JPS594171A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS594171A
JPS594171A JP57115037A JP11503782A JPS594171A JP S594171 A JPS594171 A JP S594171A JP 57115037 A JP57115037 A JP 57115037A JP 11503782 A JP11503782 A JP 11503782A JP S594171 A JPS594171 A JP S594171A
Authority
JP
Japan
Prior art keywords
diffusion
gate
heat treatment
double
double gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57115037A
Other languages
Japanese (ja)
Inventor
Hirokazu Miyoshi
三好 寛和
Hiroshige Takahashi
高橋 広成
Akira Nishimoto
西本 章
Akira Ando
安東 亮
Moriyoshi Nakajima
盛義 中島
Masaharu Tokuda
徳田 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57115037A priority Critical patent/JPS594171A/en
Publication of JPS594171A publication Critical patent/JPS594171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates

Abstract

PURPOSE:To improve electric characteristics of a semiconductor device by forming diffused layers of source and drain separately in the first and second diffusing steps, and forming double diffused layers of different diffusion depths and defferent impurity densities. CONSTITUTION:The first gate oxidized film 3, the first polysilicon film 4 to become a floating gate, the second gate oxidized film 5 and the second polysilicon film 6 to become a control gate are formed in the region which is surrounded by an interelement isolating oxidized film 2 of a substrate 1 in a double gate structure, arsenic ions are then implanted from the double gate, a heat treatment is performed in nitrogen atmosphere, thereby obtaining shallow diffused layers 8, 8 to become source and drain. Then, parts of the double gate structure and the part of the layers 8, 8 of the same structure side are covered with a resist pattern 9. With the pattern 9 as a mask, arsenic ions are then implanted, the pattern 9 is then removed by oxygen plasma etching, heat treatment is then performed in nitrogen atmosphere, thereby forming shallow diffused layers 8a, 8a of approx. 0.2mum and diffused layers 8b, 8b which are deeper by 0.45mum than the layers 8a, 8a.

Description

【発明の詳細な説明】 この発明は半導体装置の製造方法に関し、特に二重ゲー
ト構造を有する不揮発性半導体メモリ装置におけるメモ
リ部、あるいは周辺回路素子部のソース・ドレインの拡
散形成方法に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for forming source/drain diffusions in a memory section or a peripheral circuit element section in a nonvolatile semiconductor memory device having a double gate structure. be.

近年、この種の不揮発性半導体メモリ装置においては、
集積度の増加に伴ない、素子のソース・ドレイン部の形
成に、砒素の拡散を利用する方法が一般的に行なわれて
いる。すなわち、この従来方法は、第1図に示されてい
るように、シリコン基板(1)の素子間分離酸化膜(2
)で囲まれた領域上に、第1ゲート酸化膜(3)、70
−ティングゲートとなる第1ポリシリコノ膜(4)、第
2ゲート酸化膜(5)。
In recent years, in this type of nonvolatile semiconductor memory device,
As the degree of integration increases, a method using arsenic diffusion is commonly used to form source and drain portions of devices. That is, in this conventional method, as shown in FIG.
), a first gate oxide film (3), 70
- A first polysilicon film (4) and a second gate oxide film (5), which will serve as a gate gate.

およびコントロールゲートとなる第2ポリシリコン膜(
6)の二重ゲート構造を形成したのち、この二重ゲート
上から基板(1)に、イオン注入法によって選択的に砒
素を注入し、かつ熱処理によりこの砒素の拡散を促進さ
せ、ソース・ドレインとなる拡散層(7)を形成するも
のであった。
and a second polysilicon film (
After forming the double gate structure of 6), arsenic is selectively implanted into the substrate (1) from above the double gate by ion implantation, and the diffusion of this arsenic is promoted by heat treatment to form the source/drain structure. A diffusion layer (7) was formed.

しかし乍らこの砒素の拡散層によるソース・ドレイン形
成方法では、従前からの燐の拡散層によるソース・ドレ
イン形成方法に比較して、シリコン基板中での砒素の拡
散が遅匹ために、砒素の濃度分布が拡散層と基板とで急
激に変化し、ソース・ドレインの接合における電気的耐
圧が減少する不都合があった。
However, in this method of forming sources and drains using an arsenic diffusion layer, the diffusion of arsenic in the silicon substrate is slower than in the conventional method of forming sources and drains using a phosphorus diffusion layer. There is a problem in that the concentration distribution changes rapidly between the diffusion layer and the substrate, and the electrical withstand voltage at the source-drain junction decreases.

この発明は従来のこのような欠点に鑑み、ソース・ドレ
インどなる拡散層を拡散深さ、ならびに砒素注入量がそ
れぞれに異なるように二重に形成して、その電気的特性
を改善したものである@以下、この発明方法の一実施例
につき、第2図。
In view of these conventional drawbacks, this invention improves the electrical characteristics by forming double source/drain diffusion layers with different diffusion depths and arsenic implantation amounts. @The following is an example of the method of this invention shown in FIG.

第3図を参照して詳細に説明する。This will be explained in detail with reference to FIG.

まず第2図実施例方法においては、従来方法と同様に、
シリコン基板(])の素子間分離酸化膜(2)で囲まれ
た領域内に、第1ゲート酸化膜(3)、フローティング
ゲートとなる第1ポリシリコン膜(4)、第2ゲート酸
化膜(5)、およびコントロールゲートとなる第2ポリ
シリコン膜(6)を形成し、公知のように写真製版なら
びにエツチング技術により二重ゲート構造とし、その後
この二重ゲートからイオン注入法により、砒素イオン5
0 KeV、 I X 10”論の注入をなし、かつ窒
素雰囲気中で950’0.30分の熱処理を行なって、
最終的にソース・ドレインとなる浅い拡散層(8) 、
 (8)を得る(同図(a))。
First, in the method of the embodiment shown in FIG. 2, as in the conventional method,
A first gate oxide film (3), a first polysilicon film (4) serving as a floating gate, and a second gate oxide film ( 5), and a second polysilicon film (6) which will serve as a control gate, are formed into a double gate structure by photolithography and etching techniques as is well known, and then arsenic ions 5 are injected into the double gate by ion implantation.
0 KeV, I x 10'' theory implantation, and heat treatment for 950'0.30 minutes in a nitrogen atmosphere,
A shallow diffusion layer (8) that will eventually become the source and drain,
(8) is obtained ((a) in the same figure).

ついで前記二重ゲート構造、ならびに同構造側の拡散層
+8) 、 (8)の一部をレジストパターン(9)に
よす覆い(同図(b))、このレジストパターン(9)
 t= マスクにして、さらに同様に砒素イオン50に
、eV。
Next, a part of the double gate structure and the diffusion layer +8) on the side of the same structure is covered with a resist pattern (9) (FIG. 2(b)), and this resist pattern (9) is covered.
t= mask, and similarly to arsenic ion 50 eV.

4×101s/cdの注入を行ったのち、このレジスト
パターン(9)を酸素プラズマエツチングにより除去し
、かつ窒素雰囲気中で1000″0,30分の熱処理を
行なうことで、0.2μm程度の浅い拡散層部分(8a
)、(8a)と、これよりも深い0.45P程度の拡散
層部分(sb)、(sb)とを形成した(同図(C))
After implantation at 4 x 101s/cd, this resist pattern (9) is removed by oxygen plasma etching, and heat treatment is performed for 1000mm for 0.30 minutes in a nitrogen atmosphere to form a shallow trench of about 0.2μm. Diffusion layer part (8a
), (8a), and deeper diffusion layer parts (sb) and (sb) of about 0.45P were formed ((C) in the same figure).
.

この第2図実施例方法により64に−FAMO8を製造
したところ、前記従来方法にあって3μmのゲート幅を
もつメモリ素子のソース・ドレイン間耐圧が13Vであ
ったのに、この実施例方法では同耐圧が20Vになう−
C1書き込み深さが大幅に改善され々、0 また第3図実施例方法においては、二重ゲート構造形成
後に必って、同形成に利用したレジストパターン(IG
を残したままで、これをマスクにして選択的に砒素イオ
ン50KeV、4X10”〆ゴを注入し、かつ窒素雰囲
気中で1000°C230分の熱処理を行なって深い拡
散層部分(8b)、 (8b)を形成さ窺同図(a))
、ついでレジストパターン0Iをエツチング除去した上
で、二重ゲート構造をマスクにして通常方法により、砒
素イオン50 KeV、 I X 10”/7を注入し
く同図(b))、これによって前記拡散層部分(sb)
、(sb)と共に、浅い拡散層部分(8a)、(8a)
を形成し、さらにその後、窒素雰囲気中で950’0゜
30分の熱処理を行なう(同図(C))。すなわち。
When 64-FAMO8 was manufactured using the method of the embodiment shown in FIG. 2, the withstand voltage between the source and drain of the memory element with a gate width of 3 μm was 13V in the conventional method, but in this embodiment method, the breakdown voltage between the source and drain was 13V. The same withstand voltage is 20V.
In addition, in the method of the embodiment shown in FIG. 3, after forming the double gate structure, the resist pattern (IG
Using this as a mask, arsenic ions of 50KeV, 4×10” were selectively implanted, and heat treatment was performed at 1000°C for 230 minutes in a nitrogen atmosphere to form the deep diffusion layer portions (8b) and (8b). (a)
Then, after removing the resist pattern 0I by etching, using the double gate structure as a mask, arsenic ions of 50 KeV, I x 10''/7 are implanted by the usual method (Figure (b)), thereby forming the diffusion layer. Part (sb)
, (sb), shallow diffusion layer parts (8a), (8a)
After that, a heat treatment is performed at 950'0° for 30 minutes in a nitrogen atmosphere (FIG. 3(C)). Namely.

これはレジストパターンα1が二重ゲート形成時のOF
4によるプラズマエツチング、および弗酸水溶液による
湿式エツチングが、ゲート端から広くなるのを利用した
もので、前記第2図実施例と同様の二重拡散層構造が得
られ、同様の電気的特性を達成できた。
This shows that the resist pattern α1 is OF when forming double gates.
Plasma etching according to No. 4 and wet etching using a hydrofluoric acid aqueous solution take advantage of the fact that the etching becomes wider from the edge of the gate, and a double diffusion layer structure similar to that of the embodiment shown in FIG. 2 can be obtained, with similar electrical characteristics. I was able to achieve it.

なお前記実施例はメモリ装置のメモリ素子部分に適用し
た場合であるが、同様に周辺回路素子部分にも適用でき
ることは勿論である。
Although the above embodiments are applied to a memory element portion of a memory device, it goes without saying that the present invention can also be applied to a peripheral circuit element portion in the same way.

以上詳述したようにこの発明方法によれば、二重ゲート
構造の不揮発性メモリ装置の製造において、メモリ素子
部、あるいは周辺回路素子部のソース・ドレインとなる
拡散層を、第1の拡散工程と第2の拡散工程とにより、
拡散深さ、ならびに不純物濃度の異なる二重の拡散層部
分に形成するものでおるから、ソース・ドレイン接合に
おける電気的耐圧を充分に向上し得る特長がある。
As described in detail above, according to the method of the present invention, in manufacturing a nonvolatile memory device with a double gate structure, the diffusion layers that become the sources and drains of the memory element portion or the peripheral circuit element portion are formed in the first diffusion step. and the second diffusion step,
Since it is formed in double diffusion layers having different diffusion depths and impurity concentrations, it has the advantage that the electrical withstand voltage at the source-drain junction can be sufficiently improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二重ゲート構造の不揮発性メモリ装置における
メモリ素子部ソース・ドレインの従来の形成方法を示す
説明図、第2図(a)〜(C)、および第3図(a)〜
(C)は同上メモリ素子部ソース・ドレインのこの発明
方法による各別の実施例をそれぞれ工程順に示す説明図
である。 (1)・・・・シリコン基板、(2)・・・・素子間分
離酸化膜、(3) 、 (5)・・・・第1.第2ゲー
ト酸化膜(41、(6)・・・・第1.第2ポリシリコ
ン膜(フローティンyゲート、  コントロールゲート
)、(8)・・・・拡散層、(8a)、(8b)・・・
・拡散層部分、(9)・・・・レジストパターン。 代 理 人    葛  野  信  −(7) 第1図 第2図
FIG. 1 is an explanatory diagram showing a conventional method for forming the source and drain of a memory element part in a nonvolatile memory device with a double gate structure, FIGS. 2(a) to (C), and FIGS. 3(a) to 3.
(C) is an explanatory diagram illustrating different embodiments of the memory element source/drain according to the method of the present invention in the order of steps. (1)...Silicon substrate, (2)...Element isolation oxide film, (3), (5)...First. Second gate oxide film (41, (6)...first, second polysilicon film (floating Y gate, control gate), (8)...diffusion layer, (8a), (8b) ...
- Diffusion layer portion, (9)...resist pattern. Agent Shin Kuzuno - (7) Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)二重ゲート構造を有する不揮発性メモリ装置の製
造において、装置のメモリ素子部、あるいは周辺回路素
子部のソース・ドレインとなる拡散層の形成に際し、不
純物拡散を第1の拡散工程と第2の拡散工程とに区分し
て行ない、拡散深さ、ならびに不純物濃度の異なる二重
の拡散層部分に形成することを特徴とする半導体装置の
製造方法。
(1) In manufacturing a nonvolatile memory device with a double gate structure, impurity diffusion is performed in the first diffusion step and the 1. A method for manufacturing a semiconductor device, which is performed separately in two diffusion steps to form double diffusion layers having different diffusion depths and impurity concentrations.
(2)二重ゲート構造を形成したのち、この二重ゲート
上から砒素のイオン注入、熱処理による第1の拡散工程
を行ない、ついで二重ゲート構造をおおうレジストパタ
ーンを形成し、第1の拡散工程で得た拡散層の一部を除
いた他部に対し、選択的に再度砒素のイオン注入、熱処
理による第2の拡散工程を行なうことを特徴とする特許
請求の範囲第1項記載の半導体装置の製造方法。
(2) After forming the double gate structure, arsenic ion implantation and heat treatment are performed on the double gate to perform a first diffusion step, then a resist pattern is formed to cover the double gate structure, and the first diffusion step is performed. The semiconductor according to claim 1, wherein a second diffusion step is selectively performed again by arsenic ion implantation and heat treatment on a portion of the diffusion layer obtained in the step except for a portion thereof. Method of manufacturing the device.
(3)二重ゲート構造を形成したのち、同形成で利用し
たレジストパターンを残した上から選択された一部に砒
素のイオン注入、熱処理による第1の拡散工程を行ない
、ついでレジスミ除去して第1の拡散工程で得た拡散部
分を含む他部に対し、再度砒素のイオン注入、熱処理に
よる第2の拡散工程を行なうことを特徴とする特許請求
の範囲第1項記載の半導体装置の製造方法。
(3) After forming the double gate structure, arsenic ions are implanted into a selected part of the remaining resist pattern used in the same formation, a first diffusion process is performed by heat treatment, and then the resist is removed. Manufacturing the semiconductor device according to claim 1, wherein the second diffusion step is performed again by arsenic ion implantation and heat treatment on other parts including the diffusion portion obtained in the first diffusion step. Method.
JP57115037A 1982-06-30 1982-06-30 Manufacture of semiconductor device Pending JPS594171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57115037A JPS594171A (en) 1982-06-30 1982-06-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57115037A JPS594171A (en) 1982-06-30 1982-06-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS594171A true JPS594171A (en) 1984-01-10

Family

ID=14652633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57115037A Pending JPS594171A (en) 1982-06-30 1982-06-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS594171A (en)

Similar Documents

Publication Publication Date Title
JPH04102317A (en) Manufacture of semiconductor device
US5071777A (en) Method of fabricating implanted wells and islands of cmos circuits
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH06244366A (en) Manufacture of mos transistor
JPS594171A (en) Manufacture of semiconductor device
JPS60241259A (en) Manufacture of read only memory
JPH05291573A (en) Semiconductor device and manufacture thereof
JPS62265765A (en) Semiconductor device and manufacture thereof
JPS6251248A (en) Manufacture of semiconductor device
JPS63302562A (en) Manufacture of mos type semiconductor device
JP3208952B2 (en) Manufacturing method of high voltage transistor
JP3188132B2 (en) Method for manufacturing semiconductor device
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JPS6072274A (en) Manufacture of semiconductor device
JPH03148834A (en) Manufacture of mos transistor
JP2002124668A (en) Method of manufacturing semiconductor device
JPH04133436A (en) Mos type semiconductor device and manufacture thereof
JP2966037B2 (en) Method for manufacturing semiconductor device
JPH0786588A (en) Semiconductor integrated circuit device and manufacture thereof
JPH01122167A (en) Manufacture of semiconductor device
JPH0214788B2 (en)
JPS6281051A (en) Semiconductor device and manufacture thereof
JPS61166154A (en) Manufacture of mis type semiconductor device
JPS63281470A (en) Semiconductor device
JPS61142756A (en) Manufacture of semiconductor device