JPH0586651B2 - - Google Patents

Info

Publication number
JPH0586651B2
JPH0586651B2 JP57171254A JP17125482A JPH0586651B2 JP H0586651 B2 JPH0586651 B2 JP H0586651B2 JP 57171254 A JP57171254 A JP 57171254A JP 17125482 A JP17125482 A JP 17125482A JP H0586651 B2 JPH0586651 B2 JP H0586651B2
Authority
JP
Japan
Prior art keywords
laser
flat band
band voltage
silicon
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57171254A
Other languages
Japanese (ja)
Other versions
JPS5961138A (en
Inventor
Nobuo Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17125482A priority Critical patent/JPS5961138A/en
Publication of JPS5961138A publication Critical patent/JPS5961138A/en
Publication of JPH0586651B2 publication Critical patent/JPH0586651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術 本発明は半導体装置の製造方法、詳しくは半導
体装置の製造工程において形成される半導体素子
のフラツトバンド電圧の変化をひきおこすような
パワーのレーザ照射がなされた後に、フラツトバ
ンド電圧をその変化前のレベルに回復するため低
パワーのレーザ照射を行う方法に関する。
[Detailed Description of the Invention] (1) Technique of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more specifically, a method for manufacturing a semiconductor device, in which laser irradiation with a power that causes a change in the flat band voltage of a semiconductor element formed in the manufacturing process of a semiconductor device is performed. The present invention relates to a method of applying low power laser irradiation to restore the flat band voltage to the level before the change.

(2) 技術の背景 最近、多結晶シリコン(ポリシリコン)配線の
抵抗を下げるためや、基板のイオン注入層の活性
化のために、レーザアニールが用いられる傾向に
あり、これらのプロセスはレーザ・プロセスと呼
称される。
(2) Technology background Recently, laser annealing has been used to lower the resistance of polycrystalline silicon (polysilicon) wiring and to activate the ion-implanted layer of the substrate. called a process.

かかるレーザアニールは、MOS型ダイオード
の製造を例にとると、第1図aの断面図に示され
る如く、シリコン基板1の上に形成された酸化膜
〔二酸化シリコン(sio2)膜〕2を通し、ルビー
レーザまたはアルゴンレーザを照射することによ
つてなされる。図示の例において、レーザは酸化
膜2を透過してシリコン基板のシリコンを溶か
し、基板のイオン注入層を活性化する。
Taking the manufacture of a MOS type diode as an example, such laser annealing is used to oxidize an oxide film [silicon dioxide (SIO 2 ) film] 2 formed on a silicon substrate 1, as shown in the cross-sectional view of FIG. 1a. This is done by irradiating with a ruby laser or an argon laser. In the illustrated example, the laser passes through the oxide film 2 to melt the silicon of the silicon substrate and activate the ion-implanted layer of the substrate.

(3) 従来技術と問題点 強いパワーのレーザを、上記例の如く酸化膜2
のついたシリコン基板1に照射すると、基板1の
シリコンが溶けると共に、酸化膜2の応力が解放
され、酸化膜2が波うつ現象が見られる。その理
由は、シリコン基板1を酸化するとき、si02はそ
の容量がシリコンの倍にふくらみ、si02膜2内に
おいてはシリコン基板1の表面に沿つて圧縮応力
がかかつている。この圧縮応力は基板1のシリコ
ンが溶けるときに解放され、前記したsi02膜2が
断面図bに示されるように、シリコン基板1の表
面と一緒になつて波うつのである。
(3) Conventional technology and problems A strong power laser is applied to the oxide film 2 as in the example above.
When irradiation is applied to the silicon substrate 1 with the irradiation, the silicon of the substrate 1 melts and the stress in the oxide film 2 is released, causing the oxide film 2 to wave. The reason for this is that when the silicon substrate 1 is oxidized, the capacitance of si0 2 expands to twice that of silicon, and compressive stress is applied within the si0 2 film 2 along the surface of the silicon substrate 1. This compressive stress is released when the silicon of the substrate 1 melts, and the si0 2 film 2 waves together with the surface of the silicon substrate 1, as shown in cross-sectional view b.

かかる基板の上にアルミニウム電極3を設けて
MOS型ダイオードを作り(第1図)、このダイオ
ードの電気特性をC−V曲線からフラツトバンド
電圧(VFB)を求めることによつて調べてみる
と、第2図の線図に見られるようにレーザパワー
が8Wを超えるところからVFBのシフト(移転)
が起つている。なお第2図において、横軸はレー
ザパワーをワツトWで、また縦軸はフラツトバン
ド電圧をボルトVで表し、図示のデータは、第1
図cに示すMOS型ダイオードにおいて、基板1
は300℃に加熱され、アルゴンレーザを使用し、
酸化膜2の膜厚(Xox)は420Å、シリコン基板
のホウ酸ソースの濃度(NA)は1.5×1015cm-3
基板の結晶方位は(100)、電極3はアルミニウム
を用い形成して得たものである。また前記した波
うち現象は、レーザパワーが10Wを超えるところ
から発生している。
An aluminum electrode 3 is provided on such a substrate.
When we made a MOS diode (Figure 1) and investigated the electrical characteristics of this diode by determining the flat band voltage (VFB) from the CV curve, we found that the laser VFB shift (relocation) from the point where the power exceeds 8W
is happening. In FIG. 2, the horizontal axis represents the laser power in watts W, and the vertical axis represents the flat band voltage in volts V.
In the MOS type diode shown in Figure c, the substrate 1
is heated to 300℃ and uses an argon laser,
The film thickness (Xox) of oxide film 2 is 420 Å, the concentration (NA) of the boric acid source on the silicon substrate is 1.5×10 15 cm -3 ,
The crystal orientation of the substrate is (100), and the electrode 3 is formed using aluminum. Furthermore, the above-described wave phenomenon occurs when the laser power exceeds 10W.

前記したフラツトバンド電圧のシフトは、シリ
コンとsi02の界面の界面準位(Qss)が増加した
ためと解される。第1図cに示すMOS型ダイオ
ードの電気特性は、界面準位が小であるほど良い
のであるから、第2図に示すフラツトバンド電圧
を図に点線で示すところに回復させ、界面準位を
抑えた状態を得ることが要望される。
The shift in the flat band voltage described above is understood to be due to an increase in the interface state (Qss) at the interface between silicon and si02 . Since the electrical characteristics of the MOS type diode shown in Figure 1c are better as the interface state is smaller, the flat band voltage shown in Figure 2 is restored to the point indicated by the dotted line in the figure, suppressing the interface state. It is desired to obtain a state in which

(4) 発明の目的 本発明は上記従来の問題点に鑑み、フラツトバ
ンドの変化(すなわち界面順位の増大)をひきお
こすようなパワーのレーザ照射を行つた後におい
て、フラツトバンド電圧の変化を回復し(もとに
戻し)、それによつて半導体素子の電気特性を良
好に保つ方法を提供することを目的とする。
(4) Purpose of the Invention In view of the above-mentioned conventional problems, the present invention provides a method for recovering (recovering) the change in flat band voltage after laser irradiation with a power that causes a change in the flat band (that is, an increase in the interface order). It is an object of the present invention to provide a method for maintaining good electrical characteristics of a semiconductor element.

(5) 発明の構成 そしてこの目的は本発明によれば、シリコン層
上にシリコン酸化膜と電極が順次形成されてなる
MOS構造を有する半導体素子の製造工程におい
て、前記シリコン層と前記シリコン酸化膜との界
面を溶融させ前記半導体素子のフラツトバンド電
圧を増加させる出力以上で前記半導体素子のレー
ザ・プロセスのためのレーザ照射を行う工程と、
前記半導体素子に、上記界面を溶融しない小さな
出力でレーザ照射を行い、前記フラツトバンド電
圧を減少させる工程とを含み、前記フラツトバン
ド電圧を調整することを特徴とする半導体装置の
製造方法を提供することによつて解決される。
(5) Structure of the invention According to the invention, this object is achieved by sequentially forming a silicon oxide film and an electrode on a silicon layer.
In the manufacturing process of a semiconductor device having a MOS structure, laser irradiation for laser processing of the semiconductor device is performed at an output higher than that which melts the interface between the silicon layer and the silicon oxide film and increases the flat band voltage of the semiconductor device. The process to be carried out and
To provide a method for manufacturing a semiconductor device, comprising the step of irradiating the semiconductor element with a laser at a low output that does not melt the interface to reduce the flat band voltage, and adjusting the flat band voltage. It will be resolved accordingly.

(6) 発明の実施例 以下本発明の実施例を図面によつて説明する。(6) Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.

本願の発明者は、前記したフラツトバンド電圧
の回復についての実験において、第1図bに示さ
れる波うつた部分に7〜8Wのパワーのレーザ照
射を行うと、フラツトバンド電圧が第2図の線図
に点線で示す如くに回復することを確認した。な
お、半導体素子の製造工程において7〜8Wのパ
ワーのレーザを照射してもフラツトバンド電圧の
変化は発生しない。
In the above-mentioned experiment on the recovery of the flat band voltage, the inventor of the present application found that when a laser beam with a power of 7 to 8 W was applied to the undulating portion shown in FIG. It was confirmed that recovery occurred as shown by the dotted line. Note that even if a laser with a power of 7 to 8 W is irradiated in the manufacturing process of a semiconductor device, no change in the flat band voltage occurs.

従つて、本発明の方法においては、基板のイオ
ン層の活性化等のレーザ・プロセスのためにフラ
ツトバンド電圧の変化をひきおこすようなパワー
のレーザが照射さた場合には、レーザ照射の後
に、7〜8Wの低いパワーのレーザを再照射する。
かかる低いパワーのレーザ照射は、レーザ・プロ
セスに用いたレーザ光源のパワーを7〜8Wにま
で下げて用いることによつて容易になされうる
し、また、かかる低いパワーのレーザ照射に要す
る時間は、第2図の線図でフラツトバンド電圧が
点線のところまで回復するに要する時間を前以つ
て測ることによつて定める。従つて、本発明の方
法は、従来のレーザ照射装置を使用することによ
つて簡便に実施しうるものである。
Therefore, in the method of the present invention, when a laser is irradiated with a power that causes a change in flat band voltage for a laser process such as activation of an ion layer of a substrate, after laser irradiation, Re-irradiate with a low power laser of ~8W.
Such low power laser irradiation can be easily achieved by lowering the power of the laser light source used in the laser process to 7 to 8 W, and the time required for such low power laser irradiation is The time required for the flat band voltage to recover to the dotted line in the diagram in Figure 2 is determined by measuring in advance. Therefore, the method of the present invention can be easily implemented using a conventional laser irradiation device.

(7) 発明の効果 以上説明したように、本発明の方法によると、
半導体素子の製造におけるレーザ・プロセスでフ
ラツトバンド電圧のシフトが発生する如きレーザ
照射がなされた場合には、7〜8Wの低いパワー
のレーザを再照射することによつて、フラツトバ
ンド電圧をシフト前のレベルに恢復することがで
き、半導体素子の電気特性が良好に保たれるの
で、製造される半導体素子の信頼性向上に効果大
である。
(7) Effects of the invention As explained above, according to the method of the present invention,
If laser irradiation that causes a shift in the flat band voltage occurs during the laser process in semiconductor device manufacturing, re-irradiation with a low power laser of 7 to 8 W will bring the flat band voltage back to the level before the shift. Since the electrical characteristics of the semiconductor device can be restored to good condition, it is highly effective in improving the reliability of the manufactured semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMOS型ダイオードを作る工程におけ
る同装置要部の断面図、第2図は第1図のダイオ
ード製造においてなされるレーザ照射のレーザパ
ワーとフラツトバンド電圧の関係を示す線図であ
る。 1……シリコン基板、2……酸化膜、3……
Al電極。
FIG. 1 is a sectional view of the main parts of the device in the process of manufacturing a MOS type diode, and FIG. 2 is a diagram showing the relationship between the laser power of laser irradiation and flat band voltage performed in the manufacturing of the diode shown in FIG. 1...Silicon substrate, 2...Oxide film, 3...
Al electrode.

Claims (1)

【特許請求の範囲】 1 シリコン層上にシリコン酸化膜と電極が順次
形成されてなるMOS構造を有する半導体素子の
製造工程において、 前記シリコン層と前記シリコン酸化膜との界面
を溶融させ前記半導体素子のフラツトバンド電圧
を増加させる出力以上で前記半導体素子のレー
ザ・プロセスのためのレーザ照射を行う工程と、 前記半導体素子に、上記界面を溶融しない小さ
な出力でレーザ照射を行い、前記フラツトバンド
電圧を減少させる工程とを含み、 前記フラツトバンド電圧を調整することを特徴
とする半導体装置の製造方法。
[Claims] 1. In the manufacturing process of a semiconductor element having a MOS structure in which a silicon oxide film and an electrode are sequentially formed on a silicon layer, an interface between the silicon layer and the silicon oxide film is melted to form the semiconductor element. irradiating the semiconductor element with a laser at a power equal to or higher than the power that increases the flat band voltage of the semiconductor element; and irradiating the semiconductor element with a laser at a low power that does not melt the interface to reduce the flat band voltage. A method for manufacturing a semiconductor device, the method comprising: adjusting the flat band voltage.
JP17125482A 1982-09-30 1982-09-30 Manufacture of semiconductor device Granted JPS5961138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17125482A JPS5961138A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17125482A JPS5961138A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5961138A JPS5961138A (en) 1984-04-07
JPH0586651B2 true JPH0586651B2 (en) 1993-12-13

Family

ID=15919908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17125482A Granted JPS5961138A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5961138A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162239A (en) * 1990-12-27 1992-11-10 Xerox Corporation Laser crystallized cladding layers for improved amorphous silicon light-emitting diodes and radiation sensors
US5210766A (en) * 1990-12-27 1993-05-11 Xerox Corporation Laser crystallized cladding layers for improved amorphous silicon light-emitting diodes and radiation sensors
BR9607209A (en) * 1995-03-16 1997-12-30 Rohm Co Ltd Card printer and card printing method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758363A (en) * 1980-09-26 1982-04-08 Oki Electric Ind Co Ltd Manufacture of mos type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758363A (en) * 1980-09-26 1982-04-08 Oki Electric Ind Co Ltd Manufacture of mos type semiconductor device

Also Published As

Publication number Publication date
JPS5961138A (en) 1984-04-07

Similar Documents

Publication Publication Date Title
JP4369040B2 (en) Method for producing a thin film made of a solid material
US4404735A (en) Method for manufacturing a field isolation structure for a semiconductor device
JPS6259896B2 (en)
JPH0574803A (en) Manufacture of semiconductor device
JPH07297377A (en) Semiconductor device and manufacture thereof
JPH0586651B2 (en)
JPH023308B2 (en)
JPS63314862A (en) Manufacture of thin-film transistor
JPS61263273A (en) Manufacture of thin film semiconductor device
JPS5823475A (en) Semiconductor device and its manufacture
JPH0467336B2 (en)
JPS5833822A (en) Preparation of semiconductor substrate
JPS5860560A (en) Cutting method for redundant circuit of semiconductor device and fuse part thereof
JP2701711B2 (en) Method for manufacturing polycrystalline silicon thin film
JPH0468770B2 (en)
JPS5837934A (en) Manufacture of semiconductor device
JPS58190043A (en) Multi-layer wiring
JP3413710B2 (en) Method for manufacturing thin film transistor
JPS626649B2 (en)
JPH0620895A (en) Manufacture of soil substrate
JPH02170522A (en) Manufacture of semiconductor device
JPS6333292B2 (en)
JPH01189145A (en) Manufacture of semiconductor substrate
JPS5844745A (en) Manufacture of semiconductor device
JP2560030B2 (en) Method for manufacturing semiconductor device