JPS594163B2 - Gastou Kasemak - Google Patents

Gastou Kasemak

Info

Publication number
JPS594163B2
JPS594163B2 JP50091150A JP9115075A JPS594163B2 JP S594163 B2 JPS594163 B2 JP S594163B2 JP 50091150 A JP50091150 A JP 50091150A JP 9115075 A JP9115075 A JP 9115075A JP S594163 B2 JPS594163 B2 JP S594163B2
Authority
JP
Japan
Prior art keywords
coating
membrane
gas
thickness
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50091150A
Other languages
Japanese (ja)
Other versions
JPS5215483A (en
Inventor
健二 稲垣
忠昭 古田
直也 小南
昇 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP50091150A priority Critical patent/JPS594163B2/en
Publication of JPS5215483A publication Critical patent/JPS5215483A/en
Publication of JPS594163B2 publication Critical patent/JPS594163B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】 本発明は、酸素ガスおよび炭酸ガス透過性膜に関するも
ので、さらに詳しくは、0.01〜1.0μの孔径を有
する多孔膜の表面に、シリコーン樹脂またはフッ素樹脂
を0.1〜10μの膜厚に途布した複合膜であり、きわ
めて高い酸素ガス、炭酸ガス透過性を有するガス透過性
膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen gas and carbon dioxide gas permeable membrane, and more specifically, the present invention relates to a membrane permeable to oxygen gas and carbon dioxide gas, and more specifically, a silicone resin or a fluororesin is coated on the surface of a porous membrane having a pore size of 0.01 to 1.0μ. It is a composite membrane with a thickness varying from 0.1 to 10μ, and relates to a gas permeable membrane having extremely high permeability to oxygen gas and carbon dioxide gas.

多孔膜の材質としては、アセチルセルロース、銅アンモ
ニアセルロース、ポリスルホン、ポリアクリロニトリル
、ポリエチレン、ポリプロピレン、ポリメチルメタクリ
レート、ポリカーボネート、ポリアミド等が使用可能で
あるが、特に孔径のできるだけそろっているものが好適
である。
As the material for the porous membrane, acetyl cellulose, cuprammonium cellulose, polysulfone, polyacrylonitrile, polyethylene, polypropylene, polymethyl methacrylate, polycarbonate, polyamide, etc. can be used, but those with pore sizes as uniform as possible are particularly preferred. .

ガス透過性膜を介して血液の酸素付加および炭酸ガス除
去を行なう脱型人工肺は、血液と酸素ガスとを直接に接
触させる従来の気泡型、回転円盤型ないしはシート型人
工肺に比べて、血液損傷が少ないということで、近年太
いに注目されてきている。
Deformed oxygenators, which oxygenate and remove carbon dioxide from blood through a gas-permeable membrane, are more effective than conventional bubble-type, rotating disk-type, or sheet-type oxygenators, which bring blood into direct contact with oxygen gas. Fat has been attracting attention in recent years because it causes less blood damage.

脱型人工肺に使用される膜としては、酸素ガスおよび炭
酸ガス透過性にすぐれることのみでなく、膜表面におけ
る血液損傷が可及的に少ないことが要求される。
Membranes used in demolding oxygenators are required not only to have excellent oxygen gas and carbon dioxide gas permeability, but also to have as little blood damage as possible on the membrane surface.

従来、膜による血液損傷については広範囲な検討がなさ
れ、シリコーン樹脂およびフッ素樹脂がすぐれた材質で
あることが広く認められ、人工肺用膜としても使用され
てきたが、フッ素樹脂はガス透過性が比較的低くく、ま
たシリコーン樹脂膜はガス透過性は良好であるが、物性
強度が小さく、そのために100μ以上の膜厚にするこ
とにより物性強度を持たせており、ポリエステルやナイ
ロン繊維の網で補強しても、50μ以上の膜厚が必要で
、そのガス透過性の良さは充分に生かされていない。
In the past, extensive studies have been conducted on blood damage caused by membranes, and silicone resins and fluororesins have been widely recognized as excellent materials and have been used as membranes for oxygenators, but fluororesins have poor gas permeability. Although silicone resin membranes have good gas permeability, they have low physical strength, so they are made to have a thickness of 100μ or more to provide physical strength. Even with reinforcement, a film thickness of 50 μm or more is required, and its good gas permeability is not fully utilized.

このようなガス透過性があまり高(ない膜を使用した脱
型人工肺では、外科手術時の人間の基礎代謝に必要な酸
素の取込み、および炭酸ガスの排出を行うためには、大
きな膜面積を必要とし、したがって、初期充填血液量の
大きい人工肺になっている。
In a deformed oxygenator using a membrane with low gas permeability, a large membrane area is required to take in oxygen and discharge carbon dioxide, which are necessary for human basic metabolism during surgery. Therefore, the oxygenator requires a large initial volume of blood.

また、シリコーン膜の物性強度が小さいために、使用時
破損がおこり、大量の血液が失われ、患者の生命が危機
にひんする危険もあり、強度が犬で、ガス透過性能にす
ぐれ、かつ血液損傷の少ない膜の開発が望まれていIQ 本発明者らは、酸素ガス、炭酸ガス透過性にすぐれ、か
つ実用上充分な物性強度をもつガス透過性膜について研
究を重ねた結果、孔の平均径が0.01μ以上1.0μ
以下の多数の小さな孔を有する多孔膜の表面に、シリコ
ーン樹脂またはフッ素樹脂な膜厚が0.1μ以上lOμ
以下であり、かつ実質的にピンホールのない連続面を形
成させるように塗布した複合膜が、きわめて高い酸素ガ
ス、炭酸ガス透過性能を有し、かつ物性的にも強い膜で
あることを見出し、本発明をなすに至った。
In addition, because the physical strength of the silicone membrane is low, it may break during use and cause a large amount of blood to be lost, putting the patient's life at risk. It is desired to develop a membrane with less damage.IQ As a result of repeated research on gas-permeable membranes that have excellent permeability to oxygen and carbon dioxide gases and have sufficient physical strength for practical use, the inventors have found that the average pore size is Diameter is 0.01μ or more and 1.0μ
A silicone resin or fluororesin film with a thickness of 0.1μ or more lOμ is applied to the surface of a porous membrane with many small pores.
We have discovered that a composite membrane coated to form a continuous surface with virtually no pinholes has extremely high oxygen gas and carbon dioxide gas permeability, and is also physically strong. , the present invention was accomplished.

本発明において、ピンホールのない連続面を得るために
は、塗膜の膜厚が多孔膜の孔径より大きく、膜厚と孔径
の比が5倍以上、より好ましくは10倍以上であること
が必要である。
In the present invention, in order to obtain a continuous surface without pinholes, the thickness of the coating film is larger than the pore diameter of the porous film, and the ratio of the film thickness to the pore diameter is 5 times or more, more preferably 10 times or more. is necessary.

塗布する方法については、一般的に次のような賭方法が
とられている。
Regarding the method of application, the following methods are generally used.

ハケ塗、スプレー塗(さらに分類すれば、ホットスプレ
ー塗、スチームスプレー塗、キャタリストスプレー塗、
エアーレススプレ・−塗)、静電塗装、つけ塗、流し塗
、転がし塗、遠心力塗装、しごき塗、ローラ塗、真空蒸
着塗装、タンポ塗、ヘラ塗、プラズマ蒸着塗装などがあ
るが、中でも新しい塗装法であるプラズマ蒸着塗装、す
なわち、適当な真空度を有する容器内に、有機物のモノ
マーまたは低分子量のポリマーを入れ、適当な温度を加
えて、蒸発させた後、グロー放電させることによりプラ
ズマ蒸気化し、外部電場を与えてプラズマ蒸気を移動さ
せ、同一容器内に入れである基材の表面に重合させなが
ら塗布する方法を用いることにより、きわめて薄く、か
つ緊密な塗膜を得ることができ、本発明を実施するに最
も適した方法であった。
Brush coating, spray coating (further classifications include hot spray coating, steam spray coating, catalytic spray coating,
Airless spray coating), electrostatic coating, dipping coating, flow coating, rolling coating, centrifugal force coating, ironing coating, roller coating, vacuum vapor deposition coating, tampo coating, spatula coating, plasma vapor deposition coating, etc. Plasma vapor deposition coating is a new coating method.In other words, organic monomers or low molecular weight polymers are placed in a container with an appropriate degree of vacuum, and after evaporation at an appropriate temperature, plasma is applied by glow discharge. An extremely thin and tight coating film can be obtained by vaporizing the material, moving the plasma vapor by applying an external electric field, and applying it to the surface of the substrate while polymerizing it in the same container. , was the most suitable method for implementing the present invention.

イ・ 本発明において、多孔膜の孔径が
0.01μ未満であると、プラズマ塗布法を用いること
により、薄く、かつピンホールのない樹脂塗膜を比較的
容易に得ることができるが、ガス透過性が低く適当でな
い。
B. In the present invention, if the pore diameter of the porous film is less than 0.01μ, a thin resin coating without pinholes can be obtained relatively easily by using a plasma coating method. low quality and inappropriate.

それに対して1.0μより大きい孔では、塗布された樹
脂を充分補強することができないばかりか、プラズマ塗
布法を用いてもピンホールが残ることが多く、人工肺と
して使用した場合、酸素ガスが気体として血液内に混入
する心配がある。
On the other hand, if the holes are larger than 1.0μ, not only will the applied resin not be sufficiently reinforced, but pinholes will often remain even when plasma coating is used, and when used as an oxygenator, oxygen gas will There is a concern that it may enter the blood as a gas.

また樹脂塗膜の厚みが0.1μ未満では膜の強度が小さ
く、容易に破損してピンホールを生ずる。
Furthermore, if the thickness of the resin coating film is less than 0.1 μm, the strength of the film will be low and it will be easily damaged and pinholes will occur.

10μより厚い膜を得るためには、プラズマ方法では長
時間を要し、実用性に乏しい。
In order to obtain a film thicker than 10 μm, the plasma method requires a long time and is impractical.

またプラズマ法以外の方法により得た塗膜は、ピンホー
ルが発生していることが多く適当でない。
Furthermore, coating films obtained by methods other than the plasma method are often unsuitable because they often have pinholes.

本発明において、多孔膜の孔径と塗布膜厚との比が5未
満であると、孔の全面を樹脂はおおうことができずにピ
ンホールが生ずる。
In the present invention, if the ratio of the pore diameter of the porous film to the coating film thickness is less than 5, the entire surface of the pores cannot be covered with the resin, resulting in pinholes.

以下本発明の実施例を示す。Examples of the present invention will be shown below.

実施例 1〜7 アセチルセルロース多孔膜(孔径0.01μφ、0.1
0μφ、1,0μφ)上にジメチルシロキサンテトラマ
ーまたはテトラフルオロエチレンのプラズマ蒸気を用い
て、シリコーン樹脂またはフッ素樹脂を塗布しtも塗膜
の厚みは、別に求めた単位時間当りの塗布重量から算出
した。
Examples 1 to 7 Acetyl cellulose porous membrane (pore size 0.01μφ, 0.1
0μφ, 1,0μφ) using plasma vapor of dimethylsiloxane tetramer or tetrafluoroethylene.The thickness of the coating film was calculated from the coating weight per unit time determined separately. .

ガス透過性は真空法により測定した。Gas permeability was measured by a vacuum method.

結果を表1に示した。比較例 1〜3 アセチルセルロース多孔膜(孔径0.005μ)を用い
て、実施例と同様に行なった結果を表1に示した。
The results are shown in Table 1. Comparative Examples 1 to 3 Table 1 shows the results of the same procedure as in the example using an acetyl cellulose porous membrane (pore diameter: 0.005 μm).

あわせて厚さ100μのシリコーン樹脂膜の結果も示し
た。
The results for a silicone resin film with a thickness of 100 μm are also shown.

上記実施例および比較例の結果かられかるように、本発
明の複合膜は従来のシリコーン膜に比べ、きわめて高い
ガス透過性能を有し、人工肺用膜として有用である。
As can be seen from the results of the above Examples and Comparative Examples, the composite membrane of the present invention has extremely high gas permeability compared to conventional silicone membranes, and is useful as a membrane for artificial lungs.

Claims (1)

【特許請求の範囲】[Claims] 1 多数の小さな孔を有する多孔膜の表面に、シリコー
ン樹脂またはフッ素樹脂を塗布してなるガス透過性膜に
おいて、多孔膜の平均孔径が0.01〜1.0μ、樹脂
の膜厚が孔径の5倍以上であり、かつ0,1.〜10μ
であって、さらに該樹脂が連続面を形成するようにプラ
ズマ塗布法によって塗布されて成ることを特徴とする医
療用ガス透過性膜。
1 In a gas-permeable membrane formed by applying silicone resin or fluororesin to the surface of a porous membrane having many small pores, the average pore diameter of the porous membrane is 0.01 to 1.0μ, and the thickness of the resin is equal to the pore diameter. 5 times or more, and 0,1. ~10μ
A medical gas permeable membrane, further comprising the resin coated by a plasma coating method so as to form a continuous surface.
JP50091150A 1975-07-28 1975-07-28 Gastou Kasemak Expired JPS594163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50091150A JPS594163B2 (en) 1975-07-28 1975-07-28 Gastou Kasemak

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50091150A JPS594163B2 (en) 1975-07-28 1975-07-28 Gastou Kasemak

Publications (2)

Publication Number Publication Date
JPS5215483A JPS5215483A (en) 1977-02-05
JPS594163B2 true JPS594163B2 (en) 1984-01-28

Family

ID=14018478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50091150A Expired JPS594163B2 (en) 1975-07-28 1975-07-28 Gastou Kasemak

Country Status (1)

Country Link
JP (1) JPS594163B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1127472A (en) * 1977-11-25 1982-07-13 Robert L. Riley Gas separation membranes and process for the preparation thereof
JPS5624018A (en) * 1979-06-25 1981-03-07 Toyota Central Res & Dev Lab Inc Gas separating member and production thereof
JPS6244961B2 (en) * 1979-08-21 1987-09-24 Nikorai Sutepanobitsuchi Ridorenko
JPS56166230A (en) * 1980-05-27 1981-12-21 Yoshihito Osada Preparation of poly (organosiloxane)
JPS571209U (en) * 1980-05-31 1982-01-06
JPS5794305A (en) * 1980-12-02 1982-06-11 Sumitomo Chem Co Ltd Gas separating membrane made of acrylonitrile polymer hollow fiber and its manufacture
JPS57135751A (en) * 1981-02-13 1982-08-21 Kawasaki Heavy Ind Ltd Baking apparatus such as cement clinker
JPS5814906A (en) * 1981-07-15 1983-01-28 Kuraray Co Ltd Permeable membrane
JPS58221338A (en) * 1982-06-18 1983-12-23 Toyota Central Res & Dev Lab Inc Oxygen-rich air supplying device
JPS5959213A (en) * 1982-09-28 1984-04-05 Teijin Ltd Porous support membrane and composite membrane using same
JPS60114324A (en) * 1983-11-26 1985-06-20 Matsushita Electric Ind Co Ltd Gas permeable compound membrane
JPS6182823A (en) * 1984-09-28 1986-04-26 Matsushita Electric Ind Co Ltd Gas-permeable composite membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122480A (en) * 1973-03-27 1974-11-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122480A (en) * 1973-03-27 1974-11-22

Also Published As

Publication number Publication date
JPS5215483A (en) 1977-02-05

Similar Documents

Publication Publication Date Title
CA1128393A (en) Oxygenator
JPS594163B2 (en) Gastou Kasemak
JPS5857205B2 (en) Manufacturing method of semipermeable membrane
JPH0451209B2 (en)
JPS61161103A (en) Hydrophilic porous membrane and its preparation
JPS6094106A (en) Manufacture of compound membrane
KR900002095B1 (en) Production of porous membrane
Piskin Plasma processing of biomaterials
JPS588517A (en) Preparation of composite film with selective permeability for gas
EP0247597B1 (en) Process for producing porous membranes
JP2726471B2 (en) Anisotropic hollow fiber composite membrane
JPS612743A (en) Porous membrane
JPH0548135B2 (en)
JPS61167405A (en) Separation of liquid mixture
JP2818767B2 (en) Composite hollow fiber membrane
JPS586208A (en) Production of gas permselective composite membrane
JPH0359733B2 (en)
JPS6171820A (en) Gas permeable membrane
JPS61103446A (en) Sterilized medical apparatus
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production
JPS6115718A (en) Composite membrane for gas separation
JPS5976504A (en) Production of reverse osmotic membrane
JPH01258724A (en) Production of gas separation membrane
JPH0116504B2 (en)
JPH04305238A (en) Production of gas permeable composite film