thereof
JPH03155639A (en) Manufacture of semiconductor device
JPS60235460A (en) Semiconductor device
JPS5969946A (en) Semiconductor integrated circuit and its manufacture
JPS6386476A (en) Manufacture of semiconductor integrated circuit device
JPS58180062A (en) Manufacture of semiconductor device
JPH02148847A (en) Manufacture of semiconductor device
JPS61147575A (en) Manufacture of semiconductor device
JPH04100239A (en) Manufacture of bipolar transistor
JPS61239664A (en) Manufacture of semiconductor device
JPS60189236A (en) Production of semiconductor device
JPH0294633A (en) Manufacture of bipolar transistor
JPS5835970A (en) Manufacture of semiconductor device
JPS5984463A (en) Semiconductor device and manufacture thereof