JPS595349A - 加算器 - Google Patents

加算器

Info

Publication number
JPS595349A
JPS595349A JP58113614A JP11361483A JPS595349A JP S595349 A JPS595349 A JP S595349A JP 58113614 A JP58113614 A JP 58113614A JP 11361483 A JP11361483 A JP 11361483A JP S595349 A JPS595349 A JP S595349A
Authority
JP
Japan
Prior art keywords
signal
carry
adder
circuit
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58113614A
Other languages
English (en)
Inventor
Heizu Matsukuarisutaa Uiriamu
ウイリアム・ヘイズ・マツクアリスタ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Japan Inc
Original Assignee
Yokogawa Hewlett Packard Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hewlett Packard Ltd filed Critical Yokogawa Hewlett Packard Ltd
Publication of JPS595349A publication Critical patent/JPS595349A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/505Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
    • G06F7/506Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination with simultaneous carry generation for, or propagation over, two or more stages
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/501Half or full adders, i.e. basic adder cells for one denomination
    • G06F7/503Half or full adders, i.e. basic adder cells for one denomination using carry switching, i.e. the incoming carry being connected directly, or only via an inverter, to the carry output under control of a carry propagate signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/48Indexing scheme relating to groups G06F7/48 - G06F7/575
    • G06F2207/4802Special implementations
    • G06F2207/4812Multiplexers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Logic Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本発明はデジタル加算器に関する。
桁情報の伝播を伴う固定小数点加算機能は、デジタル機
能としては共通して要求される機能である。この作用は
、回路レイアウト面積と加算速度との関係を考慮して設
計者が行なう選択により種々の方法で実行される。
l−ビット全加算器に対するプール真理直衣がF記の表
1に示されている。ここではAiは第1オペランド、B
iは第2オペランド、C1は指入力信号、Ci++は桁
出力信号、Diは和信号、そしてPiは伝播信号である
。伝播信号とは和信号と桁信号の両方を作るのに用いら
れる中間信号である。
表    1 Ci Ai Bi Pi l)i Ci+to oo 
o o。
001110 010110 011       001 100010 101101 110101 111011 表1を完成するだめのプール方程式は次式で表わされる
。                     IPi
  = Ai X0IL   B1C1++ = Pi
 X Ci  + Pi  X t3iDi  = P
iXORCi     である。
ここで”X 01(”は排他的論理和、”X′は論理積
、モして”+”は論理和を表わす。出力Ci++とDi
 ft−Ai 、 f3i 、 Ci 、 Pi及びそ
の逆Piから発生される。
こりよ5に加算器は、2つの重要な機能、即ち加算と桁
上げな行なう回路を有する。従来の設計では、これら2
つの機能を別個の回路で構成し、そしてそれらを後で線
路で結線する構成となっていた。しかしながら、加算機
能と桁上げ機能とを行う各回路間を電線又は他の電気的
結合手段で結合することは、各回路中に冗長な論理回路
ケ持ち込むことになる。
本発明の目的は二進加算器を提供することであり、本発
明による二進加算器は大規模集積回路(LStI)にて
製造可能であり、回路内のすべての結合点に容易にアク
セスできるという利点を有する。冗長な論理要素は不必
要であり、規則正しい回路要素配列をなしており、回路
はN−ビット加算器を容易に構成できる。そして本回路
は少ない回路要素で構成され、寸法は小さく、加算速度
も早(なる。以下図面を用いて本発明を説明する。
第1図は従来の4ビット先見桁上げ加算器(キャリイ・
ルック・アヘッド・アダー)のブロック図である。この
従来加算器においては、桁上げ信号通路lOと和信号通
路2oとにそれぞれ別個に論理回路が必要である。入力
信号は第1オペランド、A(0−3)、第2オペランド
、B(0−3)、及び前の加算セルからの線3o上の桁
上げ入力信号Cinである。出力は相のデジタル信号D
(0−3)と桁上げ出力信号Cout である。グー)
31−34は2人カアンドゲートであり、ゲート41−
48は2人力排他的オアゲートであり、ゲート50は4
人カアンドゲートであり、そして装置61−67は2対
1マルチプレクサ(MLIX)である。
かかる加算器に用いられる特に効率の良い2対IM[J
X(100)の詳細が第2A図及び第2B図に図示され
ている。入力信号は線路130 、140 。
150にそれぞれ与えられるINo信号、IN1信号お
よび制御(CONTROL)信号であり、出力信号は線
路160上の出力信号(OUT)である。制御信号が論
理“0″であるとき、PチャネルMO8FET110は
”、t ン”、Nf’rネルMO8F”BT120は“
オフ“であり、INo信号が出力線に与えられる。制御
信号が論理110であるとき、NチャネルMO8F’ 
ET 120は”オン”、PチャネルMO8FIE、′
r 110 ハ’ オフ ” テ、&す、IN、信号が
出力線に与えられる。このため、MOX 100に対す
るプール方程式は次式となる。
出力=((制御信号)x(IN、信号)〕+〔(制御信
号)x(INo信号)〕 この式は表1のプール方程式におけるCiの表示と同じ
形なしている。第2B図は2対I MUXloo の論
理的等価回路図である。
再び第1図において、このセルは加算器中の最下位桁部
のセルであるので、線路3o^号C1n=0とする。も
し例えばAオペランドが0011(十進数の3)、Bオ
ペランドが0101 (十進数の5)とすると、D線、
D(0−3)上の結果として生じる和はtoooとなる
(十進数の8)。和は4桁D(0−3)内で作られるか
ら、桁上げ信号Cout=0 である。この従来の加算
器では、MUX61.62及び63が桁上げ信号Cou
tを発生するりプル径路を与え、MUX64.65及び
66が和信号D(0−3)を発生する別個のりプル径路
を与える。
第3図は本発明の一実施例による加算器のブロック図で
ある。図において、MUX 210.211゜212及
び213は、和信号D(0−3)を桁上げ信号Cgut
 の両方に対して単一のりプル径路を与えている。この
ため本発明によれば4ビツト加算器は5個のMUX(2
10〜214)を使用する。
一方、第1図の従来の加算器は7個のMUX(61−6
7)を使用する。
第3図では、また第1図では用いられたアンド’7’−
)31〜34 を使用していない。アンドゲート31−
34  によって行なわれていた論理機能は、和と桁上
げ機能を行なうのに使われる2対lマルチプレクサの作
用を充分に利用することによって除かれている。さらに
第3図に示されているように、Bオヘラy)”B (0
−3)ハMLJX210−213ヘのG(0−3)入力
として直接用いられている。
このことも回路素子数を減少させる。
以上の説明より明らかなように本発明によれば冗長な論
理要素な用いることな(回路構成が極めて簡単な加算器
を提供できる。なお上述回路はMO8構造以外の他の技
術により構成できることは勿論である。
【図面の簡単な説明】
第1図は従来の4ビツト加算器のブロック図、第2A図
は第1図に示したマルチプレクサの詳細回路図、第2B
図は第2A図に示したマルチプレクサの等価回路図、第
3図は本発明による加算器のブロック図である。 61〜67:マルチプレクサ 210〜214:マルチプレクサ

Claims (1)

    【特許請求の範囲】
  1. 第1オペランドと第2オペランドとを入力信号とする第
    1論理回路と、桁上げ入力信号および前記第1論理回路
    の出力信号とを入力信号とし和信号を出力する第2論理
    回路と、前記第1論理回路の出力信号な制御信号、前記
    第2オペランドおよび前記桁上げ入力信号を入力信号と
    し、桁上げ信号を発生する選択的ゲート回路とを有する
    加算器。
JP58113614A 1982-07-01 1983-06-23 加算器 Pending JPS595349A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US39420182A 1982-07-01 1982-07-01
US394201 1982-07-01

Publications (1)

Publication Number Publication Date
JPS595349A true JPS595349A (ja) 1984-01-12

Family

ID=23557977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113614A Pending JPS595349A (ja) 1982-07-01 1983-06-23 加算器

Country Status (2)

Country Link
EP (1) EP0098692A3 (ja)
JP (1) JPS595349A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270935A (ja) * 1985-09-24 1987-04-01 Sharp Corp デイジタル加算器
US4682303A (en) * 1983-09-05 1987-07-21 Matsushita Electric Industrial Co., Ltd. Parallel binary adder
JPH0214142U (ja) * 1988-07-07 1990-01-29
US4918642A (en) * 1988-03-29 1990-04-17 Chang Chih C Isolated carry propagation fast adder
JPH04242825A (ja) * 1990-05-10 1992-08-31 Xilinx Inc プログラマブル論理デバイスと論理ブロックの順序アレイと集積回路構造とコンフィグラブル論理ブロックアレイ
JPH04296933A (ja) * 1991-03-04 1992-10-21 Mitsubishi Electric Corp 半導体集積回路装置
US7867593B2 (en) 2004-03-17 2011-01-11 Brother Kogyo Kabushiki Kaisha Tape for tape printer
CN111384944A (zh) * 2018-12-28 2020-07-07 上海寒武纪信息科技有限公司 全加器、半加器、数据处理方法、芯片及电子设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4718034A (en) * 1984-11-08 1988-01-05 Data General Corporation Carry-save propagate adder
EP0218071B1 (de) * 1985-09-30 1993-02-17 Siemens Aktiengesellschaft Addierzelle für Carry-Ripple-Addierer in CMOS-Technik
JP2885402B2 (ja) * 1988-06-15 1999-04-26 富士通株式会社 並列形全加算器の桁上げ伝搬回路
US5357235A (en) * 1992-04-30 1994-10-18 Sgs-Thomson Microelectronics, Inc. Parallelized magnitude comparator
US5319347A (en) * 1992-04-30 1994-06-07 Sgs-Thomson Microelectronics, Inc. Parallelized magnitude comparator for comparing a binary number to a fixed value
GB2270400B (en) * 1992-09-08 1996-09-18 Sony Corp Digital audio mixer
AU2002317928A1 (en) * 2001-06-13 2003-05-19 Zencod S.A. Cryptographic processing accelerator board
US7746100B2 (en) * 2008-04-28 2010-06-29 Altera Corporation Flexible adder circuits with fast carry chain circuitry

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767906A (en) * 1972-01-21 1973-10-23 Rca Corp Multifunction full adder
DE2647982A1 (de) * 1976-10-22 1978-04-27 Siemens Ag Logische schaltungsanordnung in integrierter mos-schaltkreistechnik

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682303A (en) * 1983-09-05 1987-07-21 Matsushita Electric Industrial Co., Ltd. Parallel binary adder
JPS6270935A (ja) * 1985-09-24 1987-04-01 Sharp Corp デイジタル加算器
US4918642A (en) * 1988-03-29 1990-04-17 Chang Chih C Isolated carry propagation fast adder
JPH0214142U (ja) * 1988-07-07 1990-01-29
JPH04242825A (ja) * 1990-05-10 1992-08-31 Xilinx Inc プログラマブル論理デバイスと論理ブロックの順序アレイと集積回路構造とコンフィグラブル論理ブロックアレイ
JPH04296933A (ja) * 1991-03-04 1992-10-21 Mitsubishi Electric Corp 半導体集積回路装置
US7867593B2 (en) 2004-03-17 2011-01-11 Brother Kogyo Kabushiki Kaisha Tape for tape printer
CN111384944A (zh) * 2018-12-28 2020-07-07 上海寒武纪信息科技有限公司 全加器、半加器、数据处理方法、芯片及电子设备

Also Published As

Publication number Publication date
EP0098692A3 (en) 1986-04-16
EP0098692A2 (en) 1984-01-18

Similar Documents

Publication Publication Date Title
US5508950A (en) Circuit and method for detecting if a sum of two multibit numbers equals a third multibit constant number prior to availability of the sum
JPS595349A (ja) 加算器
JPH0479013B2 (ja)
US4878192A (en) Arithmetic processor and divider using redundant signed digit arithmetic
US6285300B1 (en) Apparatus and method for reducing power and noise through reduced switching recording in logic devices
JPS63102510A (ja) 排他的orゲートおよび/または排他的norゲートを構成する組合せ回路
US4709346A (en) CMOS subtractor
US5251164A (en) Low-power area-efficient absolute value arithmetic unit
JPH0552530B2 (ja)
US4873660A (en) Arithmetic processor using redundant signed digit arithmetic
US4866657A (en) Adder circuitry utilizing redundant signed digit operands
JPH06195201A (ja) 不等桁上げ方式(varied carry scheme)を用いた高速加算器とそれに関連する方法
US4935892A (en) Divider and arithmetic processing units using signed digit operands
JPH0366693B2 (ja)
US5031136A (en) Signed-digit arithmetic processing units with binary operands
US3462589A (en) Parallel digital arithmetic unit utilizing a signed-digit format
US6334136B1 (en) Dynamic 3-level partial result merge adder
US5812437A (en) Programmable logic unit for arithmetic, logic and equality functions
US6301597B1 (en) Method and apparatus for saturation in an N-NARY adder/subtractor
US6272514B1 (en) Method and apparatus for interruption of carry propagation on partition boundaries
JP3137629B2 (ja) 桁上げ‐セーブ算術演算機構に対する加算器セル
US5617345A (en) Logical operation circuit and device having the same
JPH0460252B2 (ja)
Veeramachaneni Design of efficient VLSI arithmetic circuits
JP3199196B2 (ja) 5入力加算器