JPS5983682A - Ceramic thermal head - Google Patents

Ceramic thermal head

Info

Publication number
JPS5983682A
JPS5983682A JP57193892A JP19389282A JPS5983682A JP S5983682 A JPS5983682 A JP S5983682A JP 57193892 A JP57193892 A JP 57193892A JP 19389282 A JP19389282 A JP 19389282A JP S5983682 A JPS5983682 A JP S5983682A
Authority
JP
Japan
Prior art keywords
resistor
insulator
conductor
thermal head
printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57193892A
Other languages
Japanese (ja)
Other versions
JPH0457508B2 (en
Inventor
Kazuaki Uchiumi
和明 内海
Yuzo Shimada
嶋田 勇三
Teruyuki Ikeda
輝幸 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57193892A priority Critical patent/JPS5983682A/en
Publication of JPS5983682A publication Critical patent/JPS5983682A/en
Publication of JPH0457508B2 publication Critical patent/JPH0457508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/345Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To provide a ceramic thermal head for heat-sensitive recording which is small in size, inexpensive, excellent in resolution and high in reliability, obtained by integrating an insulator material, a heating resistor material, a conductor material, a high thermal conductor material or the like with each other, followed by sintering. CONSTITUTION:Raw material powders such as high-purity alumina or lead borosilicate base crystallized glass are mixed with each other, the resultant mixture is dispersed into an organic vehicle, and a green sheet of an insulator is produced therefrom by a casting method or the like. A gold paste or the like is printed on the green sheet of the insulator to form a conductor layer, on which a ruthenium oxide base resistor paste or the like is printed to form resistor layers 2. Then a silver paste or the like is printed on the green sheet to form high thermal conductor layers 3. A plurality of the green sheets of the insulator thus provided with the layers thereon are laminated with each other, and are pressed to produce a laminate body, which is cut to a predetermined size, and after sintering, external connecting terminals 4 and the like are fitted to obtain the objective thermal head.

Description

【発明の詳細な説明】 本発明はセラミックサーマルヘッドの構造に関し、特に
絶縁体材料9発熱体材料、導電体材料。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a ceramic thermal head, and particularly to an insulating material, a heating element material, and a conductive material.

ヒートシンク材料を一体化して焼結したセラミックサー
マルヘッドに関する。
This invention relates to a ceramic thermal head in which a heat sink material is integrated and sintered.

従来、感熱記録用のサーマルヘッドは厚膜法。Traditionally, thermal heads for heat-sensitive recording use the thick film method.

薄膜法あるいは薄膜、厚膜混合法などによって、セラミ
ック基板上に形成し、実用化されている。
It is formed on a ceramic substrate by a thin film method or a mixed thin film/thick film method, and is put into practical use.

従来使用されているサーマルヘッドは厚膜型。The conventionally used thermal head is a thick film type.

薄膜型それぞれに長所欠点を有していた。すなわち厚膜
型の場合には、大きな寸法のものが比較的安価にできる
が、電極2発熱体を厚膜印刷法で行うため、解像度に制
限があり、8ドクト/圏が限界であった。さらに厚膜法
によって解像度を上げようとすると、配線パターンを微
細化する必要があるため、導体として金を使用しなけれ
ばならず、コストが非常に高くなる欠点ももっていた。
Each thin film type had advantages and disadvantages. In other words, in the case of a thick film type, a large size product can be produced relatively inexpensively, but since the electrode 2 heating element is formed by a thick film printing method, the resolution is limited, and the limit is 8 dots/area. Furthermore, when trying to increase the resolution using the thick film method, it is necessary to miniaturize the wiring pattern, which necessitates the use of gold as a conductor, which also has the disadvantage of extremely high costs.

さらに多層配線を高密度に行うため、歩留が悪くコスト
上昇の原因になっていた。
Furthermore, the high density of multi-layer wiring leads to poor yields and increased costs.

さらに厚膜型では、発熱体の抵抗バラツキが印刷の厚み
コントロールが困難なため大きくなり、抵抗のバラツキ
として非常に良いものでも±20%程度あり、ヘッドと
して使用した時の記録品質にも問題があ−また。
Furthermore, with the thick film type, the resistance variation of the heating element becomes large because it is difficult to control the printing thickness, and even a very good one has a resistance variation of about ±20%, which causes problems with the recording quality when used as a head. Ah, again.

1だ薄膜法によるサーマルヘッドは、微細なパターン形
成ができるため、解像度は浪く、することができるが、
大きな寸法のものが作シにくく、製造工程が?U 5+
午なため、コストが高くなり、さらに形成した表面層が
芦いため耐摩耗性に問題があっプζ。また薄膜法による
サーマルヘッドtま多層配線がむずかL、く、多層配線
層にビンボールの発生による′取留の低下や多層配線の
配線抵抗が高くなり、素子の発熱、駆與1回路などに間
ムワ1があった。
Thermal heads using the thin film method can form fine patterns, so the resolution is low, but it is possible to
Large dimensions are difficult to produce and the manufacturing process is difficult. U5+
This increases the cost, and the formed surface layer is rough, so there are problems with wear resistance. In addition, it is difficult to conduct multilayer wiring with the thermal head using the thin film method, and the occurrence of bottle balls in the multilayer wiring layer causes a reduction in the wiring resistance and increases the wiring resistance of the multilayer wiring, resulting in heat generation of the element and time required for driving one circuit. There was a problem.

本発明(r、iとれらの間卿点を全て解決するもので、
小型てコストが低く、lIi′i!像度の優れた、信頼
性の高いザーマルヘ・ドを:沸供するものである。
The present invention (which solves all the problems between r and i,
Small and low cost, lIi'i! It provides highly reliable thermal imaging with excellent image resolution.

ザーーールヘノドは均一な形と抵抗値を持−) 1tl
(抗体を微細な間隔で1000ケ以上横1列に並べなく
てはならず、さらに、抵抗と同じ数のリード線を同じ密
度で配線する必要がある。しかもこねらの抵抗体および
リード線のいずれか一つでも不良が発生するとヘッドと
1〜ては使用できなくなる。
Saalhenod has a uniform shape and resistance value -) 1tl
(More than 1,000 antibodies must be lined up horizontally at minute intervals, and the same number of lead wires as resistors must be wired at the same density. Moreover, the number of resistors and lead wires If any one of them is defective, the head and the other head cannot be used.

また従来の厚膜法、薄膜法あるいはこれらの方法を組合
せたサーマルヘッドでは、印字の解像度は高々10ドツ
ト/WIM程度であった。この程度の解像度では発熱体
相互の距離が比較的長いため、熱の拡散による解像度の
低下は比較的少なかった。
Furthermore, with conventional thermal heads using the thick film method, thin film method, or a combination of these methods, the printing resolution is at most about 10 dots/WIM. At this level of resolution, the distance between the heating elements is relatively long, so there was relatively little reduction in resolution due to heat diffusion.

しかしながら積層構造による積層セラミックサーマルヘ
ッドでは、10ドツト/町以上の発熱体間隔になるため
、発熱体相互間の熱拡散による解像度の劣化が問題とな
っている。
However, in a laminated ceramic thermal head having a laminated structure, the spacing between the heating elements is 10 dots/town or more, which poses a problem of deterioration of resolution due to heat diffusion between the heating elements.

本発明ではこの問題を解決し、解像度の優れたff2層
セラミックサーマルヘッドを提供するものである。
The present invention solves this problem and provides an FF two-layer ceramic thermal head with excellent resolution.

すなわち本発明は絶縁性セラミック体内部に複数の発熱
抵抗体が形成されており、しかもそれぞれの発熱抵抗体
の一部が該セラミック体表面の一部分に露出しており、
さらに該セラミ、・り体の他の表面部分又は尚該他の表
面部分と該セラミック体内部に導電体が形成されており
、前記発熱抵抗体と導電体は該セラミック体の表面又は
内部で接続されている構造のセラミックサーマルヘッド
であって、発熱抵抗体が露出している前記セラミック体
の表面部分と該表面部分近傍のセラミック体内部の各発
熱抵抗体にはさまれる位置及びその近傍に高熱伝導体を
形成したことを特徴とするセラミックサーマルヘッドで
ある。互いにとなり合う発熱体層の間に熱伝導率の良好
な金属、酸化物又は半導体等の層を形成することによっ
て発熱体からの熱を速やかにヘッド表面から逃す構造と
なり、発熱体の大きさ9間隔にほぼ等しい解像度を実現
したものである。
That is, in the present invention, a plurality of heating resistors are formed inside an insulating ceramic body, and a part of each heating resistor is exposed to a part of the surface of the ceramic body,
Further, a conductor is formed on another surface of the ceramic body or on the other surface and inside the ceramic body, and the heating resistor and the conductor are connected on the surface or inside the ceramic body. The ceramic thermal head has a structure in which high heat is generated at the surface portion of the ceramic body where the heating resistor is exposed and at a position sandwiched between the heating resistors inside the ceramic body near the surface portion and in the vicinity thereof. This is a ceramic thermal head characterized by forming a conductor. By forming a layer of metal, oxide, semiconductor, etc. with good thermal conductivity between the heating element layers adjacent to each other, a structure is created in which heat from the heating element is quickly released from the head surface, and the size of the heating element is 9. This achieves a resolution approximately equal to the interval.

次に本発明の構造を図面によって説明する。第1図は本
発明の構造を持つ積層セラミックサーマルヘッドの一実
施例の外観図を示すもので、(a)は発熱層が右線状に
、(b)は発熱層がマトリックス状に配列されたもので
ある。
Next, the structure of the present invention will be explained with reference to the drawings. FIG. 1 shows an external view of an embodiment of a multilayer ceramic thermal head having the structure of the present invention, in which (a) the heat generating layers are arranged in a straight line, and (b) the heat generating layers are arranged in a matrix. It is something that

これらの図で1は絶縁体、2は発熱層、3は熱伝導率の
高い層、4は外部取出し電極を示している。
In these figures, 1 is an insulator, 2 is a heat generating layer, 3 is a layer with high thermal conductivity, and 4 is an external electrode.

第2図は第1図(a)で示したサーマルヘッドの断面を
図示したもので(a)は第1図の点線で示1〜九所で切
断した断面を表わし、(b)は同じく第1図の一点鎖線
で切断した断面を示している。第2図中の1は発熱抵抗
体、2は絶縁性セラミンク、3は高熱伝導体、5け導電
体、5′は導電体が充填されたスルホール部分を示して
いる。
FIG. 2 shows a cross section of the thermal head shown in FIG. 1(a), where (a) shows the cross section taken at points 1 to 9 indicated by the dotted line in FIG. 1 shows a cross section cut along the dashed-dotted line in FIG. In FIG. 2, 1 is a heating resistor, 2 is an insulating ceramic, 3 is a high heat conductor, a 5-layer conductor, and 5' is a through-hole portion filled with a conductor.

第1図、第2図から明らかなように本発明の構造による
サーマルヘッドでは発熱抵抗体が、絶縁体の中に埋め込
まれた構造になっているだめ、抵抗体の摩耗は絶縁体に
よって保護され、表面に耐摩耗層を設けなくても、充分
耐摩耗性のある構造となっている。洩た抵抗体の大部分
が絶縁体セラミック内に埋め込まれているため、抵抗体
が断線状態になることが全くない構造になっている。従
って従来のヘッドのように熱が耐摩耗層へ拡散すること
がなく、さらに各発熱抵抗体の間に高熱伝導体層を配置
したため、抵抗体の厚さとほぼ等しい解像度が得られる
。さらに、従来のサーマルヘッドでは抵抗体の内部に電
流が流れて発熱する場合、抵抗体に幅がありその幅の中
での抵抗体の厚みのバラツキから発熱量が場所によって
変化し、記録した像にムラが生ずることが多かったつ本
発明の構造によれば、抵抗体の厚み方向が表面に露出し
だ構造になっているため、同一ドノド内の熱は均一とな
り、濃度ムラも少くなった。さらに本発明の−り′−マ
ルヘソドは均一な絶縁体生シート上に均一な抵抗体を抵
抗体生シートを張り付けるか又はスクリーン印刷法によ
って形成するだめ、抵抗体の厚さは数ミクロンから数置
ミクロンの厚さ壕で均一に形成でき、絶縁体生シートも
数十ミクロンから数百ミクロン寸で均一に形成できるプ
ζめ、抵抗体の厚さ、抵抗体のピッチを非常に細かくす
ることができ、記録した時の解像度を従来の6〜8ドツ
ト/間から数十ドツト/鼠と飛蹄的に良くすることがで
きる。
As is clear from FIGS. 1 and 2, in the thermal head according to the structure of the present invention, the heating resistor is embedded in the insulator, so the wear of the resistor is protected by the insulator. The structure is sufficiently wear-resistant even without a wear-resistant layer on the surface. Since most of the leaked resistor is embedded within the insulating ceramic, the structure is such that the resistor never becomes disconnected. Therefore, unlike in conventional heads, heat does not diffuse into the wear-resistant layer, and since a high thermal conductor layer is placed between each heating resistor, a resolution approximately equal to the thickness of the resistor can be obtained. Furthermore, with conventional thermal heads, when current flows inside the resistor and generates heat, the amount of heat generated changes depending on the location due to the width of the resistor and variations in the thickness of the resistor within that width, and the recorded image However, according to the structure of the present invention, since the thickness direction of the resistor is exposed to the surface, the heat within the same dome becomes uniform, and density unevenness is reduced. Furthermore, the resistor of the present invention is formed by pasting a resistor raw sheet or screen printing method to form a uniform resistor on a uniform raw insulator sheet, and the thickness of the resistor is from several microns to several micrometers. The thickness of the resistor and the pitch of the resistor can be made very fine. The recording resolution can be dramatically improved from the conventional 6 to 8 dots/distance to several tens of dots/mt.

第3図は第1図(b)で示したサーマル−\lドの断面
の一例を示したもので(a)は第1図(b)の点線部分
の断面を表わしくb)は同じく第xlfl(b)の一点
鎖線部分の断面を示している。第3図で1は絶縁性七ラ
ミック体、2は発熱抵抗体、3は高熱伝導体、4は外部
接続用端子、5は導電体、5′はスルーホールを示して
いる。
Figure 3 shows an example of the cross section of the thermal conductor shown in Figure 1 (b), where (a) shows the cross section of the dotted line in Figure 1 (b), and b) also shows the cross section of the thermal conductor shown in Figure 1 (b). The cross section of xlfl(b) is shown along the dashed dotted line. In FIG. 3, 1 is an insulating seven-lamic body, 2 is a heating resistor, 3 is a high heat conductor, 4 is an external connection terminal, 5 is a conductor, and 5' is a through hole.

第2,3図に示す様に抵抗体が内部に埋めこまれ、直接
内部導体と接続しており、内部導体はスルーホールを介
して立体配線し、外部電極と接続しているため、非常に
小形になり、しかも抵抗体層が絶縁層の中に狸めこまれ
ているメζめ、機械強度、耐摩耗性も非常に向上する。
As shown in Figures 2 and 3, the resistor is embedded inside and directly connected to the internal conductor, and the internal conductor is three-dimensionally wired through a through hole and connected to the external electrode. Since it is compact and the resistor layer is embedded within the insulating layer, mechanical strength and wear resistance are greatly improved.

さらに高熱伝導体を各発熱抵抗体の間に配置することに
より発熱抵抗体の露出部での厚さとほぼ同じ解像度が得
られる。
Furthermore, by arranging a high heat conductor between each heat generating resistor, a resolution approximately equal to the thickness of the exposed portion of the heat generating resistor can be obtained.

まだ第1図に示した実施例の構造のサーマルヘッドの製
造方法として1.1.絶縁体材料としてアルミナ−結晶
化ガラス混合物を用いた。純度99.9%以上のアルミ
ナ56 w t% とホウケイ酸鉛系結晶化ガラス44
wt% を秤量し、ボールミルで湿式混合を行い、r過
乾燥後絶縁体粉末どした。
1.1 as a method for manufacturing a thermal head having the structure of the embodiment shown in FIG. An alumina-crystalline glass mixture was used as the insulator material. Alumina 56 wt% with purity of 99.9% or more and lead borosilicate crystallized glass 44
wt% was weighed, wet-mixed in a ball mill, and after over-drying, an insulator powder was obtained.

この絶縁体粉末を有機ビヒクル中に分散し、ドクターブ
レードを用いたキャスティング法により絶縁体生シート
作成する。この絶縁体生シートを金型で外径および必要
な場合はスルーホールを同時に抜く。このようにして形
成した絶縁体生ン・−1・上に金ペーストを用い、スク
リーン印刷法により導体層を形成した。さらに酸化ルチ
ニウム系抵抗体ペーストを同じくスクリーン印刷法によ
って導体形成をした絶縁体生シート上に印刷し、抵抗体
層を形成した。また銀ベーストを絶縁体生シートに印刷
し、これを高熱伝導層としだ。これらの絶縁体生シート
と積層圧着し、積層体とし、これを所定の寸法に切断し
脱バインダー後800℃〜1000℃の温度で焼結した
。焼結後感熱紙(c暗触する面を鏡面に研摩し外部取出
し電極を付り後リー ド線を取り付はサーマルヘッドと
[7だ。このようにして作ったサーマルヘッドを用い、
感熱紙に印字した結果、解像度の良い、印字品質の極め
て関係を示したものである。第2図(a)は高熱伝導体
層のない積層セラミックサーマルヘッドの湿度分布を示
したもので1が絶縁体、2は発熱層を示している。温度
分布のグラフから発熱層の間での温度がかなシ高くなっ
ていることがわかる。第2図(b)は本発明の構造によ
る積層セラミックサーマルヘッドの温度分布を示すもの
で1が絶縁体、2が発熱層、3が高熱伝導体層を示して
いる。、湿度分布の図より発熱層間の温度が低くなって
いることがわかる。
This insulating powder is dispersed in an organic vehicle, and a green insulating sheet is produced by a casting method using a doctor blade. The outer diameter and, if necessary, through-holes are simultaneously punched out from this insulating green sheet using a mold. A conductor layer was formed on the thus formed insulator G-1 by screen printing using gold paste. Further, a rutinium oxide resistor paste was printed on the insulator green sheet on which conductors were formed using the same screen printing method to form a resistor layer. In addition, the silver base is printed on a raw insulator sheet, and this is used as a highly thermally conductive layer. These insulator raw sheets were laminated and pressed together to form a laminate, which was cut into predetermined dimensions, and after removing the binder, was sintered at a temperature of 800°C to 1000°C. After sintering, the thermal paper (c) was polished to a mirror surface with the dark contact side, attached with external electrodes, and the lead wires were attached to the thermal head [7]. Using the thermal head made in this way,
The results of printing on thermal paper show an excellent relationship between print quality and good resolution. FIG. 2(a) shows the humidity distribution of a laminated ceramic thermal head without a high thermal conductor layer, where 1 indicates an insulator and 2 indicates a heat generating layer. From the temperature distribution graph, it can be seen that the temperature between the heat generating layers is significantly higher. FIG. 2(b) shows the temperature distribution of the laminated ceramic thermal head according to the structure of the present invention, where 1 is an insulator, 2 is a heat generating layer, and 3 is a high thermal conductor layer. It can be seen from the humidity distribution diagram that the temperature between the heat generating layers is lower.

このように本発明の積層セラミックヘッドはドツトの温
度分布が非常にシャープになるだめ、印字した時の解像
度はほぼドツトの大きさとなり、非常に解像度の高い印
字品質が得られた。
As described above, in the laminated ceramic head of the present invention, the temperature distribution of the dots is very sharp, so that the resolution when printing is approximately the size of a dot, and printing quality with extremely high resolution was obtained.

本発明の高熱伝導率体としては金属、金属酸化物、金属
炭化物、金属窒化物いずれの材料を用いても良好な結果
を得たが、金属としては金、銀。
Although good results were obtained using any of metals, metal oxides, metal carbides, and metal nitrides as the high thermal conductivity material of the present invention, gold and silver were used as the metals.

白金、パラジウム、@、ニッケルなどの単体あるいはこ
れらの二つ以上の合金、金1化物としては酸化ベリリウ
ム、金属炭化物としては炭化ケイ素、金属窒化物として
は窒化ケイ素、窒化ホウ素。
Single elements such as platinum, palladium, @, nickel, etc., or alloys of two or more of these; beryllium oxide as gold monoride; silicon carbide as metal carbide; silicon nitride and boron nitride as metal nitride.

などが特に良好な結果を得た。particularly good results were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のサーマルヘッドの実施例を示す斜視図
。第2図は第1図(a)に示すサーマルヘッドの断1面
図、第3図は第1図(b)に示すサーマルヘッドの断面
図である。第4図はサーマルヘッド上の発熱抵抗体の位
置とその付近の温度分布を示す図。 各図において、1は絶縁性セラミック体、2は発熱抵抗
体、3は高熱伝導体、4は外部接続端子、5は導電体、
5′はスルーホール。 第 1 (d) (b) 第 2 図 袷う図
FIG. 1 is a perspective view showing an embodiment of the thermal head of the present invention. 2 is a sectional view of the thermal head shown in FIG. 1(a), and FIG. 3 is a sectional view of the thermal head shown in FIG. 1(b). FIG. 4 is a diagram showing the position of the heating resistor on the thermal head and the temperature distribution in the vicinity. In each figure, 1 is an insulating ceramic body, 2 is a heating resistor, 3 is a high heat conductor, 4 is an external connection terminal, 5 is a conductor,
5' is a through hole. Part 1 (d) (b) Part 2

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性セラミック体内部に複数の発熱抵抗体が形
成されており、しかもそれぞれの発熱抵抗体の一部が該
セラミック体表面の一部分に露出しており、さらに該セ
ラミック体の他の表面部分又は当該他の表面部分と該セ
ラミック体内部に導電体が形成されており、前記発熱抵
抗体と導電体は該セラミック体の表面又は内部で接続さ
れている構造のセラミックサーマルヘッドであって、発
熱抵抗体が露出している前記セラミック体の表面部分と
該表面部分近傍のセラミック体内部の各発熱抵抗体には
さまれる位置及びその近傍に高熱伝導体を形成したこと
を特徴とするセラミックサーマルヘッド。
(1) A plurality of heat generating resistors are formed inside an insulating ceramic body, and a part of each heat generating resistor is exposed on a part of the surface of the ceramic body, and furthermore, a part of each heat generating resistor is exposed on a part of the surface of the ceramic body, and another surface of the ceramic body is exposed. A ceramic thermal head having a structure in which a conductor is formed within the ceramic body and the other surface portion, and the heating resistor and the conductor are connected on the surface or inside the ceramic body, A ceramic thermal conductor characterized in that a high heat conductor is formed at a surface portion of the ceramic body where a heating resistor is exposed and at a position sandwiched between each heating resistor inside the ceramic body near the surface portion and in the vicinity thereof. head.
JP57193892A 1982-11-04 1982-11-04 Ceramic thermal head Granted JPS5983682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57193892A JPS5983682A (en) 1982-11-04 1982-11-04 Ceramic thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57193892A JPS5983682A (en) 1982-11-04 1982-11-04 Ceramic thermal head

Publications (2)

Publication Number Publication Date
JPS5983682A true JPS5983682A (en) 1984-05-15
JPH0457508B2 JPH0457508B2 (en) 1992-09-11

Family

ID=16315471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57193892A Granted JPS5983682A (en) 1982-11-04 1982-11-04 Ceramic thermal head

Country Status (1)

Country Link
JP (1) JPS5983682A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402414A1 (en) * 1988-03-02 1990-12-19 E.I. Du Pont De Nemours And Company Method of manufacturing thermal printer head
US5940109A (en) * 1994-05-31 1999-08-17 Rohm Co. Ltd. Thermal printhead, substrate for the same and method for making the substrate
US5949465A (en) * 1994-06-21 1999-09-07 Rohm Co., Ltd. Thermal printhead, substrate for the same and method for making the substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402414A1 (en) * 1988-03-02 1990-12-19 E.I. Du Pont De Nemours And Company Method of manufacturing thermal printer head
US5940109A (en) * 1994-05-31 1999-08-17 Rohm Co. Ltd. Thermal printhead, substrate for the same and method for making the substrate
US5949465A (en) * 1994-06-21 1999-09-07 Rohm Co., Ltd. Thermal printhead, substrate for the same and method for making the substrate

Also Published As

Publication number Publication date
JPH0457508B2 (en) 1992-09-11

Similar Documents

Publication Publication Date Title
JPS5983682A (en) Ceramic thermal head
US4446355A (en) Crossover construction of thermal-head and method of manufacturing same
JPH0640031B2 (en) Heat flow sensor and manufacturing method thereof
JPH048236B2 (en)
JPH0419031B2 (en)
CN109383133B (en) Thermal head
JPS5851830B2 (en) thermal head
JPS5970589A (en) Manufacture of laminate ceramic thermal head
JPH0419032B2 (en)
JPH0136793B2 (en)
JP3824246B2 (en) Manufacturing method of thermal head
CN214449563U (en) Heating substrate for thin-film thermosensitive printing head
JPS5970588A (en) Manufacture of laminate ceramic thermal head
JPH0582303B2 (en)
TWI831415B (en) Thick film resistor element manufacturing method
JPS5985778A (en) Ceramic thermal head
JP4369723B2 (en) Thermal head and thermal printer using the same
JP3093602B2 (en) Manufacturing method of ceramic circuit board
JPS5934510B2 (en) thermal head
CN118254482A (en) Thermal print head and method of manufacturing the same
JP2000313133A (en) Small thermal print head
JP2595612B2 (en) Method of forming heat-resistant insulation structure
JPH0811337A (en) Thermal printing head
JPH06166200A (en) Thermal head
JPS60135267A (en) Thermal printer head