JPH048236B2 - - Google Patents

Info

Publication number
JPH048236B2
JPH048236B2 JP57193893A JP19389382A JPH048236B2 JP H048236 B2 JPH048236 B2 JP H048236B2 JP 57193893 A JP57193893 A JP 57193893A JP 19389382 A JP19389382 A JP 19389382A JP H048236 B2 JPH048236 B2 JP H048236B2
Authority
JP
Japan
Prior art keywords
resistor
conductor
thermal
ceramic body
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57193893A
Other languages
Japanese (ja)
Other versions
JPS5983683A (en
Inventor
Kazuaki Uchiumi
Juzo Shimada
Teruyuki Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57193893A priority Critical patent/JPS5983683A/en
Publication of JPS5983683A publication Critical patent/JPS5983683A/en
Publication of JPH048236B2 publication Critical patent/JPH048236B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/345Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors

Landscapes

  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 本発明はセラミツクサーマルヘツドに関し、特
に絶縁体材料、発熱体材料、導電体材料、熱伝導
材料を一体化して焼結したセラミツクサーマルヘ
ツドに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic thermal head, and more particularly to a ceramic thermal head in which an insulator material, a heating element material, an electric conductor material, and a heat conductive material are integrated and sintered.

従来、感熱記録用のサーマルヘツドは厚膜法、
薄膜法あるいは薄膜、厚膜混合法などによつて、
セラミツク基板上に形成し、実用化されている。
Traditionally, thermal heads for heat-sensitive recording have been produced using the thick film method.
By thin film method or thin film/thick film mixed method, etc.
It is formed on a ceramic substrate and has been put into practical use.

従来使用されているサーマルヘツドは厚膜型、
薄膜型それぞれに長所欠点を有していた。すなわ
ち厚膜型の場合には、大きな寸法のものが比較的
安価にできるが、電極、発熱体を厚膜印刷法で行
うため、解像度に制限があり、8ドツト/mmが限
界であつた。さらに厚膜法によつて解像度を上げ
ようとすると、配線パターンを微細化する必要が
あるため、導体として金を使用しなければなら
ず、コストが非常に高くなる欠点ももつていた。
さらに多層配線を高密度に行うため歩留が悪くコ
スト上昇の原因になつていた。
The thermal heads conventionally used are thick film type.
Each thin film type had advantages and disadvantages. In other words, in the case of the thick film type, large dimensions can be produced relatively inexpensively, but since the electrodes and heating elements are printed using a thick film printing method, the resolution is limited to 8 dots/mm. Furthermore, when attempting to increase the resolution using the thick film method, it is necessary to miniaturize the wiring pattern, which necessitates the use of gold as a conductor, which also has the disadvantage of extremely high costs.
Furthermore, high-density multilayer wiring leads to poor yields and increased costs.

さらに厚膜型では、発熱体の抵抗バラツキが印
刷の厚みコントロールが困難なため大きくなり、
抵抗のバラツキとして非常に良いものでも±20%
程度あり、ヘツドとして使用した時の、記録品質
にも問題があつた。
Furthermore, with thick film types, the resistance variation of the heating element becomes large because it is difficult to control the printing thickness.
Resistance variation is ±20% even if it is very good.
There were some problems with the recording quality when used as a head.

また薄膜法によるサーマルヘツドは、微細なパ
ターン形成ができるため、解像度は良く、するこ
とができるが、大きな寸法のものが作りにくく、
製造工程が複雑なため、コストが高くなり、さら
に形成した表面層が薄いため耐摩耗性に問題があ
つた。また薄膜法によるサーマルヘツドは多層配
線がむずかしく、多層配線層にピンホールの発生
による歩留の低下や多層配線の配線抵抗が高くな
り、素子の発熱、駆動回路などに問題があつた。
In addition, thermal heads using the thin film method can form fine patterns and have good resolution, but they are difficult to make with large dimensions.
The manufacturing process was complicated, resulting in high costs, and the thin surface layer formed caused problems in wear resistance. In addition, multilayer wiring is difficult for thermal heads manufactured using the thin film method, resulting in lower yields due to the occurrence of pinholes in the multilayer wiring, higher wiring resistance in the multilayer wiring, and problems with element heat generation and drive circuits.

本発明はこれらの問題点を全て解決するもの
で、小型でコストが低く、解像度の優れた、信頼
性の高いサーマルヘツドを提供するものである。
The present invention solves all of these problems and provides a thermal head that is small, low cost, has excellent resolution, and is highly reliable.

サーマルヘツドは均一な形と抵抗値を持つ抵抗
体を微細な間隔で1000ケ以上横1列に並べなくて
はならず、さらに、抵抗と同じ数のリード線を同
じ密度で配線する必要がある。しかもこれらの抵
抗体およびリード線のいずれか一つでも不良が発
生するとヘツドとしては使用できなくなる。
A thermal head must have at least 1,000 resistors with uniform shapes and resistance values arranged horizontally in a single row at minute intervals, and it must also have the same number of lead wires as resistors wired at the same density. . Furthermore, if any one of these resistors or lead wires becomes defective, it becomes unusable as a head.

また従来のサーマルヘツドでは厚膜型、薄膜型
いずれの方法によつても形成される抵抗体層の厚
さが数千オンダストロームから数十ミクロンであ
るため、耐摩耗性が悪く、使用状態で抵抗体層が
擦り切れてしまうことが多くあつた。
In addition, in conventional thermal heads, the thickness of the resistor layer formed by either thick-film or thin-film methods ranges from several thousand Å to several tens of microns, resulting in poor wear resistance and poor wear resistance. The resistor layer often wore out.

このため従来のサーマルヘツドでは表面に耐摩
耗性のガラス、Ta2O5などの耐摩耗層を数十ミク
ロンの厚さ形成していた。
For this reason, in conventional thermal heads, a wear-resistant layer of abrasion-resistant glass, Ta 2 O 5 , or the like is formed on the surface to a thickness of several tens of microns.

しかしこれらの耐摩耗層を形成すると抵抗発熱
体からの熱が耐摩耗層に伝導する時横方向への熱
の拡散が厚み方向と同時に起るため、解像度を悪
くする原因となつていた。
However, when these wear-resistant layers are formed, when heat from the resistance heating element is conducted to the wear-resistant layer, heat diffusion occurs in the lateral direction and in the thickness direction at the same time, which causes resolution to deteriorate.

このように従来のサーマルヘツドは、厚膜型、
薄膜型、これらの混合型のいずれの方法によつて
も、それぞれに問題点を含んでいた。
In this way, conventional thermal heads are thick film type,
Both the thin film method and the mixed method have their own problems.

本発明は従来と全く異なる構造により、これら
の問題点を解決し、量産性のある高性能の低コス
トサーマルヘツドを提供するものである。
The present invention solves these problems by using a structure completely different from conventional ones, and provides a high-performance, low-cost thermal head that can be mass-produced.

すなわち本発明は絶縁性セラミツク体内部に高
熱伝導体が1以上形成され、しかもそれぞれの高
熱伝導体の一部が該セラミツク体表面の一部分に
露出しており、また該セラミツク体内部には高熱
伝導体の数に応じて発熱抵抗体が形成され、前記
高熱伝導体と接続しており、さらに該高熱伝導体
の一部が露出している該セラミツク体表面とは別
の表面部分又は当該別の表面部分と該セラミツク
体の内部に導電体が形成されており前記発熱抵抗
体と導電体は該セラミツク体の表面又は内部で接
続していることを特徴とするセラミツクサーマル
ヘツドである。
That is, in the present invention, one or more high thermal conductors are formed inside an insulating ceramic body, a part of each high thermal conductor is exposed to a part of the surface of the ceramic body, and a high thermal conductor is formed inside the ceramic body. A heat generating resistor is formed according to the number of ceramic bodies, and is connected to the high heat conductor, and further includes a surface portion other than the surface of the ceramic body from which a part of the high heat conductor is exposed, or a surface portion of the other body. The ceramic thermal head is characterized in that a conductor is formed on the surface portion and inside the ceramic body, and the heating resistor and the conductor are connected on the surface or inside the ceramic body.

以下図面と実施例により本発明の詳細を説明す
る。
The details of the present invention will be explained below with reference to the drawings and examples.

第1図は本発明のサーマルヘツドの構造の実施
例を示す斜面図であり、1表面に露出している高
熱伝導体層、2は絶縁性セラミツク体、3は外部
から電気信号を入力するため外部接続用の電極を
示している。第2図は本発明サーマルヘツドの断
面を図示したものでaは第1図の点線で示した所
で切断した断面を表わし、bは同じく第1図の一
点鎖線で切断した断面を示している。第2図aの
1は高熱伝導体、2は絶縁性セラミツク体、3は
抵抗体、第2図bの4は内部導体を示している。
FIG. 1 is a perspective view showing an embodiment of the structure of a thermal head according to the present invention, in which 1 is a high heat conductor layer exposed on the surface, 2 is an insulating ceramic body, and 3 is for inputting electrical signals from the outside. Shows electrodes for external connections. FIG. 2 shows a cross section of the thermal head of the present invention, where a represents the cross section taken along the dotted line in FIG. 1, and b represents the cross section taken along the dashed line in FIG. . In FIG. 2a, 1 is a high heat conductor, 2 is an insulating ceramic body, 3 is a resistor, and 4 in FIG. 2b is an internal conductor.

第1図、第2図から明らかなように本発明の構
造によるサーマルヘツドでは発熱抵抗体と高熱伝
導体が、絶縁体の中に埋め込まれた構造になつて
おり、しかも高熱伝導体が表面に露出しているた
め、抵抗体の摩耗は全くなくしかも表面には絶縁
体によつて保護された熱伝導層が露出しているの
で表面に耐摩耗層を設けなくても、充分耐摩耗性
のある構造となつている。また抵抗体が金属絶縁
体内に埋め込まれているため、抵抗体が断線状態
になることが全くない構造になつている。従つて
熱の耐摩耗層による拡散がないため、高熱伝導体
の厚さとほぼ等しい解像度が得られる。さらに、
従来のサーマルヘツドでは抵抗体の内部に電流が
流れて発熱する場合、抵抗体に幅がありその幅の
中での抵抗体の厚みのバラツキから発熱量が場所
によつて変化し、記録した像にムラが生ずること
が多かつた。
As is clear from FIGS. 1 and 2, in the thermal head according to the structure of the present invention, the heating resistor and the high thermal conductor are embedded in the insulator, and the high thermal conductor is on the surface. Since the resistor is exposed, there is no wear on the resistor at all, and since the heat conductive layer protected by the insulator is exposed on the surface, it can be sufficiently wear resistant even without providing a wear resistant layer on the surface. It has a certain structure. Furthermore, since the resistor is embedded in a metal insulator, the structure is such that the resistor never becomes disconnected. Therefore, since there is no diffusion of heat through the wear-resistant layer, a resolution approximately equal to the thickness of the high thermal conductor can be obtained. moreover,
In conventional thermal heads, when current flows inside the resistor and generates heat, the amount of heat generated changes depending on the location due to the width of the resistor and variations in the thickness of the resistor within that width, resulting in the recorded image being There were many cases where unevenness occurred.

本発明の構造によれば、抵抗体の厚み方向が表
面に露出した構造になつているため、同一ドツト
内の熱は均一となり、濃度ムラも少くなつた。さ
らに本発明のサーマルヘツドは均一な絶縁体生シ
ート上に均一な抵抗体を形成しさらに、熱伝導層
を形成するため、表面に露出させる高熱伝導層の
厚さは抵抗値の値に左右されることなく、自由に
数ミクロンから数ミクロンの厚さまで均一に形成
でき、絶縁体生シートも数十ミクロンから数百ミ
クロンまで均一に形成できるため、高熱伝導体層
の厚さ、ピツチを非常に細かくすることができ、
記録した時の解像度を従来の6〜8ドツト/mmか
ら、数十ドツト/mmと飛躍的に良くすることがで
きる。
According to the structure of the present invention, since the thickness direction of the resistor is exposed at the surface, the heat within the same dot becomes uniform and density unevenness is reduced. Furthermore, since the thermal head of the present invention forms a uniform resistor on a uniform insulating raw sheet and also forms a heat conductive layer, the thickness of the highly heat conductive layer exposed on the surface depends on the resistance value. The thickness of the high thermal conductor layer can be formed uniformly from a few microns to a few hundred microns, and the thickness and pitch of the high thermal conductor layer can be extremely controlled. It can be made finely,
The recording resolution can be dramatically improved from the conventional 6 to 8 dots/mm to several tens of dots/mm.

第1、第2図に示した構造の製造方法は以下の
とおりである。
The method for manufacturing the structure shown in FIGS. 1 and 2 is as follows.

絶縁体材料として、アルミナ−結晶化ガラス混
合物を使用した。アルミナ50wt%、ホウケイ酸
鉛系結晶化ガラス50wt%の粉末をボールミルで
湿式混合した後、濾過乾燥し、絶縁体粉末とし
た。
An alumina-crystalline glass mixture was used as the insulator material. Powders of 50 wt% alumina and 50 wt% borosilicate lead crystallized glass were wet mixed in a ball mill, and then filtered and dried to obtain insulating powder.

抵抗体材料としては酸化ルテニユウム−絶縁体
混合物を用いた。99.9%以上の純度を持つ酸化ル
テニユウム粉末30wt%と絶縁体粉末70wt%を秤
量後湿式混合し、濾過乾燥して抵抗体粉末とし
た。
A ruthenium oxide-insulator mixture was used as the resistor material. 30wt% of ruthenium oxide powder with a purity of 99.9% or higher and 70wt% of insulator powder were weighed, wet-mixed, filtered and dried to obtain resistor powder.

絶縁体粉末、抵抗体粉末をそれぞれ有機ビヒク
ル中に分散し泥漿とし、これをドクターブレート
を用いたキヤステイング法により膜厚が20μm〜
500μmの絶縁体生シートおよび抵抗体生シート
を作成した。なお有機ビヒクルのバインダーとし
てはポリビニルブチラールを使用し、溶媒は多価
アルコールのエステルを用いた。
The insulator powder and the resistor powder are each dispersed in an organic vehicle to form a slurry, which is then cast to a film thickness of 20 μm or more using a doctor blade.
A 500 μm insulator raw sheet and a resistor raw sheet were prepared. Note that polyvinyl butyral was used as the binder of the organic vehicle, and polyhydric alcohol ester was used as the solvent.

絶縁体生シートを金型を用い、外形を打抜き、
この上にスクリーン印刷法により、銀−パラジウ
ム合金のペーストを用い配線パターンと高熱伝導
層を印刷した。次に抵抗体生シートを3mm×2mm
の寸法に打抜き、絶縁体生シート上に張り付け
た。
Punch out the outer shape of the raw insulator sheet using a mold,
A wiring pattern and a highly thermally conductive layer were printed on this by screen printing using a silver-palladium alloy paste. Next, make a resistor raw sheet 3mm x 2mm.
It was punched out to the dimensions of , and pasted onto an insulating green sheet.

このようにして作つた抵抗体シートを張り付け
導体を形成した絶縁体生シートと導体の形成のみ
を行つた絶縁生シートなどを所定数金型に入れて
積層、熱圧着を行つた。
A predetermined number of raw insulating sheets on which the resistor sheets thus produced were attached and conductors were formed, and raw insulating sheets on which only conductors were formed were placed in molds, laminated, and thermocompression bonded.

積層の終つた生積層体を5mm×10mmの寸法に切
断し、500℃で脱バインダー後、800℃〜1000℃の
温度で焼結した。
After lamination, the raw laminate was cut into a size of 5 mm x 10 mm, and after removing the binder at 500°C, it was sintered at a temperature of 800°C to 1000°C.

焼成の終つた焼結積層体に外部取出電極を焼付
け、感熱紙に接触する面を鏡面に研摩した後リー
ド線を取付けサーマルヘツドとした。
After firing, external electrodes were baked on the sintered laminate, and the surface in contact with the thermal paper was polished to a mirror finish, and then lead wires were attached to form a thermal head.

出来上つたサーマルヘツドをサーマルプリンタ
にセツトし、動作試験を行つたところ、10ドツ
ト/mm〜30ドツト/mmの解像度が得られ、充分実
用になり、しかも従来のサーマルヘツドに比べ、
著しく改善された解像度を示すことがわかつた。
When the completed thermal head was set in a thermal printer and an operation test was performed, a resolution of 10 dots/mm to 30 dots/mm was obtained, making it fully practical, and moreover, compared to conventional thermal heads.
It was found to exhibit significantly improved resolution.

また他の製造方法によるサーマルヘツドとして
は以下のようなものがある。
Thermal heads manufactured by other methods include the following.

絶縁体材料としてアルミナ−結晶化ガラス混合
物を用いた。純度99.9%以上のアルミナ56wt%と
ホウケイ酸鉛系結晶化ガラス44wt%を秤量し、
ボールミルで湿式混合を行い、過乾燥後絶縁体
粉末とした。
An alumina-crystalline glass mixture was used as the insulator material. Weighed 56wt% alumina with a purity of 99.9% or higher and 44wt% lead borosilicate crystallized glass,
Wet mixing was performed in a ball mill, and after drying, an insulator powder was obtained.

この絶縁体粉末を有機ビヒクル中に分散し泥漿
とし、これをドクターブレードを用いたキヤステ
イング法により膜厚が20μm〜500μmの絶縁体生
シートを作成した。なお有機ビヒクルのバインダ
ーとしてはポリビニルアルコールを使用し、溶媒
は水を用いた。
This insulating powder was dispersed in an organic vehicle to form a slurry, and a green insulating sheet having a thickness of 20 μm to 500 μm was prepared by casting the slurry using a doctor blade. Note that polyvinyl alcohol was used as the binder of the organic vehicle, and water was used as the solvent.

金型を用い、絶縁体生シートの外形を打抜き、
この上にスクリーン印刷法により、金ペーストを
用い配線パターンと熱伝導層パターンを印刷し
た。
Using a mold, punch out the outline of the raw insulator sheet,
On top of this, a wiring pattern and a thermally conductive layer pattern were printed using gold paste by a screen printing method.

次に導体を形成した絶縁体生シートの上にさら
にルテニウム系抵抗体ペーストを用い、所定の位
置にスクリーン印刷法によつて抵抗体層を形成し
た。抵抗体層の厚さは6μm〜100μmとし、抵抗
体層が厚い場合は重ね印刷を行つた。
Next, a ruthenium-based resistor paste was further used on the insulator raw sheet on which the conductor was formed, and a resistor layer was formed at a predetermined position by screen printing. The thickness of the resistor layer was 6 μm to 100 μm, and when the resistor layer was thick, overprinting was performed.

このようにして作つた抵抗体層、導体層高熱伝
導層を形成した絶縁生シートと導体の形成のみを
行つた絶縁生シートおよび、必要な場合はスルー
ホール形成のみの絶縁体生シートなどを所定の数
だけ金型に入れ、積層熱圧着を行つた。
The resistor layer thus produced, the conductor layer, the insulating raw sheet on which the high heat conductive layer is formed, the insulating raw sheet on which only the conductor is formed, and the insulating raw sheet on which only through holes are formed, if necessary, are prepared as specified. The number of sheets was put into a mold, and laminated thermocompression bonding was performed.

積層の終つた生積層体を5mm×10mmの寸法に切
断し、500℃で脱バインダーを行つた後800℃〜
1000℃の温度で焼結した。
After lamination, the raw laminate is cut into 5 mm x 10 mm dimensions, and the binder is removed at 500°C, followed by heating at 800°C.
Sintered at a temperature of 1000℃.

焼成の終つた焼結積層体に外部取出電極を焼付
け、感熱紙に接触する面を鏡面に研摩した後リー
ド線を取付け、サーマルヘツドとした。
After firing, external electrodes were baked on the sintered laminate, and the surface in contact with the thermal paper was polished to a mirror finish, and then lead wires were attached to form a thermal head.

出来上つたサーマルヘツドをサーマルプリンタ
にセツトし、動作試験を行つたところ10ドツト/
mm〜50ドツト/mmの解像度が得られ、充分実用に
なり、しかも従来のサーマルヘツドに比らべ、著
しく改善された解像度を示すことがわかつた。
When the completed thermal head was set in a thermal printer and an operation test was performed, 10 dots/print was obtained.
It has been found that a resolution of mm to 50 dots/mm can be obtained, which is sufficient for practical use, and also shows a significantly improved resolution compared to conventional thermal heads.

以上述べた様に本発明の構造によるセラミツク
サーマルヘツドは、従来のサーマルヘツドでは実
現できない様な解像度で、小型高信頼化を実現
し、かつ、量産化が可能で、コストダウンもでき
る、優れたサーマルヘツドであることが明らかに
なつた。
As described above, the ceramic thermal head with the structure of the present invention has a resolution that cannot be achieved with conventional thermal heads, is compact and highly reliable, can be mass-produced, and can reduce costs. It turned out to be a thermal head.

なお本実施例では熱伝導体層として、銀パラジ
ウム合金、金を用いたが、高熱伝導体層としては
この他に金、白金、銀、パラジウムなどの単体お
よびこれらの中の二つ以上の合金などの金属およ
び合金を用いても同様の効果が得られることがわ
かつた。
In this example, a silver-palladium alloy and gold were used as the heat conductor layer, but the high heat conductor layer may also be made of gold, platinum, silver, palladium, etc., or an alloy of two or more of these. It was found that similar effects can be obtained using metals and alloys such as .

さらに、これらの金属以外でも、熱伝導率の良
好な金属酸化物、金属窒化物、金属炭化物を用い
ても同様の結果を得られることがわかつた。これ
らの中でも特に酸化ベリリウム、炭化ケイ素、窒
化ケイ素は耐摩耗性も良く、良好な効果が得られ
た。
Furthermore, it has been found that similar results can be obtained by using metal oxides, metal nitrides, and metal carbides that have good thermal conductivity in addition to these metals. Among these, beryllium oxide, silicon carbide, and silicon nitride had particularly good wear resistance and good effects were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の積層セラミツクサーマルヘツ
ドの実施例の斜視図であり、第2図は同じく本発
明の積層セラミツクサーマルヘツドの断面図を示
し、aは第1図の破線で切つた断面、bは第1図
の一点鎖線で切つた断面を示す。 これらの図で1は高熱伝導体、2は絶縁性セラ
ミツク体、3は外部接続用端子、4は導電体、5
は発熱抵抗体。
FIG. 1 is a perspective view of an embodiment of the laminated ceramic thermal head of the present invention, and FIG. 2 is a sectional view of the laminated ceramic thermal head of the present invention, where a is a cross section taken along the broken line in FIG. b shows a cross section taken along the dashed line in FIG. In these figures, 1 is a high heat conductor, 2 is an insulating ceramic body, 3 is an external connection terminal, 4 is a conductor, and 5 is a conductor.
is a heating resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性セラミツク体内部に高熱伝導体が1以
上形成され、しかもそれぞれの高熱伝導体の一部
が該セラミツク体表面の一部分に露出しており、
また該セラミツク体内部には高熱伝導体の数に応
じて発熱抵抗体が形成され、前記高熱伝導体と接
続しており、さらに該高熱伝導体の一部が露出し
ている該セラミツク体表面とは別の表面部分又は
当該別の表面部分と該セラミツク体の内部に導電
体が形成されており前記発熱抵抗体と導電体は該
セラミツク体の表面又は内部で接続していること
を特徴とするセラミツクサーマルヘツド。
1. One or more high thermal conductors are formed inside an insulating ceramic body, and a part of each high thermal conductor is exposed to a part of the surface of the ceramic body,
Further, heat generating resistors are formed inside the ceramic body in accordance with the number of high heat conductors, and are connected to the high heat conductors, and further connect to the surface of the ceramic body where a part of the high heat conductors is exposed. is characterized in that a conductor is formed on another surface portion or on the other surface portion and inside the ceramic body, and the heating resistor and the conductor are connected on the surface or inside the ceramic body. Ceramic thermal head.
JP57193893A 1982-11-04 1982-11-04 Ceramic thermal head Granted JPS5983683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57193893A JPS5983683A (en) 1982-11-04 1982-11-04 Ceramic thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57193893A JPS5983683A (en) 1982-11-04 1982-11-04 Ceramic thermal head

Publications (2)

Publication Number Publication Date
JPS5983683A JPS5983683A (en) 1984-05-15
JPH048236B2 true JPH048236B2 (en) 1992-02-14

Family

ID=16315488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57193893A Granted JPS5983683A (en) 1982-11-04 1982-11-04 Ceramic thermal head

Country Status (1)

Country Link
JP (1) JPS5983683A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137670A (en) * 1983-12-26 1985-07-22 Hitachi Ltd Thermal head
JPS62109644A (en) * 1985-11-07 1987-05-20 Sharp Corp Manufacture of recording head

Also Published As

Publication number Publication date
JPS5983683A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
JPH048236B2 (en)
JPH06106758A (en) Thermal head
US6501497B2 (en) Thermal head with small size of steps of protective layer formed on heating portion and manufacturing method thereof
JPH0457508B2 (en)
KR890001279B1 (en) Thermal print head
JPH0419031B2 (en)
JP3124870B2 (en) Thermal head and method of manufacturing the same
EP0132615B1 (en) Method of making a matrix print head
JPH0419032B2 (en)
JPS5970588A (en) Manufacture of laminate ceramic thermal head
JPS5970589A (en) Manufacture of laminate ceramic thermal head
US4973982A (en) Multi-stylus recording head of a printer
JP3101194B2 (en) Thermal head and method of manufacturing the same
JP3824246B2 (en) Manufacturing method of thermal head
JP3298794B2 (en) Thermal head and method of manufacturing the same
JPS6092697A (en) Composite laminated ceramic part
JP3093602B2 (en) Manufacturing method of ceramic circuit board
JPS5934510B2 (en) thermal head
JP2915443B2 (en) Manufacturing method of thermal head
JPS6054865A (en) Ceramic electric-discharge recording head
JPS5985778A (en) Ceramic thermal head
JPH07125277A (en) Manufacture of thermal head
JPH07323595A (en) Thermal printing head
JPH0811337A (en) Thermal printing head
JPH06166200A (en) Thermal head