JPH0457508B2 - - Google Patents

Info

Publication number
JPH0457508B2
JPH0457508B2 JP57193892A JP19389282A JPH0457508B2 JP H0457508 B2 JPH0457508 B2 JP H0457508B2 JP 57193892 A JP57193892 A JP 57193892A JP 19389282 A JP19389282 A JP 19389282A JP H0457508 B2 JPH0457508 B2 JP H0457508B2
Authority
JP
Japan
Prior art keywords
resistor
thermal head
conductor
ceramic body
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57193892A
Other languages
Japanese (ja)
Other versions
JPS5983682A (en
Inventor
Kazuaki Uchiumi
Juzo Shimada
Teruyuki Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57193892A priority Critical patent/JPS5983682A/en
Publication of JPS5983682A publication Critical patent/JPS5983682A/en
Publication of JPH0457508B2 publication Critical patent/JPH0457508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/345Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors

Landscapes

  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 本発明はセラミツクサーマルヘツドの構造に関
し、特に絶縁体材料、発熱体材料、導電体材料、
ヒートシンク材料を一体化して焼成したセラミツ
クサーマルヘツドに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a ceramic thermal head, and particularly relates to the structure of a ceramic thermal head, and particularly to the structure of a ceramic thermal head.
This invention relates to a ceramic thermal head in which a heat sink material is integrated and fired.

従来、感熱記録用のサーマルヘツドは厚膜法、
薄膜法あるいは薄膜、厚膜混合法などによつて、
セラミツク基板上に形成し、実用化されている。
Traditionally, thermal heads for heat-sensitive recording have been produced using the thick film method.
By thin film method or thin film/thick film mixed method, etc.
It is formed on a ceramic substrate and has been put into practical use.

従来使用されているサーマルヘツドは厚膜型、
薄膜型それぞれに長所欠点を有したいた。すなわ
ち厚膜型の場合には、大きな寸法のものが比較的
安価にできるが、電極、発熱体を厚膜印刷法で行
うため、解像度に制限があり、8ドツト/mmが限
界であつた。さらに厚膜法によつて解像度を上げ
ようとすると、配線パターンを微細化する必要が
あるため、導体として金を使用しなければなら
ず、コストが非常に高くなる欠点ももつていた。
さらに多層配線を高密度に行うため、歩留が悪く
コスト上昇の原因になつていた。
The thermal heads conventionally used are thick film type.
Each thin film type has advantages and disadvantages. In other words, in the case of the thick film type, large dimensions can be produced relatively inexpensively, but since the electrodes and heating elements are printed using a thick film printing method, the resolution is limited to 8 dots/mm. Furthermore, when attempting to increase the resolution using the thick film method, it is necessary to miniaturize the wiring pattern, which necessitates the use of gold as a conductor, which also has the disadvantage of extremely high costs.
Furthermore, the high density of multi-layer wiring leads to poor yields and increased costs.

さらに厚膜型では、発熱体の抵抗バラツキが印
刷の厚みコントロールが困難なため大きくなり、
抵抗のバラツキとして非常に良いものでも±20%
程度あり、ヘツドとして使用した時の記録品質に
も問題があつた。
Furthermore, with thick film types, the resistance variation of the heating element becomes large because it is difficult to control the printing thickness.
Resistance variation is ±20% even if it is very good.
There were also problems with recording quality when used as a head.

また薄膜法によるサーマルヘツドは、微細なパ
ターン形成ができるため、解像度は良く、するこ
とができるが、大きな寸法のものが作りにくく、
製造工程が複雑なため、コストが高くなり、さら
に形成した表面層が薄いため耐摩耗性に問題があ
つた。また薄膜法によるサーマルヘツドは多層配
線がむずかしく、多層配線層にピンホールの発生
による歩略の低下や多層配線の配線抵抗が高くな
り、素子の発熱、駆動回路などに問題があつた。
In addition, thermal heads using the thin film method can form fine patterns and have good resolution, but they are difficult to make with large dimensions.
The manufacturing process was complicated, resulting in high costs, and the thin surface layer formed caused problems in wear resistance. In addition, multilayer wiring is difficult for thermal heads made using the thin film method, and there are problems such as the generation of pinholes in the multilayer wiring layers, resulting in poor performance and high wiring resistance in the multilayer wiring, resulting in heat generation in the elements, and problems with drive circuits.

本発明はこれらの問題点を全て解決するもの
で、小型でコストが低く、解像度の優れた、信頼
性の高いサーマルヘツドを提供するものである。
The present invention solves all of these problems and provides a thermal head that is small, low cost, has excellent resolution, and is highly reliable.

サーマルヘツドは均一な形と抵抗値を持つ抵抗
体を微細な間隔で1000ケ以上横1列に並べなくて
はならず、さらに、抵抗と同じ数のリード線を同
じ密度で配線する必要がある。しかもこれらの抵
抗体およびリード線のいずれか一つでも不良が発
生するとヘツドとしては使用できなくなる。
A thermal head must have at least 1,000 resistors with uniform shapes and resistance values lined up in a horizontal row at minute intervals, and it must also have the same number of lead wires as resistors wired at the same density. . Moreover, if any one of these resistors and lead wires becomes defective, it becomes unusable as a head.

また従来の厚膜法、薄膜法あるいはこれらの方
法を組合せたサーマルヘツドでは、印字の解像度
は高々10ドツト/mm程度であつた。この程度の解
像度では発熱体相互の距離が比較的長いため、熱
の拡散による解像度の低下は比較的少なかつた。
しかしながら積層構造による積層セラミツクサー
マルヘツドでは、10ドツト/mm以上の発熱体間隔
になるため、発熱体相互間の熱拡散による解像度
の劣化が問題となつている。
In addition, with conventional thermal heads using the thick film method, thin film method, or a combination of these methods, the printing resolution is about 10 dots/mm at most. At this level of resolution, the distance between the heating elements is relatively long, so there is relatively little reduction in resolution due to heat diffusion.
However, in a laminated ceramic thermal head having a laminated structure, the spacing between the heating elements is 10 dots/mm or more, so deterioration of resolution due to heat diffusion between the heating elements becomes a problem.

本発明ではこの問題を解決し、解像度の優れた
積層セラミツクサーマルヘツドを提供するもので
ある。
The present invention solves this problem and provides a laminated ceramic thermal head with excellent resolution.

すなわち本発明は絶縁性セラミツク体内部に複
数の発熱抵抗体が形成されており、しかもそれぞ
れの発熱抵抗体の一部が該セラミツク体表面の一
部分に露出しており、さらに該セラミツク体の他
の表面部分又は当該他の表面部分と該セラミツク
体内部に導電体が形成されており、前記発熱抵抗
体と導電体は該セラミツク体の表面又は内部で接
続されている構造のセラミツクサーマルヘツドで
あつて、発熱抵抗体が露出している前記セラミツ
ク体の表面部分と該表面部分近傍のセラミツク体
内部の各発熱抵抗体にはさまれる位置及びその近
傍に高熱伝導体を形成したことを特徴とするセラ
ミツクサーマルヘツドである。互いにとなり合う
発熱体層の間に熱伝導率の良好な金属、酸化物又
は半導体等の層を形成することによつて発熱体か
らの熱を速やかにヘツド表面から逃す構造とな
り、発熱体の大きさ、間隔にほぼ等しい解像度を
実現したものである。
That is, in the present invention, a plurality of heating resistors are formed inside an insulating ceramic body, and a part of each heating resistor is exposed to a part of the surface of the ceramic body, and furthermore, a part of each heating resistor is exposed to a part of the surface of the ceramic body. A ceramic thermal head having a structure in which a conductor is formed on the surface portion or the other surface portion and inside the ceramic body, and the heating resistor and the conductor are connected on the surface or inside the ceramic body. , a ceramic body characterized in that a high thermal conductor is formed at a surface portion of the ceramic body where a heating resistor is exposed and at a position sandwiched between each heating resistor inside the ceramic body near the surface portion and in the vicinity thereof. It is a thermal head. By forming a layer of metal, oxide, semiconductor, etc. with good thermal conductivity between the heating element layers adjacent to each other, a structure is created in which heat from the heating element is quickly released from the head surface, and the size of the heating element is reduced. This achieves a resolution that is approximately equal to the spacing.

次に本発明の構造を図面によつて説明する。第
1図は本発明の構造を持つ積層セラミツクサーマ
ルヘツドの一実施例の外観図を示すもので、aは
発熱層が直線状に、bは発熱層がマトリツクス状
に配列されたものである。
Next, the structure of the present invention will be explained with reference to the drawings. FIG. 1 shows an external view of an embodiment of a laminated ceramic thermal head having the structure of the present invention, in which (a) the heat generating layers are arranged in a straight line, and (b) the heat generating layers are arranged in a matrix.

これらの図で1は絶縁体、2は発熱層、3は熱
伝導率の高い層、4は外部取出し電極を示してい
る。
In these figures, 1 is an insulator, 2 is a heat generating layer, 3 is a layer with high thermal conductivity, and 4 is an external electrode.

第2図は第1図aで示したサーマルヘツドの断
面を図示したものでaは第1図の点線で示した所
で切断した断面を表わし、bは同じく第1図の一
点鎖線で切断した断面を示している。第2図中の
1は発熱抵抗体、2は絶縁性セラミツク、3は高
熱伝導体、5は導電体、5′は導電体が充填され
たスルホール部分を示している。
Figure 2 shows a cross section of the thermal head shown in Figure 1 a, where a represents the cross section taken along the dotted line in Figure 1, and b represents the cross section taken along the dashed line in Figure 1. A cross section is shown. In FIG. 2, 1 is a heating resistor, 2 is an insulating ceramic, 3 is a high heat conductor, 5 is a conductor, and 5' is a through-hole portion filled with the conductor.

第1図,第2図から明らかなように本発明の構
造によるサーマルヘツドでは発熱抵抗体が、絶縁
体の中に埋め込まれた構造になつているため、抵
抗体の摩耗は絶縁体によつて保護され、表面に耐
摩耗性を設けなくても、充分耐摩耗性のある構造
となつている。また抵抗体の大部分が絶縁体セラ
ミツク内に埋め込まれているため、抵抗体が断線
状態になることが全くない構造になつている。従
つて従来のヘツドのように熱が耐摩耗層へ拡散す
ることがなく、さらに各発熱抵抗体の間に高熱伝
導体層を配置したため、抵抗体の厚さとほぼ等し
い解像度が得られる。さらに、従来のサーマルヘ
ツドでは抵抗体の内部に電流が流れて発熱する場
合、抵抗体に幅がありその幅の中での抵抗体の厚
みのバラツキから発熱量が場所によつて変化し、
記録した像にムラが生ずることが多かつた。
As is clear from FIGS. 1 and 2, in the thermal head according to the structure of the present invention, the heating resistor is embedded in the insulator, so wear of the resistor is caused by the insulator. It is protected and has a structure that is sufficiently wear-resistant even without abrasion-resistant surfaces. Furthermore, since most of the resistor is embedded within the insulating ceramic, the structure is such that the resistor never becomes disconnected. Therefore, unlike in conventional heads, heat does not diffuse into the wear-resistant layer, and since a high thermal conductor layer is placed between each heating resistor, a resolution approximately equal to the thickness of the resistor can be obtained. Furthermore, in conventional thermal heads, when current flows inside the resistor and generates heat, the amount of heat generated varies depending on the location due to the width of the resistor and variations in the thickness of the resistor within that width.
Unevenness often occurred in the recorded images.

本発明の構造によれば、抵抗体の厚み方向が表
面に露出した構造になつているため、同一ドツト
内の熱は均一となり、濃度ムラも少くなつた。さ
らに本発明のサーマルヘツドは均一な絶縁体生シ
ート上に均一な抵抗体を抵抗体生シートを張り付
けるか又はスクリーン印刷法によつて形成するた
め、抵抗体の厚さは数ミクロンから数百ミクロン
の厚さまで均一に形成でき、絶縁体生シートも数
十ミクロンから数百ミクロンまで均一に形成でき
るため、抵抗体の厚さ、抵抗体のピツチを非常に
細かくすることができ、記録した時の解像度を従
来の6〜8ドツト/mmから数十ドツト/mmと飛躍
的に良くすることができる。
According to the structure of the present invention, since the thickness direction of the resistor is exposed at the surface, the heat within the same dot becomes uniform and density unevenness is reduced. Furthermore, in the thermal head of the present invention, a uniform resistor is formed on a uniform raw insulator sheet by pasting a raw resistor sheet or by screen printing, so the thickness of the resistor can range from several microns to several hundreds of microns. It can be formed uniformly down to a thickness of microns, and raw insulator sheets can be uniformly formed from tens of microns to hundreds of microns, so the thickness of the resistor and the pitch of the resistor can be made extremely fine, making it possible to The resolution can be dramatically improved from the conventional 6 to 8 dots/mm to several tens of dots/mm.

第3図は第1図bで示したサーマルヘツドの断
面の一例を示したものでaは第1図bの点線部分
の断面を表わしbは同じく第1図bの一点鎖線部
分の断面を示している。第3図で1は絶縁性セラ
ミツク体、2は発熱抵抗体、3は高熱伝導体、4
は外部接続用端子、5は導電体、5′はスルーホ
ールを示している。
Figure 3 shows an example of the cross section of the thermal head shown in Figure 1b, where a represents the cross section taken along the dotted line in Figure 1b, and b also represents the cross section taken along the dashed dot line in Figure 1b. ing. In Figure 3, 1 is an insulating ceramic body, 2 is a heating resistor, 3 is a high heat conductor, and 4
5 indicates an external connection terminal, 5 a conductor, and 5' a through hole.

第2,3図に示す様に抵抗体が内部に埋めこま
れ、直接内部導体と接続しており、内部導体はス
ルーホールを介して立体配線し、外部電極と接続
しているため、非常に小形になり、しかも抵抗体
層が絶縁層の中に埋めこまれているため、機械強
度、耐摩耗性も非常に向上する。さらに高熱伝導
体を各発熱抵抗体の間に配置することにより発熱
抵抗体の露出部での厚さとほぼ同じ解像度が得ら
れる。
As shown in Figures 2 and 3, the resistor is embedded inside and directly connected to the internal conductor, and the internal conductor is three-dimensionally wired through a through hole and connected to the external electrode. Since it is compact and the resistor layer is embedded in the insulating layer, mechanical strength and wear resistance are greatly improved. Furthermore, by arranging a high heat conductor between each heat generating resistor, a resolution approximately equal to the thickness of the exposed portion of the heat generating resistor can be obtained.

また第1図に示した実施例の構造のサーマルヘ
ツドの構造方法としては絶縁体材料としてアルミ
ナー結晶化ガラス混合物を用いた。純度99.9%以
上のアルミナ56wt%とホウケイ酸鉛系結晶化ガ
ラス44wt%を秤量し、ボールミルで湿式混合を
行い、過乾燥後絶縁体粉末とした。
Further, in the construction of the thermal head having the structure of the embodiment shown in FIG. 1, an alumina crystallized glass mixture was used as the insulating material. 56wt% of alumina with a purity of 99.9% or higher and 44wt% of lead borosilicate crystallized glass were weighed, wet mixed in a ball mill, and after over-drying, an insulator powder was obtained.

この絶縁体粉末を有機ビヒクル中に分散し、ド
クターブレードを用いたキヤステイング法により
絶縁体生シート作成する。この絶縁体生シートを
金型で外径および必要な場合はスルーホールを同
時に抜く。このようにして形成した絶縁体生シー
ト上に金ペーストを用い、スクリーン印刷法によ
り導体層を形成した。さらに酸化ルチニウム系抵
抗体ペーストを同じくスクリーン印刷法によつて
導体形成をした絶縁体生シート上に印刷し、抵抗
体層を形成した。また銀ペーストを絶縁体生シー
トに印刷し、これを高熱伝導層とした。これらの
絶縁体生シートと積層圧着し、積層体とし、これ
を所定の寸法に切断し脱バインダー後800℃〜
1000℃の温度で焼結した。焼結後感熱紙に接触す
る面を鏡面に研摩し外部取出し電極を付け後リー
ド線を取り付けサーマルヘツドとした。このよう
にして作つたサーマルヘツドを用い、感熱紙に印
字した結果、解像度の良い、印字品質の極めて良
好な記録をすることができた。
This insulating powder is dispersed in an organic vehicle, and a green insulating sheet is produced by a casting method using a doctor blade. The outer diameter and, if necessary, through-holes are simultaneously punched out from this insulating green sheet using a mold. A conductor layer was formed on the insulator raw sheet thus formed by screen printing using gold paste. Further, a rutinium oxide resistor paste was printed on the insulator raw sheet on which conductors were formed by the same screen printing method to form a resistor layer. In addition, silver paste was printed on a green insulator sheet, and this was used as a highly thermally conductive layer. These insulator raw sheets are laminated and crimped to form a laminate, which is cut into specified dimensions and heated to 800℃ after removing the binder.
Sintered at a temperature of 1000℃. After sintering, the surface in contact with the thermal paper was polished to a mirror finish, external electrodes were attached, and lead wires were attached to form a thermal head. As a result of printing on thermal paper using the thermal head made in this way, it was possible to record with good resolution and extremely good print quality.

第4図は従来の積層セラミツクサーマルヘツド
(第4図a)と本発明のヘツド部分(第4図b)
の拡大図と表面温度分布の関係を示したものであ
る。第2図aは高熱伝導体層のない積層セラミツ
クサーマルヘツドの温度分布を示したもので1が
絶縁体、2は発熱層を示している。温度分布のグ
ラフから発熱層の間での温度がかなり高くなつて
いることがわかる。第2図bは本発明の構造によ
る積層セラミツクサーマルヘツドの温度分布を示
すもので1が絶縁体、2が発熱層、3が高熱伝導
体層を示している。温度分布の図より発熱層間の
温度が低くなつていることがわかる。
Figure 4 shows a conventional laminated ceramic thermal head (Figure 4a) and a head portion of the present invention (Figure 4b).
This shows the relationship between the enlarged view of the surface temperature distribution and the surface temperature distribution. FIG. 2a shows the temperature distribution of a laminated ceramic thermal head without a high thermal conductor layer, where 1 is an insulator and 2 is a heat generating layer. From the temperature distribution graph, it can be seen that the temperature between the heat generating layers is quite high. FIG. 2b shows the temperature distribution of the laminated ceramic thermal head according to the structure of the present invention, where 1 is an insulator, 2 is a heat generating layer, and 3 is a high thermal conductor layer. It can be seen from the temperature distribution diagram that the temperature between the heat generating layers is lower.

このように本発明の積層セラミツクヘツドはド
ツトの温度分布が非常にシヤープになるため、印
字した時の解像度はほぼドツトの大きさとなり、
非常に解像度の高い印字品質が得られた。
In this way, in the laminated ceramic head of the present invention, the temperature distribution of the dots is very sharp, so the resolution when printing is approximately the size of a dot,
Print quality with extremely high resolution was obtained.

本発明の高熱伝導率体としては金属、金属酸化
物、金属炭化物、金属窒化物いずれの材料を用い
ても良好な結果を得たが、金属としては金、銀、
白金、パラジウム、銅、ニツケルなどの単体ある
いはこれらの二つ以上の合金、金属酸化物として
は酸化ベリリウム、金属炭化物としては炭化ケイ
素、金属窒化物としては窒化ケイ素、窒化ホウ
素、などが特に良好な結果を得た。
Although good results were obtained using any of metals, metal oxides, metal carbides, and metal nitrides as the high thermal conductivity material of the present invention, gold, silver,
Particularly suitable are platinum, palladium, copper, nickel, etc. alone or alloys of two or more of these, metal oxides such as beryllium oxide, metal carbides such as silicon carbide, and metal nitrides such as silicon nitride and boron nitride. Got the results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のサーマルヘツドの実施例を示
す斜視図、第2図は第1図aに示すサーマルヘツ
ドの断面図、第3図は第1図(b)に示すサーマルヘ
ツドの断面図である。第4図はサーマルヘツド上
の発熱抵抗体の位置とその付近の温度分布を示す
図。 各図において、1は絶縁性セラミツク体、2は
発熱抵抗体、3は高熱伝導体、4は外部接続端
子、5は導電体、5′はスルーホール。
Fig. 1 is a perspective view showing an embodiment of the thermal head of the present invention, Fig. 2 is a sectional view of the thermal head shown in Fig. 1a, and Fig. 3 is a sectional view of the thermal head shown in Fig. 1(b). It is. FIG. 4 is a diagram showing the position of the heating resistor on the thermal head and the temperature distribution in the vicinity. In each figure, 1 is an insulating ceramic body, 2 is a heating resistor, 3 is a high heat conductor, 4 is an external connection terminal, 5 is a conductor, and 5' is a through hole.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性セラミツク体内部に複数の発熱抵抗体
が形成されており、しかもそれぞれの発熱抵抗体
の一部が該セラミツク体表面の一部分に露出して
おり、さらに該セラミツク体の他の表面部分又は
当該他の表面部分と該セラミツク体内部に導電体
が形成されており、前記発熱抵抗体と導電体は該
セラミツク体の表面又は内部で接続されている構
造のセラミツクサーマルヘツドであつて、発熱抵
抗体が露出している前記セラミツク体の表面部分
と該表面部分近傍のセラミツク体内部の各発熱抵
抗体にはさまれる位置及びその近傍に高熱伝導体
を形成したことを特徴とするセラミツクサーマル
ヘツド。
1 A plurality of heat generating resistors are formed inside an insulating ceramic body, and a part of each heat generating resistor is exposed to a part of the surface of the ceramic body, and furthermore, a part of each heat generating resistor is exposed to a part of the surface of the ceramic body or A ceramic thermal head has a structure in which a conductor is formed on the other surface portion and inside the ceramic body, and the heat generating resistor and the conductor are connected on the surface or inside the ceramic body, and the heat generating resistor 1. A ceramic thermal head characterized in that a high thermal conductor is formed at a surface portion of the ceramic body where the body is exposed and at a position sandwiched between the heating resistors inside the ceramic body near the surface portion and in the vicinity thereof.
JP57193892A 1982-11-04 1982-11-04 Ceramic thermal head Granted JPS5983682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57193892A JPS5983682A (en) 1982-11-04 1982-11-04 Ceramic thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57193892A JPS5983682A (en) 1982-11-04 1982-11-04 Ceramic thermal head

Publications (2)

Publication Number Publication Date
JPS5983682A JPS5983682A (en) 1984-05-15
JPH0457508B2 true JPH0457508B2 (en) 1992-09-11

Family

ID=16315471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57193892A Granted JPS5983682A (en) 1982-11-04 1982-11-04 Ceramic thermal head

Country Status (1)

Country Link
JP (1) JPS5983682A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2608449B2 (en) * 1988-03-02 1997-05-07 Manufacturing method of thermal printer head
CN1086639C (en) * 1994-05-31 2002-06-26 罗姆股份有限公司 Thermal printing head, substrate used thereof and method for producing the substrate
DE69511698T2 (en) * 1994-06-21 2000-06-08 Rohm Co. Ltd., Kyoto THERMAL PRINT HEAD, SUBSTRATE USED THEREFOR, AND METHOD FOR PRODUCING THIS SUBSTRATE

Also Published As

Publication number Publication date
JPS5983682A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
WO1995035213A1 (en) Thermal printing head, substrate used therefor and method for producing the substrate
US4204107A (en) Thick-film thermal printing head and method of manufacturing the same
US3955068A (en) Flexible conductor-resistor composite
EP0202877A2 (en) Integrated circuit device and manufacturing method thereof
JPH06106758A (en) Thermal head
JPH0457508B2 (en)
US4446355A (en) Crossover construction of thermal-head and method of manufacturing same
JPS6296831A (en) Heat flowmeter sensor and manufacture thereof
JP2019202444A (en) Thermal print head
JPH048236B2 (en)
US4973982A (en) Multi-stylus recording head of a printer
JPH0419031B2 (en)
JPH0582303B2 (en)
JP3824246B2 (en) Manufacturing method of thermal head
CN214449563U (en) Heating substrate for thin-film thermosensitive printing head
JPS5970589A (en) Manufacture of laminate ceramic thermal head
JPH0419032B2 (en)
CN118254482A (en) Thermal print head and method of manufacturing the same
JPS5934510B2 (en) thermal head
JPS5970588A (en) Manufacture of laminate ceramic thermal head
JPH06166200A (en) Thermal head
JP2000313133A (en) Small thermal print head
JPH0811337A (en) Thermal printing head
JP2833659B2 (en) Thermal printer head
JPS5985778A (en) Ceramic thermal head