JPS5961138A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5961138A
JPS5961138A JP17125482A JP17125482A JPS5961138A JP S5961138 A JPS5961138 A JP S5961138A JP 17125482 A JP17125482 A JP 17125482A JP 17125482 A JP17125482 A JP 17125482A JP S5961138 A JPS5961138 A JP S5961138A
Authority
JP
Japan
Prior art keywords
laser
irradiation
power
low power
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17125482A
Other languages
Japanese (ja)
Other versions
JPH0586651B2 (en
Inventor
Nobuo Sasaki
伸夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17125482A priority Critical patent/JPS5961138A/en
Publication of JPS5961138A publication Critical patent/JPS5961138A/en
Publication of JPH0586651B2 publication Critical patent/JPH0586651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To maintain the electric characteristics of a semiconductor element by a method wherein, in the case of laser irradiation where a shifting of flatband voltage is generated in the laser process, a low power laser beam is reirradiated, thereby enabling to recover the flatband voltage to the level maintained before shifting. CONSTITUTION:When a powerful laser beam is irradiated on a silicon substrate 1 whereon an oxide film 2 is attached, silicon is fused and the stress of the oxide film 2 is released, and an unevenness phenomenon is generated. When a laser beam having the power of 7-8W is irradiated on the uneven part, the flatband voltage is restored. Accordingly, when the laser, having the power with which a change is made in flatband voltage due to having the laser process such as activation and the like of the ion layer of the substrate, is irradiated, a laser beam of low power of 7-8W is reirradiated after the irradiation of laser. Said low power laser irradiation can be performed easily by lowering the power of the source of laser beam. Also, the period of irradiation of such a low power laser irradiation is determined by measuring the time required for recovery of the flatband voltage in advance. Accordingly, the above-mentioned laser irradiation can be performed easily using the laser irradiation device used before.

Description

【発明の詳細な説明】 (11発明の技術分野 本発明は半導体装置の製造方法、詳しくは半導体装置の
製造]二程において形成される半導体素子のフラットハ
ンド電圧の変化をひきおこすようなパワーのレーザ照射
がなされた後に、フラットハント電圧をその変化前のレ
ヘルに回復するため低パワーのレーザ照射を行う方法に
関する。
Detailed Description of the Invention (11) Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, a method for manufacturing a semiconductor device. The present invention relates to a method of applying a low power laser irradiation to restore the flat hunt voltage to the level before the change after the irradiation has been performed.

(2)技術の背景 最近、多結晶シリコン(ポリシリコン)配線の抵抗を下
げるためや、基板のイオン注入層の活性化のために、レ
ーザアニールが用いられる1頃向にあり、これらのプロ
セスはレーザ・プロセスと呼称される。
(2) Background of the technology Recently, laser annealing is being used to lower the resistance of polycrystalline silicon (polysilicon) wiring and to activate the ion-implanted layer of the substrate, and these processes are It is called a laser process.

かかるレーザアニールは、MO5型ダイオ−1・の製造
を例にとると、第1図ta+の断面図に示される如く、
シリコン基板1の上に形成された酸化膜〔二酸化シリコ
ン(5iO2) PQ) 2を通し、ルビーレーザまた
はアルゴンレーザを照射することによってなされる。図
示の例において、レーザば酸化1戻2を透過してシリコ
ン基板のシリコンを熔かし、基板のイオン注入層を活性
化する。
Taking the manufacturing of an MO5 type diode-1 as an example, such laser annealing is performed as shown in the cross-sectional view at ta+ in FIG.
This is done by irradiating a ruby laser or argon laser through an oxide film (silicon dioxide (5iO2) PQ) 2 formed on a silicon substrate 1. In the illustrated example, a laser passes through the oxidation 1 and 2 to melt the silicon of the silicon substrate and activate the ion-implanted layer of the substrate.

(3)従来技術と問題点 強いパワーのレーザを、上記例の如く酸化膜2のついた
シリコン基板1に照射すると、基板1のシリコンか溶け
ると共に、酸化膜2の応力が解放され、酸化膜2が波う
つ現象が見られる。その理由は、シリコン基板1を酸化
するとき、5lo2はその容量がシリコンの倍にふくら
み、 5iO211A2内におい°ζはシリコン基板1
の表面に沿って圧縮応力がかかっている。この圧縮応力
は基板1のシリコンか溶けるときに解放され、前記した
5i0211鉤2が平面1plfblに示されるように
、シリコン基板1の表面と一緒になって波うつのである
(3) Prior art and problems When a high power laser is irradiated onto the silicon substrate 1 with the oxide film 2 as in the example above, the silicon on the substrate 1 melts and the stress on the oxide film 2 is released, causing the oxide film to 2 shows a rippling phenomenon. The reason is that when the silicon substrate 1 is oxidized, the capacitance of 5lo2 expands to twice that of silicon, and °ζ in 5iO211A2 is
compressive stress is applied along the surface of This compressive stress is released when the silicon of the substrate 1 melts, and the aforementioned 5i0211 hooks 2 wave together with the surface of the silicon substrate 1, as shown in the plane 1plfbl.

かかる基板の上にアルミニウム電極3を設け”CMO5
MOS型グイオートり(第1図)、このダイオードの電
気特性をC−■曲線からフラットハントと、第2図の線
図に見られるようにレーザパワーか8匈を超えるところ
から■FBのシフト(移転)が起っている。なお第2図
において、横軸はレーザパ・ノーをワット(W)で、ま
たに、従Φ山はフラットハンド電圧をポルI− (V)
で表し、図示のデータは、第1図(Clに示す?IOS
型ダイオードにおいて、基板1は300℃に加熱され、
アルゴンレーザを使用し、酸化膜2の膜厚(Xox)は
420人、シリコン基板のポウ累ソースの濃度(NA)
はl、5×10 ”” cm ’−3、基板の結晶方位
は(100)、電極3はアルミニウムを用い形成して得
たものである。
An aluminum electrode 3 is provided on such a substrate as "CMO5".
The electric characteristics of this diode can be determined from the C-■ curve by flat hunting, and from the point where the laser power exceeds 8 degrees, as seen in the diagram in Figure 2, the FB shift ( relocation) is occurring. In Figure 2, the horizontal axis represents the laser power in watts (W), and the secondary Φ represents the flat hand voltage in watts (V).
The data shown in Figure 1 (Cl?IOS
In the type diode, the substrate 1 is heated to 300°C,
Using an argon laser, the thickness of the oxide film 2 (Xox) is 420 mm, and the concentration of the oxide source on the silicon substrate (NA) is 420 mm.
The crystal orientation of the substrate is (100), and the electrode 3 is formed using aluminum.

また前記した波うち現象は、レーデパワーがIOWを紹
えるところから発生している。
Furthermore, the above-mentioned wave phenomenon occurs when the Lede power introduces the IOW.

前記したフラットハンド電圧のソフトは、シリコンとS
iO2の界面の界面準位(Qss )が増加したためと
解される。第1図fclに示ずMOS型ダイオードの電
気特性は、界面準位が小であるほど良いのであるから、
第2図に示すフラットハント電圧を図に点線で示すとこ
ろに回復さゼ、界面準位を抑えた状態を得ることが要望
される。
The flat hand voltage software mentioned above is based on silicon and S.
This is considered to be due to an increase in the interface state (Qss) at the iO2 interface. The electrical characteristics of a MOS type diode (not shown in Fig. 1 fcl) are better as the interface state is smaller.
It is desired to restore the flat hunt voltage shown in FIG. 2 to the point indicated by the dotted line in the figure, and to obtain a state in which the interface states are suppressed.

(4)発明の目的 本発明は上記従来の問題点に溺み、フラットハントの変
化(ずなわら界面準位の増大)をひきおこすようなパワ
ーのレーザ照射を行った後において、フラットハント電
圧の変化を回復しくもとに戻し)、それによって半導体
素子の電気特性を良好に保つ方法を提供することを目的
とする。
(4) Purpose of the Invention The present invention solves the above-mentioned problems of the conventional technology, and solves the problem of the flat hunt voltage after laser irradiation with a power that causes a change in the flat hunt (an increase in the interface state). The object of the present invention is to provide a method for restoring the changes (reversing the changes to their original state) and thereby maintaining good electrical characteristics of a semiconductor element.

(5)発明の構成 そしてこの目的は本発明によれば、半導体素子の製造工
程のレーザアニールにおいて当該素子のフラットハンド
電圧の変化が発生した場合、当該フラットハンド電圧を
変化前の基準に戻すに足るパワーでレーザを再度照射す
ることを特徴とする半導体装置の製造方法を提供するこ
とによって達成される。
(5) Structure and purpose of the invention According to the present invention, when a change in the flat hand voltage of a semiconductor device occurs during laser annealing in the manufacturing process of a semiconductor device, it is possible to return the flat hand voltage to the standard before the change. This is achieved by providing a method for manufacturing a semiconductor device characterized in that laser irradiation is performed again with sufficient power.

(6)発明の実施例 以F本発明の実施例を図面によって説明する。(6) Examples of the invention Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本願の発明者は、前記したフラノ1〜ハンド電圧の回復
についての実験において、第1図(blに示される波う
ったgB分に7〜8Wのパワーのレーザ照射を行うと、
フラットハンド電圧が第2図の線図に点線ご示ず如くに
回復することを61f.認した。
The inventor of the present invention conducted an experiment on recovery of the above-mentioned flannel 1-hand voltage, and found that when laser irradiation with a power of 7 to 8 W was applied to the undulating gB shown in FIG. 1 (bl),
61f. that the flat hand voltage recovers as shown by the dotted line in the diagram of FIG. Approved.

なお、半導体素子の製造上程において7〜8りのパワー
のレータ゛を照射してもフラットハンド電圧の変化は発
生しない。
Incidentally, even if a laser beam of 7 to 8 powers is irradiated during the manufacturing process of a semiconductor device, no change in the flat hand voltage occurs.

従って、本発明の方法においては、基板のイオン層の活
性化等のレーザ・プロセスのためにフラットハンド電圧
の変化をひきおこすようなパワーのレーザが照射さた場
合には、レーザ照射の後に、7〜8Wの低いパワーのレ
ーザ、を再照射する。
Therefore, in the method of the present invention, when a laser is irradiated with a power that causes a change in flat hand voltage for a laser process such as activation of an ion layer of a substrate, after laser irradiation, 7 Re-irradiate with a low power laser of ~8W.

かかる低いパワーのシー95照射は、レーザ・プロセス
に用いたレーザ光源のパワーを7〜8切にまで下げ°ζ
用いることによって容易になされうるし、また、かかる
低いパワーのレーザ照射に要する時間は、第2図の線図
でフラットハント電圧が点線のところまで回復するに要
する時間を前辺って測ることによって定める。従って、
本発明の方法は、従来のレーザ照射装置を使用すること
によって簡便に実施しうるものである。
Such low power C95 irradiation reduces the power of the laser light source used in the laser process to 7 to 8 degrees.
The time required for such low power laser irradiation can be determined by measuring the time required for the flat hunt voltage to recover to the dotted line in the diagram of FIG. . Therefore,
The method of the present invention can be easily implemented using a conventional laser irradiation device.

(7)発明の詳細 な説明したように、本発明の方法によると、半導体素子
の製造におけるレーザ・プロセスでフラットハンド電圧
のシフトが発生する如きレーザ照射がなされた場合には
、7〜8誓の低いパワーのレーザを再照射することによ
って、フラットハンド電圧をシフト前のレヘルに快復す
ることができ、半導体素子の電気特性が良好に保たれる
ので、製造される半導体素子の信頼性向上に効果大であ
る,。
(7) As described in detail, according to the method of the present invention, when laser irradiation that causes a shift in flat hand voltage is performed during the laser process in the manufacture of semiconductor devices, 7 to 8 By re-irradiating with a low power laser, the flat hand voltage can be quickly restored to the level before the shift, and the electrical characteristics of the semiconductor device can be maintained in good condition, improving the reliability of the manufactured semiconductor device. It's very effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMOS型グイオートを作る工程における同装置
要部の断面図、第2図は第1図のダイオード製造におい
てなされるレーザ照射のレーザバワーとフラットハンド
電圧の関係を示す線図である。 1−=シリコン基板、2−酸化膜、 3− 八l電極
FIG. 1 is a cross-sectional view of the main parts of the device in the process of manufacturing a MOS type GIO, and FIG. 2 is a diagram showing the relationship between the laser power of laser irradiation and the flat hand voltage performed in the manufacturing of the diode shown in FIG. 1-=silicon substrate, 2-oxide film, 3-8l electrode

Claims (1)

【特許請求の範囲】[Claims] 半導体素子の製造」二程のレーザアニールにおいて当該
素子のフラットバント電圧の変化が発生した場合、当該
フラットハント電圧を変化前の基準に戻すに足るパワー
でレーザを再度照射することを特徴とする半導体装置の
製造方法。
If a change in the flat band voltage of the device occurs during the second stage of laser annealing in the production of semiconductor devices, the semiconductor device is irradiated with a laser again with sufficient power to return the flat band voltage to the standard before the change. Method of manufacturing the device.
JP17125482A 1982-09-30 1982-09-30 Manufacture of semiconductor device Granted JPS5961138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17125482A JPS5961138A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17125482A JPS5961138A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5961138A true JPS5961138A (en) 1984-04-07
JPH0586651B2 JPH0586651B2 (en) 1993-12-13

Family

ID=15919908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17125482A Granted JPS5961138A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5961138A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162239A (en) * 1990-12-27 1992-11-10 Xerox Corporation Laser crystallized cladding layers for improved amorphous silicon light-emitting diodes and radiation sensors
US5210766A (en) * 1990-12-27 1993-05-11 Xerox Corporation Laser crystallized cladding layers for improved amorphous silicon light-emitting diodes and radiation sensors
US5882127A (en) * 1995-03-16 1999-03-16 Rohm Co. Ltd. Card printer and method of printing on cards using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758363A (en) * 1980-09-26 1982-04-08 Oki Electric Ind Co Ltd Manufacture of mos type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758363A (en) * 1980-09-26 1982-04-08 Oki Electric Ind Co Ltd Manufacture of mos type semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162239A (en) * 1990-12-27 1992-11-10 Xerox Corporation Laser crystallized cladding layers for improved amorphous silicon light-emitting diodes and radiation sensors
US5210766A (en) * 1990-12-27 1993-05-11 Xerox Corporation Laser crystallized cladding layers for improved amorphous silicon light-emitting diodes and radiation sensors
US5882127A (en) * 1995-03-16 1999-03-16 Rohm Co. Ltd. Card printer and method of printing on cards using the same

Also Published As

Publication number Publication date
JPH0586651B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
JPS58118A (en) Method of laser trimming element on semiconductor substrate
JPH1050607A (en) Manufacture of semiconductor device
JP2750380B2 (en) Method for manufacturing semiconductor device
JPH02275624A (en) Ohmic electrode and its forming method
JPH114001A (en) Semiconductor device and manufacture thereof
JPS5961138A (en) Manufacture of semiconductor device
JPS61193456A (en) Manufacture of semiconductor element
JP4312741B2 (en) Thin film transistor substrate for liquid crystal display device and manufacturing method thereof
KR100922834B1 (en) Method for reducing and homogenizing the thickness of a semiconductor layer which lies on the surface of an electrically insulating material
JPH08148692A (en) Manufacture of thin-film semiconductor device
JPS5860560A (en) Cutting method for redundant circuit of semiconductor device and fuse part thereof
JPS6250972B2 (en)
JP2701711B2 (en) Method for manufacturing polycrystalline silicon thin film
JPS61102723A (en) Manufacture of semiconductor device
JP2831006B2 (en) Method for manufacturing thin film transistor
JP2006287166A (en) Semiconductor device holder, separating method of semiconductor device and display apparatus
JPH03165515A (en) Contact forming method
JPH10270696A (en) Manufacture of semiconductor device
JPH05152335A (en) Manufacturing method of semiconductor device
JP2853143B2 (en) Method for manufacturing semiconductor device
JPS582069A (en) Manufacture of semiconductor device
JP2000077401A (en) Formation of semiconductor film
JPH01300552A (en) Manufacture of semiconductor device
JPS61241945A (en) Hard thin-film conducting path and manufacture thereof
JPH02162772A (en) Semiconductor device