JPS61239664A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61239664A
JPS61239664A JP8080885A JP8080885A JPS61239664A JP S61239664 A JPS61239664 A JP S61239664A JP 8080885 A JP8080885 A JP 8080885A JP 8080885 A JP8080885 A JP 8080885A JP S61239664 A JPS61239664 A JP S61239664A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
nitride film
si3n4
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8080885A
Other languages
Japanese (ja)
Inventor
Takayuki Kamiya
孝行 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8080885A priority Critical patent/JPS61239664A/en
Publication of JPS61239664A publication Critical patent/JPS61239664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a device having the high degree of integration and the large peak inverse voltage of a base-collector junction by isolating and forming an impurity diffusion region in a self-alignment manner to a thick oxide film and adjusting and determining a space between both the impurity diffusion region and the oxide film by impurity diffusion length to the inside from the end section of a poly Si film. CONSTITUTION:SiO2 2, Si3N4 3, non-added poly Si 4 and Si3N4 5 are laminated on an Si substrate 1, and the layers 5-3 are removed selectively. The surface is coated with Si3N4 6, and left only on the side surfaces of the layers 5-3 through RIE. An insulating isolation film 7 in required thickness and a biting section 8 are shaped through oxidation. Only Si3N4 6 is removed by utilizing the difference of film thickness. B is diffused in length longer than length up to the biting section 8 from the end section of exposed poly Si 4. Si3N4 5 is eliminated, and non-added poly Si 4 is taken away selectively through wet type etching. Ions are implanted by an Si3N4 mask 3, and a base layer 10 is formed in a self-alignment manner to the insulating isolation film 7. According to the constitution, the base layer and the insulating isolation layer are separated only by a distance of the minimum possible of a demand, thus preventing the lowering of the withstanding voltage value of a base-collector junction, then also obviating the deterioration of the degree of integration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に高集積でか
つペース・コレクタ接合の逆方向耐圧が大きいバイポー
ラ型集積回路装置の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a bipolar integrated circuit device that is highly integrated and has a high reverse breakdown voltage of a pace-collector junction. be.

〔従来の技術〕[Conventional technology]

従来、バイポーラ型集積回路装置では、素子の集積度を
向上させるために、トランジスタのペース領域は厚い絶
縁分離酸化膜の側壁に接して形成するか、又は集積度は
犠牲にしてベース領域と絶縁分離領域とを互に離して形
成する。いずれの場合にも絶縁分離酸化膜形成のための
ホトレジスト工程トペース領域形成のためのホトレジス
ト工程が必要であった。
Conventionally, in bipolar integrated circuit devices, in order to improve the degree of integration of devices, the transistor space region is formed in contact with the sidewalls of a thick isolation oxide film, or is isolated from the base region at the expense of the degree of integration. The regions are separated from each other. In either case, a photoresist process for forming an insulating isolation oxide film and a photoresist process for forming a paste region are required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のベース領域の形成方法のうち、ベース領
域を厚い絶縁分離酸化膜の側壁に接して形成する方法は
、コレクタ・ペース接合の特性が制限され、特に接合の
逆方向耐圧値を低下させるという欠点がありだ。
Among the conventional base region formation methods described above, the method of forming the base region in contact with the sidewall of a thick insulating isolation oxide film limits the characteristics of the collector-paste junction, and particularly reduces the reverse breakdown voltage value of the junction. There is a drawback.

また単にベース領域と絶縁分離領域とを互に離して形成
する方法は、位置ぎめ精度の余裕を見る必要から両者の
間の距離を必要以上に離すことになり集積度の点で望ま
しくなかった。
Furthermore, the method of simply forming the base region and the insulating isolation region apart from each other is undesirable in terms of the degree of integration because the distance between the two is increased more than necessary because of the necessity of ensuring a margin for positioning accuracy.

j      〔問題点を解決するだめの手段〕本発明
の半導体装置の製造方法は、−導電型半導体基板上の一
生面に二酸化シリコン膜、第1の窒化シリコン膜、多結
晶シリコン膜および第2の窒化シリコン膜を順次被着形
成し、所定領域の前記第2の窒化シリコン膜、多結晶シ
リコン膜および第1の窒化シリコン膜をエツチングして
除去する工程と、前記第2の窒化シリコン膜よ秒も膜厚
の薄い第3の窒化シリコン膜を全面に被着形成する工程
と、前記第3の窒化シリコン膜よりも膜厚のエツチング
により除去して、前記第1の窒化シリコン膜、多結晶シ
リコン膜および第2の窒化シリコン膜の端部側面に残す
工程と、前記第1と第2および第3の窒化シリコン膜を
マスクとして酸化を行ない厚い酸化膜を形成する工程と
、前記第3の窒化シリコン膜をエツチング除去し、露出
した前記多結晶シリコン膜の端部側面から所定の距離ま
で多結晶シリコン膜内に不純物を拡散する工程と、前記
第2の窒化シリコン膜並びに多結晶シリコン膜の不純物
の拡散さ牡ていない部分およびその直下の第1の窒化シ
リコン膜を順次エツチング除去する工程と、前記不純物
を拡散した多結晶シリコン膜をマスクとしてイオン注入
法により逆導電型不純物領域を形成する工程を含んで構
成される。
[Means for Solving the Problems] The method for manufacturing a semiconductor device of the present invention includes: - forming a silicon dioxide film, a first silicon nitride film, a polycrystalline silicon film and a second silicon film on the entire surface of a conductive type semiconductor substrate; a step of sequentially depositing a silicon nitride film and etching and removing the second silicon nitride film, the polycrystalline silicon film, and the first silicon nitride film in a predetermined region; The first silicon nitride film, polycrystalline silicon a step of leaving the silicon nitride film on the end side of the second silicon nitride film, a step of performing oxidation using the first, second and third silicon nitride films as masks to form a thick oxide film, and a step of forming a thick oxide film on the third nitride film. etching away the silicon film and diffusing impurities into the polycrystalline silicon film to a predetermined distance from the exposed end side surface of the polycrystalline silicon film; and impurities in the second silicon nitride film and the polycrystalline silicon film. a step of sequentially etching away the undiffused portion and the first silicon nitride film immediately below it, and a step of forming an impurity region of opposite conductivity type by ion implantation using the polycrystalline silicon film into which the impurity has been diffused as a mask. It consists of:

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図ないし第4図は本発明の一実施例の工程順縦断面
図である。
1 to 4 are vertical sectional views in the order of steps of an embodiment of the present invention.

まずシリコン基板1に500Xの膜厚の二酸化シリコン
膜2を形成し、続いて100OXの膜厚の第1の窒化シ
リコス膜3.4000Aの膜厚のノンドープ多結晶シリ
コン膜4.100OXの膜厚の第2の窒化シリコン膜5
を順次被着形成する。続いてフォトエツチング法を用い
て絶縁分離酸化膜を形成すべき領域の前記第2の窒化シ
リ」ン艙5、ノンドープ多結晶シリコン膜4、第1の窒
化シリコに除去する(第1図)。  □ 次に全面に300Xの膜厚の第3の窒化シリコン膜6を
形成した後、反応性イオンエツチングを用いて平坦部の
第3の窒化シリコン膜のみを除去し、第1の窒化シリコ
ン膜3とノンドープ多結晶シリコン膜4および第3の窒
化シリコン膜5の端部の側面にのみ第3の窒化シリコン
膜6を残す。続い成する。この時第1の窒化シリコン膜
下部には酸      、化膜の食い込み部分8が生ず
る。またノンドープ多結晶シリコン膜4は窒化シリコン
膜でおおわれているため全く酸化されない(第2図)。
First, a silicon dioxide film 2 with a thickness of 500X is formed on a silicon substrate 1, followed by a first silicon nitride film 3 with a thickness of 100X, a non-doped polycrystalline silicon film 4 with a thickness of 4000A, and a film with a thickness of 100X. Second silicon nitride film 5
are sequentially deposited and formed. Subsequently, the second silicon nitride layer 5, the non-doped polycrystalline silicon film 4, and the first silicon nitride layer in the region where the insulating isolation oxide film is to be formed are removed using a photoetching method (FIG. 1). □ Next, after forming a third silicon nitride film 6 with a thickness of 300X on the entire surface, only the third silicon nitride film on the flat part is removed using reactive ion etching, and the first silicon nitride film 3 is removed. The third silicon nitride film 6 is left only on the side surfaces of the end portions of the non-doped polycrystalline silicon film 4 and the third silicon nitride film 5. Continuing to accomplish. At this time, an encroaching portion 8 of the oxide film is formed under the first silicon nitride film. Furthermore, since the non-doped polycrystalline silicon film 4 is covered with a silicon nitride film, it is not oxidized at all (FIG. 2).

次に第2の窒化シリコン膜と第3の窒化シリコン膜との
膜厚の差を利用して、300Aの膜厚め窒化シリコン膜
6を除去するのに必要なエツチングを行ない、第3の窒
化シリコン膜6のみを除去する。続いて露出したノンド
ープ多結晶シリコン膜4の端部から内部にホウ素(B)
を拡散する。ここでノンドープ多結晶シリコンの端部か
ら内部へのホウ素の拡散距離は、絶縁分離酸化膜の食い
込み、部分8よりも長くしておくことが望ましい(第3
図)。
Next, by utilizing the difference in film thickness between the second silicon nitride film and the third silicon nitride film, etching necessary to remove the 300A thick silicon nitride film 6 is performed, and the third silicon nitride film is removed. Only film 6 is removed. Subsequently, boron (B) is injected into the interior from the exposed end of the non-doped polycrystalline silicon film 4.
to spread. Here, it is desirable that the diffusion distance of boron from the end of the non-doped polycrystalline silicon into the interior is longer than the part 8 where the insulating isolation oxide film bites (third
figure).

さらに第2の窒化シリコン膜5を除去し、続いて湿式エ
ツチングにより、多結晶シリコン中のボロン含有量の違
いによる選択性を利用したエッチ6一 ングにより、多結晶シリコン膜4を選択的に除去し、さ
らにその下の第1の窒化シリコン膜3を除去する。続い
てホウ素を含む多結晶シリコン膜9およびその下の窒化
シリコン膜3をマスクとしてイオン注入を行ないベース
領域10を絶縁分離酸化膜に対して自己整合的に形成す
る(第4図)。
Further, the second silicon nitride film 5 is removed, and then the polycrystalline silicon film 4 is selectively removed by wet etching, which takes advantage of the selectivity due to the difference in boron content in the polycrystalline silicon. Then, the first silicon nitride film 3 underneath is removed. Subsequently, ions are implanted using the polycrystalline silicon film 9 containing boron and the silicon nitride film 3 thereunder as a mask to form a base region 10 in self-alignment with the isolation oxide film (FIG. 4).

このようにして本発明の方法によれば、ベース領域を絶
縁分離領域に対してセルファラインで形成できるので、
両者の間を必要最小限の距離だけ離し、ベース・コレク
タ接合の耐圧値の低下を防ぐことができる。
In this manner, according to the method of the present invention, the base region can be formed in a self-aligned manner with respect to the isolation region.
By separating the two by the minimum necessary distance, it is possible to prevent the breakdown voltage value of the base-collector junction from decreasing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、不純物拡散領域を厚い酸
化膜に対して自己整合的に離隔して形成することができ
る。また両者の間の距離は多結晶シリコン膜の端部から
多結晶シリコン膜内部へのホウ素の拡散距離で決定され
調整することが可能1     である。従って半導体
基板と不純物拡散領域との良好な接合耐圧値を実現する
ことができる。また不純物拡散領域と厚い酸化膜を接し
て形成する方法に比べて集積度を大きく低下させる事は
ない。
As explained above, in the present invention, the impurity diffusion region can be formed so as to be self-aligned and separated from the thick oxide film. Further, the distance between the two is determined by the diffusion distance of boron from the edge of the polycrystalline silicon film into the interior of the polycrystalline silicon film, and can be adjusted. Therefore, a good junction breakdown voltage value between the semiconductor substrate and the impurity diffusion region can be achieved. Further, compared to a method in which a thick oxide film is formed in contact with an impurity diffusion region, the degree of integration is not significantly lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例の主要工程を説
明するための工程順縦断面図である。 1・・・・・・シリコン基板、2・・・・・・二酸化シ
リコン膜、3・・・・・・第1の窒化シリコン膜、4・
・・・・・ノンドープ多結晶シリコン膜、5・・・・・
・第2の窒化シリコン膜、6・・・・・・第3の窒化シ
リコン膜、7・・・・・・絶縁分離酸化膜、訃・・・・
・絶縁分離酸化膜の食い込み部分、9・・・・・・ホウ
素を含む多結晶シリコン膜、10・・・・・・ベース領
域。 −へ 婉     殊 ℃               ト 皆        ★
1 to 4 are vertical cross-sectional views in order of steps for explaining the main steps of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Silicon dioxide film, 3... First silicon nitride film, 4...
...Non-doped polycrystalline silicon film, 5...
・Second silicon nitride film, 6... Third silicon nitride film, 7... Insulating isolation oxide film, Death...
- Biting portion of insulating isolation oxide film, 9... polycrystalline silicon film containing boron, 10... base region. −He婉special℃ TOMINA ★

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板上の一主面に二酸化シリコン膜、第
1の窒化シリコン膜、多結晶シリコン膜および第2の窒
化シリコン膜を順次被着形成し、所定領域の前記第2の
窒化シリコン膜、多結晶シリコン膜および第1の窒化シ
リコン膜をエッチングして除去する工程と、前記第2の
窒化シリコン膜よりも膜厚の薄い第3の窒化シリコン膜
を全面に被着形成する工程と、前記第3の窒化シリコン
膜を異方性のエッチング法により除去して、前記第1の
窒化シリコン膜、多結晶シリコン膜および第2の窒化シ
リコン膜の端部側面に残す工程と、前記第1と第2およ
び第3の窒化シリコン膜をマスクとして酸化を行ない厚
い酸化膜を形成する工程と、前記第3の窒化シリコン膜
をエッチング除去し、露出した前記多結晶シリコン膜の
端部側面から所定の距離まで多結晶シリコン膜内部に不
純物を拡散する工程と、前記第2の窒化シリコン膜並び
に多結晶シリコン膜の不純物の拡散されていない部分お
よびその直下の第1の窒化シリコン膜を順次エッチング
除去する工程と、前記不純物を拡散した多結晶シリコン
膜をマスクとしてイオン注入法により逆導電型不純物領
域を形成する工程を含み、前記逆導電型不純物領域と厚
い酸化膜とが所定距離だけ自己整合的に離れて形成され
ることを特徴とする半導体装置の製造方法。
A silicon dioxide film, a first silicon nitride film, a polycrystalline silicon film, and a second silicon nitride film are sequentially deposited on one main surface of a semiconductor substrate of one conductivity type, and the second silicon nitride film is formed in a predetermined region. , a step of etching and removing the polycrystalline silicon film and the first silicon nitride film, and a step of depositing a third silicon nitride film thinner than the second silicon nitride film over the entire surface; removing the third silicon nitride film by an anisotropic etching method to leave it on the end side surfaces of the first silicon nitride film, the polycrystalline silicon film, and the second silicon nitride film; and a step of performing oxidation using the second and third silicon nitride films as masks to form a thick oxide film, and removing the third silicon nitride film by etching and removing a predetermined portion from the side surface of the exposed end of the polycrystalline silicon film. a step of diffusing impurities into the polycrystalline silicon film to a distance of and forming an opposite conductivity type impurity region by ion implantation using the polycrystalline silicon film into which the impurity is diffused as a mask, the opposite conductivity type impurity region and the thick oxide film are self-aligned by a predetermined distance. A method of manufacturing a semiconductor device, characterized in that the semiconductor device is formed separately.
JP8080885A 1985-04-16 1985-04-16 Manufacture of semiconductor device Pending JPS61239664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8080885A JPS61239664A (en) 1985-04-16 1985-04-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8080885A JPS61239664A (en) 1985-04-16 1985-04-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61239664A true JPS61239664A (en) 1986-10-24

Family

ID=13728765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8080885A Pending JPS61239664A (en) 1985-04-16 1985-04-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61239664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149669A (en) * 1987-03-06 1992-09-22 Seiko Instruments Inc. Method of forming an isolation region in a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149669A (en) * 1987-03-06 1992-09-22 Seiko Instruments Inc. Method of forming an isolation region in a semiconductor device

Similar Documents

Publication Publication Date Title
US4693782A (en) Fabrication method of semiconductor device
US5232861A (en) Method of manufacturing semiconductor device including a bipolar transistor
JP2002299620A (en) Method for manufacturing silicon carbide semiconductor device
JPH05206451A (en) Mosfet and its manufacture
US4615746A (en) Method of forming isolated island regions in a semiconductor substrate by selective etching and oxidation and devices formed therefrom
JPH0437580B2 (en)
JPS63257231A (en) Manufacture of semiconductor device
JPS5989457A (en) Manufacture of semiconductor device
JPS61239664A (en) Manufacture of semiconductor device
JPS60226120A (en) Electrode leading method in semiconductor device
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPH06177376A (en) Manufacture of mos field-effect semiconductor device
JPH0298939A (en) Manufacture of semiconductor device
JPH01246874A (en) Bipolar transistor and manufacture thereof
JPS6173371A (en) Semiconductor device and manufacture thereof
KR0147255B1 (en) Method for manufacturing mosfet
JPH05304261A (en) Fabrication of semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JPS60235460A (en) Semiconductor device
JPH04297037A (en) Semiconductor device and manufacture thereof
JPH0377376A (en) Manufacture of semiconductor device
JPS61147575A (en) Manufacture of semiconductor device
JPH05259446A (en) Manufacture of semiconductor device
JPS63283060A (en) Dielectric isolation type semiconductor device and its manufacture
JPH04112544A (en) Semiconductor device and manufacture