JPS5970588A - Manufacture of laminate ceramic thermal head - Google Patents
Manufacture of laminate ceramic thermal headInfo
- Publication number
- JPS5970588A JPS5970588A JP57181115A JP18111582A JPS5970588A JP S5970588 A JPS5970588 A JP S5970588A JP 57181115 A JP57181115 A JP 57181115A JP 18111582 A JP18111582 A JP 18111582A JP S5970588 A JPS5970588 A JP S5970588A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- insulator
- thermal head
- green sheets
- raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000012212 insulator Substances 0.000 claims abstract description 39
- 239000004020 conductor Substances 0.000 claims abstract description 25
- 238000010030 laminating Methods 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000005498 polishing Methods 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 2
- 238000004026 adhesive bonding Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 21
- 239000000843 powder Substances 0.000 abstract description 11
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 239000002002 slurry Substances 0.000 abstract description 5
- 238000005266 casting Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 12
- 239000010409 thin film Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/345—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors
Landscapes
- Electronic Switches (AREA)
- Laminated Bodies (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はセラミックサーマルヘッドに関し、特に絶縁体
材料2発熱体拐料、導電体材料を一体化して焼結したセ
ラミックサーマルヘッドの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic thermal head, and more particularly to a method for manufacturing a ceramic thermal head in which an insulating material, a heating element material, and a conductive material are integrated and sintered.
従来、感熱記録用の→)”−マルヘッドは厚膜法。Conventionally, →)”-maru heads for thermal recording use a thick film method.
薄膜法あるいは薄膜、 IjV膜混合法などによって、
セラミック基板上に形成し、実用化されている。By thin film method or thin film, IjV film mixed method, etc.
It is formed on a ceramic substrate and has been put into practical use.
従来使用されているサーマルヘッドは厚膜型。The conventionally used thermal head is a thick film type.
薄膜型それぞれに長所欠点を有していた。すなわち厚膜
型の場合には、大きな寸法のものが比較的安価にできる
が、11イ、極2発熱体をJ’F膜印刷法で行うため、
解像度に1rlJ限があり、8トツド/龍が限界であっ
た。さらに厚11に法によって解像度を−にげようとす
る吉、配線パターンを微細化する必要があるため、導体
として金を使用しなけねばならず、コス1−が非”R’
+ &こ高くなる欠点ももっていた。さらに多層配線を
高密度に行うため、歩留が悪く、コスklの原因になっ
ていた。Each thin film type had advantages and disadvantages. In other words, in the case of a thick film type, large dimensions can be made relatively inexpensively, but since the 2-pole heating element is produced using the J'F film printing method,
There was a resolution limit of 1rlJ, and the limit was 8 tod/dragon. Furthermore, in order to reduce the resolution by reducing the thickness to 11, it is necessary to miniaturize the wiring pattern, so gold must be used as a conductor, and the cost 1 is non-"R".
+ It also had the disadvantage of being expensive. Furthermore, since multilayer wiring is performed at a high density, the yield is poor and the cost is increased.
さらに厚膜型では、発熱体の抵抗バラツキが印刷の厚み
コントロールが困難なため大きくなり、抵抗のバラツキ
として非常に良いものでも±20優程度あり、ヘッドと
して使用した時の記録品質にも問題があった。Furthermore, with the thick film type, the resistance variation of the heating element becomes large because it is difficult to control the printing thickness, and even a very good resistance variation is about ±20, which causes problems with the recording quality when used as a head. there were.
また薄膜法によるサーマルヘッドは、微細なパターン形
成ができるため、解像度は良くすることができるが、大
きな寸法のものが作りに<<、製造工程が複雑なためコ
ストが高くなり、さらに形成した表面層が薄いため耐摩
耗性に問題があった。In addition, thermal heads using the thin film method can form fine patterns, so resolution can be improved, but large dimensions are required to make them, and the manufacturing process is complicated, resulting in high costs. There was a problem with wear resistance because the layer was thin.
また薄膜法による→ノ′−マルヘッドは多層配線がむず
かしく、多層配線層にピンホールの発生による歩留の低
下や、多層配線の配線抵抗が高くなり、素子の発熱、駆
動回路などに問題があった。In addition, multilayer wiring is difficult for →normal heads using the thin film method, which reduces yield due to the occurrence of pinholes in the multilayer wiring, increases the wiring resistance of the multilayer wiring, and causes problems such as element heat generation and drive circuits. Ta.
本発明はこれらの問題点を全て解決するもので、小型で
コストが低く、解像Jiの没れた信頼性の高いサーマル
ヘッドの製造方法を提供するものである。The present invention solves all of these problems and provides a method for manufacturing a thermal head that is small, low cost, and has low resolution Ji and high reliability.
すなわち本発明は絶縁体生シートおよび抵抗体生シート
を形成する工程と絶縁体生シート上に導体層を形成する
工程と抵抗体生シートを所定の形状に切断し、前記導体
層を形成した絶縁体生シート面に接着し抵抗体層を形成
する工程と、抵抗体層と導体層を形成した絶縁体生シー
トおよび絶縁体生シートを積層圧着し積層体を形成する
工程と前記積層体を所定の寸法に切断した後、焼結する
工程と焼結した積層体に外部取出電極を付ける工程と該
焼結体の所定の面を研摩する工程を有することを11♀
r;々吉する積層セラミックサーマルヘッドの製造方法
である。That is, the present invention includes a process of forming a raw insulator sheet and a raw resistor sheet, a process of forming a conductor layer on the raw insulator sheet, a process of cutting the raw resistor sheet into a predetermined shape, and an insulator with the conductor layer formed thereon. A step of adhering to the surface of the body sheet to form a resistor layer, a step of laminating and pressing the insulator raw sheet on which the resistor layer and the conductor layer have been formed and the insulator raw sheet to form a laminate, and a step of forming the laminate into a predetermined shape. 11 ♀
r; This is a method for manufacturing a multilayer ceramic thermal head.
サーマルヘッドは均一な形と抵抗値を持つ抵抗体を微細
な間隔で1000以上横1列に並べなくてはならず、さ
らに抵抗と同じ数のリード線を同じ密度で配線する必を
がある。しかもこれらの抵抗体およびリード線のいずれ
か一つでも不良が発生するとヘッドとしては使用できな
くなる。A thermal head must have more than 1,000 resistors of uniform shape and resistance value arranged in a horizontal row at minute intervals, and must also have the same number of lead wires as resistors at the same density. Moreover, if any one of these resistors or lead wires becomes defective, the head cannot be used.
本発明は絶縁体生シート上に抵抗体および導体を形成し
、しかも導体が外部に各層毎に出るように配線するこ吉
によって配線の密度を従来同一平面内で微細化していた
ものよりも実際的な配線密度を著しく向上させ、かつ配
線の信頼性を著しく向上さぜることができた。The present invention forms a resistor and a conductor on a raw insulator sheet, and furthermore, the conductor is wired to the outside in each layer.The density of the wiring is actually made finer than the conventional method in which the density of the wiring is made finer within the same plane. We were able to significantly improve the interconnect density and the reliability of the interconnect.
さらに抵抗体を生シートによって形成し1、厚み方向に
積層することによって発熱体層を形成するため抵抗層の
厚みを数十ミクロンの厚さまで薄くすることができる。Furthermore, since the heating element layer is formed by forming the resistor from raw sheets 1 and laminating them in the thickness direction, the thickness of the resistor layer can be reduced to several tens of microns.
その結果サーマルヘッドとしての解像度は薄膜型ヘッド
と同等具−Eにすることが可能となった。As a result, it became possible to make the resolution of the thermal head equivalent to that of the thin film type head.
また従来のサーマルヘッドでは厚膜型、薄膜型いずれの
方法によっても形成される抵抗体層の厚さが数千オンゲ
スト扇−ムから数十ミクロンであるため、耐摩耗性が悪
く、使用状態で抵抗体層が擦り切れてしまうことが多く
あった。In addition, in conventional thermal heads, the thickness of the resistor layer formed by either thick-film or thin-film methods ranges from several thousand on-guest fans to several tens of microns, resulting in poor wear resistance and poor usage conditions. In many cases, the resistor layer was worn out.
7このため従来のサーマルヘッドでは表面に耐摩耗性の
ガラス、Ta、0.などの耐摩耗層を数十ミクロンの厚
さに形成していた。7 For this reason, conventional thermal heads are coated with wear-resistant glass, Ta, 0. Abrasion-resistant layers such as these were formed to a thickness of several tens of microns.
しかし、これらの耐摩耗層を形成すると、抵抗・発熱体
からの熱が耐摩耗層に伝導する時横方向への熱の拡散が
厚み方向と同時に起るため、解像度を悪くする原因とな
っていた。However, when these wear-resistant layers are formed, when heat from the resistor/heating element is conducted to the wear-resistant layer, heat diffusion in the lateral direction occurs simultaneously in the thickness direction, which causes resolution to deteriorate. Ta.
このように従来のサーマルヘッドは、厚膜型。In this way, conventional thermal heads are thick-film type.
薄膜型、これらの混合型のいずれの方法によっても、そ
れぞれに問題点を含んでいた。Both the thin film method and the mixed method have their own problems.
本発明は従来占全く異なる構造により、これらの問題点
を解決し、量産性があり、高性能で低コストのザーマル
ー・ラドを提供するものである。The present invention solves these problems and provides a high-performance, low-cost thermal rad that can be mass-produced by using a structure that is completely different from the conventional one.
以下図面と実施例により、本発明の詳細な説明する。The present invention will be described in detail below with reference to drawings and examples.
第1図は本発明の製造方法によって作製したサーマルヘ
ッドの41り造の一例を示す斜面図であり、1は表面に
露出している抵抗体層、2は絶縁体、3は外部から電気
信号を入力するため外部接続用のt!極を示している。FIG. 1 is a perspective view showing an example of the structure of a thermal head 41 manufactured by the manufacturing method of the present invention, in which 1 is a resistor layer exposed on the surface, 2 is an insulator, and 3 is an external electrical signal. t! for external connection to input ! It shows the pole.
この図で抵抗体】七輪縁体2は完全に一体化したセラミ
ックになっている。In this figure, the resistor 2 is made of completely integrated ceramic.
第2図は前記−リーーマルヘットの断面を図示したもの
で(a)は第1図の点線の部分で示した所で切断した断
面を表わし、(1))は同じく第1図の一点鎖線の部分
で切断[ッた(祈1f11を示1y−Cいる。第2図(
a)の1は抵抗体、2は絶縁体、第2図(b)の4は内
部導体を示している。Figure 2 shows a cross section of the above-mentioned legal head, where (a) shows the cross section taken along the dotted line in Figure 1, and (1)) also shows the dotted line in Figure 1. It was cut at the part (Prayer 1f11 is shown 1y-C. Figure 2 (
1 in a) is a resistor, 2 is an insulator, and 4 in FIG. 2(b) is an internal conductor.
第1図、第2図から明らかなように、本発明の構造によ
る」ノーーマルヘッドでは発熱抵抗体が、絶縁体の中に
埋め込すれた構造になっているため、抵抗体の摩耗は絶
縁体によって保護され、表面に耐摩耗層を設けなくても
、充分耐摩耗性のある構造となっている。また抵抗体の
大部分が絶縁体内に埋め込まれているため、抵抗体が断
紳状態になることが全くない構造になってりる。従って
熱の耐摩耗層による拡散がないため、抵抗体の厚さとほ
ぼ等しい解像度が得られる。さらに、従来のサーマルヘ
ッドでは抵抗体の内部に電流が流れて発熱する場合、抵
抗体に幅があり、その幅の中での抵抗体のjワみのバラ
ツキから発熱−耽が場所によって変化し、記録した像に
ムラが生ずることが多かっ5た。As is clear from FIGS. 1 and 2, in the normal head according to the structure of the present invention, the heating resistor is embedded in the insulator, so wear of the resistor is prevented by the insulation. It is protected by the body and has a sufficiently wear-resistant structure even without a wear-resistant layer on the surface. Furthermore, since most of the resistor is embedded within the insulator, the structure is such that the resistor never becomes disconnected. Therefore, since there is no diffusion of heat through the wear-resistant layer, a resolution approximately equal to the thickness of the resistor can be obtained. Furthermore, in conventional thermal heads, when current flows inside the resistor and generates heat, the resistor has a width, and the heat generation varies depending on the location due to the variation in the resistor's warp within that width. 5, unevenness often occurred in the recorded images.
本発明の構造によれば、抵抗体の厚み方向が表面に露出
した構造になっているため、同一ドソド内の熱は均一と
なり、濃度ムラも少くなった。さらに本発明のサーマル
ヘッドは後Zこ実施例の製造工程で詳しく述べるが、均
一な絶縁体生シート上に均一な抵抗体を抵抗体生シート
を張り付ける方法によって形成するため、抵抗体の厚さ
は数十ミクロンから数百ミクロンの厚さまで均一に形成
でき、絶縁体生シートも数十ミクロンから数百ミクロン
まで均一に形成できるため抵抗体の厚さ、抵抗体のピッ
チを非常に細かくすることができ、記録した時の解像度
を従来の6〜8ドソド/闘から数十トッド/ mu 、
5飛躍的に良くするこきができる。According to the structure of the present invention, since the resistor has a structure in which the thickness direction is exposed at the surface, the heat within the same dot becomes uniform and density unevenness is reduced. Furthermore, as will be described in detail later in the manufacturing process of this embodiment, in the thermal head of the present invention, a uniform resistor is formed by a method of pasting a resistor raw sheet on a uniform insulator raw sheet, so that the thickness of the resistor The thickness of the resistor can be uniformly formed from tens of microns to hundreds of microns, and the raw insulator sheet can be uniformly formed from tens of microns to hundreds of microns, so the thickness of the resistor and the pitch of the resistor can be made very fine. It is possible to increase the recording resolution from the conventional 6 to 8 tod/mu to several tens of tod/mu,
5. I can improve my skills dramatically.
次に本発明の製造方法を図面により説明する。Next, the manufacturing method of the present invention will be explained with reference to the drawings.
第3図は本発明の製造工程の工程図を示すものである。FIG. 3 shows a process diagram of the manufacturing process of the present invention.
第3図によって、本製造方法を説明すると、まず絶縁体
粉末および抵抗体粉末をそれぞれ有機ビヒクル中に分散
し、泥漿を作る。これらの泥漿をドクターブレードを用
いたキャスティング法により絶縁体生シートおよび抵抗
体生シートを作る。To explain this manufacturing method with reference to FIG. 3, first, an insulator powder and a resistor powder are each dispersed in an organic vehicle to form a slurry. A raw insulator sheet and a raw resistor sheet are made from these slurries by a casting method using a doctor blade.
この絶縁体生シートを所定の大きさに打抜き、導体ペー
ストを用い、導体パターンの印刷を行う。This raw insulator sheet is punched out to a predetermined size, and a conductive pattern is printed using conductive paste.
導体を形成した絶縁クリーンシート上に抵抗体生シート
を所定の形状にパンチングした後、絶縁生シートの所定
位飲にハリ付ける。After punching the resistor raw sheet into a predetermined shape on the insulating clean sheet on which the conductor has been formed, the raw insulating sheet is tightened at a predetermined position.
この様にして導体を形成し、なおかつ抵抗体を伺加した
絶縁体生シートを必要な枚数、および絶縁体生シートの
みのそれぞれを積層し、熱プレスによって圧着し、生積
層体を形成する。A conductor is formed in this manner, and a required number of insulator green sheets with resistors added thereto, as well as only the insulator green sheets, are laminated and pressed together using a hot press to form a green laminate.
生積層体を所定の形状に切断後、脱バインダ一工程を経
て焼結し、外部取出電極を焼伺けて、積層セラミックサ
ーマルヘッドとする。After the raw laminate is cut into a predetermined shape, it is sintered after a binder removal process, and the external electrodes are burnt out to form a laminated ceramic thermal head.
この様な製造方法によるため、絶縁生シートおよび抵抗
体生シートの膜厚は10ttm〜1000ノtnlと広
い範囲で生シートを形成することができるため、焼結後
の抵抗体の厚さ、となりの抵抗体との間隔を8μm〜8
00μIn吉広範囲に自由に選ぶこきができる。特に抵
抗体の厚さ、絶縁体の厚さを薄くすることによって、数
十トッド/rum 以、Jlの解像度を実現できる。Due to this manufacturing method, the film thickness of the insulating raw sheet and the resistor raw sheet can be formed in a wide range from 10 ttm to 1000 ktnl, so the thickness of the resistor after sintering, The distance between the resistor and the resistor is 8 μm to 8
00μInKichi You can freely choose from a wide range of options. In particular, by reducing the thickness of the resistor and the insulator, it is possible to achieve a resolution of several tens of tods/rum or more.
才た木製、造方法によって、抵抗体を4i−熱させるた
めに必要な配線を立体的に形成することができるため、
従来の配線の様な非常に高度な厚膜 ;、1.γ膜の技
術を用いることなく、信頼性良く、小型に歩留良(サー
マルヘッドを製造することができる。The wiring necessary for heating the resistor to 4i-heat can be formed three-dimensionally using the sophisticated wooden construction method.
Very advanced thick film like conventional wiring; 1. It is possible to manufacture a thermal head with high reliability, small size, and high yield without using γ film technology.
また第4図は本発明製造工程の”うち積M工程で積層す
る生シート((イ)〜(A1)を積層IImに示したも
ので、1は絶縁体生シート、2は導体、3は抵抗体生シ
ートを接着によって形成した抵抗体層を示している。ま
た生シート(イ)(ロ)(/l→(71)は絶縁生シー
トのみの層であり、生シー1−(ハ)〜悼)は抵抗体層
、導体層が形成され、ている絶縁生シートである。なお
生シー1−C→−・(力は必要に応じて、積層数を増減
して積層を行う。In addition, Figure 4 shows the green sheets ((A) to (A1) laminated in the lamination M step of the manufacturing process of the present invention in the lamination IIm, where 1 is an insulator green sheet, 2 is a conductor, and 3 is a lamination layer IIm). It shows a resistor layer formed by adhering raw resistor sheets. Also, raw sheets (A) (B) (/l → (71) are layers only of raw insulation sheets, and raw sheets 1-(C) 〜Mori) is an insulating raw sheet on which a resistor layer and a conductor layer are formed.The raw sheet 1-C→-・(The force is laminated by increasing or decreasing the number of laminated layers as necessary.
なお第4図は図を解り易くするために1素子当りの絶縁
体生シート部分を示しているが、実際に製造する豐合C
ス、第4図のパターンが平面上なこ多数回くり返された
パターン印刷し、一度の積層によって、数十ゲから数百
ヶの積層セラミックサーマルヘッドを作ることができる
。Note that Figure 4 shows the raw insulator sheet part per element to make the diagram easier to understand.
By printing a pattern in which the pattern shown in FIG. 4 is repeated many times on a plane, and laminating layers at once, it is possible to make a laminated ceramic thermal head of several tens to hundreds of pieces.
このように積層技術によって、サーマルヘッドを作ると
、−回の積層によ・って多数のサーマルヘッドを作るこ
とができるので、1ヶ当りの単価が従来方法よりも著し
く安価になり、敞産化も可能である。When a thermal head is made using lamination technology in this way, it is possible to make a large number of thermal heads by laminating layers several times, so the unit price per unit is significantly lower than that of conventional methods, and production costs are reduced. It is also possible to
次に本発明を実施例により詳&)1に説明する。Next, the present invention will be explained in detail by way of Examples &)1.
絶縁体材料として、アルミナ−結晶化ガラス混合物を使
用・した。アルミナ50wt%、ホウケイ酸鉛系結晶化
ガラス5Qwt%の粉末をボールミルで湿式混合した後
、濾過乾燥し、絶縁体粉末とした。An alumina-crystalline glass mixture was used as the insulator material. Powders of 50 wt% alumina and 5 Qwt% borosilicate lead crystallized glass were wet mixed in a ball mill, and then filtered and dried to obtain an insulating powder.
抵抗体材料としては酸化ルテニュウムー絶縁体混合物を
用いた。99.9%以上の純度を持つ酸化ルテニュウム
粉末3Qwt%と絶縁体粉末7owts を秤量後、湿
式混合し、濾過乾燥して抵抗体粉末とした。A ruthenium oxide insulator mixture was used as the resistor material. After weighing 3Qwt% of ruthenium oxide powder having a purity of 99.9% or more and 7owts of insulating powder, they were wet mixed, filtered and dried to obtain a resistor powder.
絶縁体粉末、抵抗体粉末をそれぞれ有機ビヒクル中に分
散し泥漿とし、これをドクターブレードを用いたキャス
ティング法により、膜厚が20μm〜500μmの絶縁
体生シートおよび抵抗体生シートを作製した。なお有機
ビヒクルのバイングーとしてはポリビニルブチラールを
使用し、溶媒は多価アルコールのエステルを用いた。The insulator powder and the resistor powder were each dispersed in an organic vehicle to form a slurry, and the slurry was cast using a doctor blade to produce an insulator green sheet and a resistor green sheet having a film thickness of 20 μm to 500 μm. Note that polyvinyl butyral was used as the organic vehicle, and polyhydric alcohol ester was used as the solvent.
絶縁体生シートを金型を用い、外形を打抜き、この上に
スクリーン印刷法により、銀−パラジウム合金のペース
トを用い配線パターンを印刷した。The outer shape of the raw insulator sheet was punched out using a mold, and a wiring pattern was printed thereon using a silver-palladium alloy paste by screen printing.
絶縁体生シート上に張り伺けた。It was attached to a raw insulator sheet.
このようにして作った抵抗体シートを張り付は導体を形
成した絶縁体生シートと導体の形成のみを行った絶縁生
シートおよび必要な場合は、スルーホールの形成のみの
絶縁体生シートなどを所定数金型に入れて積層、熱圧着
を行った。The resistor sheet made in this way is attached to a raw insulator sheet with conductors formed, a raw insulator sheet with only conductors formed, and, if necessary, a raw insulator sheet with only through holes formed. A predetermined number of them were placed in a mold, laminated, and thermocompression bonded.
積層の終った生積層体を5間×10闘の寸法に切断し、
500℃で脱バインダー後、800℃〜1000℃の温
度で煉結した。The raw laminate that has been laminated is cut into a size of 5 x 10 pieces,
After removing the binder at 500°C, it was condensed at a temperature of 800°C to 1000°C.
焼成の終った燐結積層体に外部IIv出電極電極付け、
感熱紙に接触する抵抗体の露出している面を鏡面に研摩
した後、リード線を取付はサーマルヘッド吉した。)
出来上ったサーマルヘッドをサーマルプリンタにセッl
−L、、i91作試験を行ったところ、[0ドツトA□
〜:30トツド/闘のN像度が得られ充分実用になり、
しかも従来のサーマルヘッドに比らべ、著しく改善され
たM:像度を示すこ吉がわかった。Attaching an external IIv output electrode to the phosphorized laminate after firing,
After polishing the exposed surface of the resistor in contact with the thermal paper to a mirror finish, the lead wires were attached to the thermal head. ) Set the completed thermal head on the thermal printer.
-L,, When I conducted the i91 production test, [0 dot A□
~: 30 Totsudo / The N image of the battle is obtained and it is sufficiently practical,
Moreover, compared to conventional thermal heads, it was found that M: image quality was significantly improved.
以上述べた様に本発明の製造方法によるfR層セラミッ
クサーマルヘッドは、従来のサーマルヘッドでは実現で
きない様な解像度で、小型高信頼化を実現し、かつ、量
産化が可能で、コストダウンもできる優れたサーマルヘ
ッドであることが明らかになった。As described above, the fR layer ceramic thermal head manufactured by the manufacturing method of the present invention has a resolution that cannot be achieved with conventional thermal heads, is compact and highly reliable, can be mass-produced, and can reduce costs. It turned out to be an excellent thermal head.
なお、本発明で抵抗発熱体としては酸化ルテニウム系の
発熱体を使用したが、この他にもタンタル系、パラジウ
ム系、ニッケル系などの抵抗体を使用しても同様の結果
が得られた。Although a ruthenium oxide based heating element was used as the resistance heating element in the present invention, similar results were obtained by using other resistive elements such as tantalum based, palladium based, nickel based, etc.
さらに導体さしても金、銀、白金、銅、ニッケルおよび
これらの合金を使用しても同様め結果が得られた。Furthermore, similar results were obtained using conductors such as gold, silver, platinum, copper, nickel, and alloys thereof.
WS1図は本発明の製造方法により作製した積層セラミ
ックサーマルヘッドの実施例を示す斜視図であり、第2
図は第1図に示した積層セラミックサーマルヘッドの断
面図を示し、(a)は第1図の破線部における断面、(
b)は第1図の一点鎖線部における断面を示す。
第3図は本発明の積層セラミックサーマルヘッドの製造
工程を示す図。
第4図は本発明の製造方法中の積層工程での生シートの
積層の順を示した図である。
各図において、1は抵抗体、2は絶縁体、3は外部取出
電極、4は内部導体を示している。
璃 1 図
第 2 図
第4図Figure WS1 is a perspective view showing an example of a multilayer ceramic thermal head manufactured by the manufacturing method of the present invention.
The figure shows a cross-sectional view of the multilayer ceramic thermal head shown in FIG.
b) shows a cross section taken along the dashed-dotted line in FIG. FIG. 3 is a diagram showing the manufacturing process of the laminated ceramic thermal head of the present invention. FIG. 4 is a diagram showing the order of stacking raw sheets in the stacking step in the manufacturing method of the present invention. In each figure, 1 is a resistor, 2 is an insulator, 3 is an external electrode, and 4 is an internal conductor. Li 1 Figure 2 Figure 4
Claims (1)
絶縁体生シート上に導体層を形成する工程と抵抗体生シ
ートを所定の形状に切断し、前記導体層を形成した絶縁
体生シート面に接着し抵抗体層を形成する工程と、抵抗
体層と導体層を形成した絶縁体生シートおよび絶縁体生
シートを積層原着し積層体を形成する工程と前記積層体
を所定の寸法をこ切断し、焼結する工程と焼結した積層
体に外部[反出電極を伺ける工専と該焼結体の所定の而
を研摩する工程を有することを特徴上する積層セラミッ
クサーマルヘッドの製造方法。Steps of forming an insulator raw sheet and a resistor raw sheet; a step of forming a conductor layer on the insulator raw sheet; and a step of cutting the resistor raw sheet into a predetermined shape and forming the conductor layer on the insulator raw sheet surface. a step of gluing the insulator layer and a conductor layer to form a resistor layer; a step of laminating the insulator raw sheet with the resistor layer and conductor layer formed thereon, and a step of laminating the insulator green sheet to form a laminate; and a step of forming the laminate into a predetermined size. A multilayer ceramic thermal head characterized by comprising a step of cutting and sintering the sintered body, a step of polishing a predetermined part of the sintered body, and a step of polishing a predetermined part of the sintered body. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57181115A JPS5970588A (en) | 1982-10-15 | 1982-10-15 | Manufacture of laminate ceramic thermal head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57181115A JPS5970588A (en) | 1982-10-15 | 1982-10-15 | Manufacture of laminate ceramic thermal head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5970588A true JPS5970588A (en) | 1984-04-21 |
Family
ID=16095105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57181115A Pending JPS5970588A (en) | 1982-10-15 | 1982-10-15 | Manufacture of laminate ceramic thermal head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5970588A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01307291A (en) * | 1988-06-06 | 1989-12-12 | Mitani Denshi Kogyo Kk | Manufacture of substrate mounting circuit using independent resistor |
JPH0433397A (en) * | 1990-05-30 | 1992-02-04 | Fujitsu Ltd | Manufacture of ceramic substrate |
-
1982
- 1982-10-15 JP JP57181115A patent/JPS5970588A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01307291A (en) * | 1988-06-06 | 1989-12-12 | Mitani Denshi Kogyo Kk | Manufacture of substrate mounting circuit using independent resistor |
JPH0433397A (en) * | 1990-05-30 | 1992-02-04 | Fujitsu Ltd | Manufacture of ceramic substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008218628A (en) | Laminate and its manufacturing method | |
JPS5923458B2 (en) | composite parts | |
JPS6296831A (en) | Heat flowmeter sensor and manufacture thereof | |
JPS5970588A (en) | Manufacture of laminate ceramic thermal head | |
JP3488811B2 (en) | Multilayer ceramic capacitors | |
JPH0419031B2 (en) | ||
EP0132615B1 (en) | Method of making a matrix print head | |
JPS5917227A (en) | Method of producing composite laminated ceramic part | |
JPH048236B2 (en) | ||
JP3642462B2 (en) | Manufacturing method of laminated parts | |
JPS5970589A (en) | Manufacture of laminate ceramic thermal head | |
JPH0563007B2 (en) | ||
JP2822811B2 (en) | Wiring structure of multilayer wiring board | |
JPS5983682A (en) | Ceramic thermal head | |
JPH0419032B2 (en) | ||
JP2000196393A (en) | Distributed constant noise filter and manufacture of the same | |
JPS6092697A (en) | Composite laminated ceramic part | |
JP3708796B2 (en) | Thick film resistor | |
JPH05152133A (en) | Green sheet for inductance component and inductance component using thereof | |
JPH0432733Y2 (en) | ||
JPS62265751A (en) | Hybrid integrated circuit device | |
JPS59132643A (en) | Resistor composite substrate | |
JPS6235253B2 (en) | ||
JPS5985778A (en) | Ceramic thermal head | |
JPS62169301A (en) | Temperature coefficient regulation of thick film resistance element |