JPS6182823A - Gas-permeable composite membrane - Google Patents

Gas-permeable composite membrane

Info

Publication number
JPS6182823A
JPS6182823A JP59203408A JP20340884A JPS6182823A JP S6182823 A JPS6182823 A JP S6182823A JP 59203408 A JP59203408 A JP 59203408A JP 20340884 A JP20340884 A JP 20340884A JP S6182823 A JPS6182823 A JP S6182823A
Authority
JP
Japan
Prior art keywords
gas
coating layer
layer
composite membrane
permeable composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59203408A
Other languages
Japanese (ja)
Other versions
JPH0427890B2 (en
Inventor
Midori Kawahito
川人 美登利
Yukihiro Saito
斉藤 幸廣
Shiro Asakawa
浅川 史朗
Takafumi Kajima
孝文 鹿嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59203408A priority Critical patent/JPS6182823A/en
Priority to EP89108619A priority patent/EP0337499A3/en
Priority to DE8484114268T priority patent/DE3482378D1/en
Priority to EP84114268A priority patent/EP0144054B1/en
Publication of JPS6182823A publication Critical patent/JPS6182823A/en
Publication of JPH0427890B2 publication Critical patent/JPH0427890B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain the titled gas-permeable compositle membrane capable of maintaining a high gas permeation characteristic for a long period by providing a coating layer having >=90 deg. contact angle with water on the surface in contact with a gaseous mixture and having low critical surface tension. CONSTITUTION:A gas selective membrane layer 2, used for separating a specified gas from a gaseous mixture and concentrating the gas and consisting of at least one layer, and a coating layer 1 formed on the layer 2 are provided. The critical surface tension of the coating layer 1 is low, and the contact angle with water on the surface in contact with the gaseous mixture is at >=90 deg.. The thickness of the coating layer 1 is controlled to about 50-200Angstrom . The critical surface tension is preferably regulated to <=30dyn/cm. Said material can be selected from polyolefin, diene polymers, polyorganosiloxane, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、混合気体から特定の気体を分離濃縮するのに
用い、而も長期間安定した特性を維持できる気体透過複
合膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas-permeable composite membrane that is used to separate and concentrate a specific gas from a gas mixture and that can maintain stable characteristics for a long period of time.

従来例の構成とその問題点 高分子膜を用いて混合気体から特定の気体を分離濃縮す
る方法については、近年数多くの提案がなされており1
例えば工場排気や天然ガス或いは大気中から、水素・窒
素・酸素その他の有用な気体を分離す不技術等はすでに
実用化されている。
Conventional configurations and their problems Many proposals have been made in recent years regarding methods of separating and concentrating specific gases from mixed gases using polymer membranes1.
For example, technologies for separating hydrogen, nitrogen, oxygen, and other useful gases from factory exhaust, natural gas, or the atmosphere have already been put into practical use.

しかしながら、これらの提案は混合気体を直接膜に接触
させる方法である為に、運用に際しての環境条件は厳し
く、膜の気体透過性を長期にわたって維持するというこ
とが重要な課題となっていた。
However, since these proposals involve bringing the gas mixture into direct contact with the membrane, the environmental conditions during operation are harsh, and maintaining the gas permeability of the membrane over a long period of time has become an important issue.

例えば特開昭51−121485号公報にはポリジメチ
ルシロキサン−ポリカーボネートの表面をもつポリフェ
ニレンオキサイド/ポリジメチルシロキサン・ポリカー
ボネートの気体透過複合膜が記載されているが、本発明
者らの実験によれば、上記の複合膜を多孔質ポリプロピ
レンシートの上に形成させ、この複合膜をモジュール化
して工場の排気口近くに置き、−63’O朋Hfの圧力
で吸引運用し続けたところ、約1000時間経過した時
点で上記複合膜の気体透過流量が20〜30%低下する
ものがあった。また、特開昭58−14928号公報に
記載されているポリヒドロキシスチレンーポリスルホン
ーポリジメチルシロキサン共重合体を用いて同様な実験
を行なったところ、やはり約1600時間後に上記複合
膜の気体透過流量は20〜30%低下するものもあった
For example, JP-A-51-121485 describes a gas permeable composite membrane of polyphenylene oxide/polydimethylsiloxane/polycarbonate having a surface of polydimethylsiloxane/polycarbonate; however, according to experiments conducted by the present inventors, The above composite membrane was formed on a porous polypropylene sheet, this composite membrane was made into a module, placed near the exhaust port of a factory, and continued to be operated under suction at a pressure of -63'O Hf. Approximately 1000 hours elapsed. At this point, the gas permeation flow rate of the composite membrane was reduced by 20 to 30% in some cases. In addition, when similar experiments were conducted using the polyhydroxystyrene-polysulfone-polydimethylsiloxane copolymer described in JP-A-58-14928, the gas permeation rate of the composite membrane was also found to be In some cases, the amount decreased by 20 to 30%.

このように、初期状態では優れた気体透過性を示す複合
膜も、実際の運用条件下では、時間の経過に伴い、使用
に値しない程に特性が劣化してしまうのが従来の例であ
った。
In this way, even if a composite membrane exhibits excellent gas permeability in its initial state, under actual operating conditions, its properties deteriorate over time to the point that it is no longer worth using. Ta.

発明の目的 本発明は以上のような欠点を解消するためになされたも
ので、厳しい条件下での長期運用に際して高い気体透過
特性を維持できる真に実用に適した気体透過複合膜を提
供することを目的とする。
Purpose of the Invention The present invention has been made in order to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a gas permeable composite membrane that is truly suitable for practical use and can maintain high gas permeability properties during long-term operation under severe conditions. With the goal.

発明の構成 この目的を達成するために本発明は、混合気体から特定
の気体を分離=縮するための少なくとも一層からなる気
体選択性膜層と、前記気体選択性膜層上に形成され7!
c被覆層とを備え、#記M覆層の臨界表面張力が小さく
、且つ混合気体と接する表面の水に対する接触角θか9
0°以上であることを特徴とする気体透過複合膜を提供
するものである。
Structure of the Invention In order to achieve this object, the present invention includes a gas-selective membrane layer consisting of at least one layer for separating/condensing a specific gas from a mixed gas, and a gas-selective membrane layer formed on the gas-selective membrane layer.
C coating layer, the critical surface tension of the # M coating layer is small, and the contact angle of the surface in contact with the mixed gas with water is θ or 9.
The object of the present invention is to provide a gas permeable composite membrane characterized by an angle of 0° or more.

気体透過膜を用いた分離法は、混合気体を膜表面に直接
触れさせ、透過させるという過程が必須であるため、外
部から様々の作用を受ける。本発明者らの実験によれば
、気体透過複合膜の経時劣化の主たる原因は、膜表面に
接触する混合気体中の除去不可能な微粒子(直径ζ1μ
〜0.1μの油滴やミクロゾルなど)が膜表面に付着し
てしまうためであると考えられた。一般に固体衣゛面を
汚染されにくくする手段として、表面エネルギーの示さ
い物質でコーティングし、撥水性、撥油性表面を作る方
法があるが、概してこのような物質の気体透過性は小さ
く、気体透過複合膜に応用することは極めて困難であっ
た。そこで本発明者らは、鋭意検討した結果、気体選択
性膜層の上に表面エネルギーの小さい物質で被覆層を設
け、この被覆層全体の厚さを約60人〜200人程度に
制御し、同時に被覆層の混合気体と接する表面の水の接
触角θが90°以上になるよう調整することで、気体透
過流量もあまシ変化せず、汚染されにくい気体透過複合
膜を作ることができた。θが90° より小さい表面は
親水性で、汚染その他の作用を受は易い。表面張力の小
さい被覆材料を用いても被覆層の厚さを50Å以下にす
るとその表面は下層の気体選択性膜層の表面の性質に大
きく影響されるので、下層が親水性の場合などはθが小
さくなってしまうことがある。逆に200Å以上になる
と先に述べたように気体透過性が小さいので、気体透過
複合膜の透過流量が減少してしまうが上記50A〜20
0人の膜厚に調整すれば、被覆膜が緻密でなく微小のど
ンホールが生じるため、気体中の微粒子等が付着しにく
く且つ気体透過性も良い表面が得られるものと考えられ
る。ここで重要なことは、被覆膜材料全体の性質(例え
ば表面張力や柔軟性等)ではなく、気体選択性膜層の上
に形成させた際の表面が撥水性、撥油性を示すようにす
ることであり、臨界表面張力が30 dyn、m  ’
以下の高分子をその′1ま用いるなシ、焼付あるいは触
媒などの処理を施すなりして仕上9表面のθを90°以
上にすれば良いということである。
Separation methods using gas permeable membranes require a process in which a mixed gas is brought into direct contact with the membrane surface and permeated therethrough, and is therefore subject to various external influences. According to experiments conducted by the present inventors, the main cause of aging deterioration of gas-permeable composite membranes is the unremovable fine particles (diameter ζ 1 μm) in the mixed gas that contacts the membrane surface.
This was thought to be because oil droplets, microsols, etc. of ~0.1μ) adhered to the membrane surface. Generally speaking, one way to make solid surfaces less susceptible to contamination is to coat them with substances that exhibit surface energy to create water- and oil-repellent surfaces, but these substances generally have low gas permeability; It was extremely difficult to apply it to composite membranes. Therefore, as a result of intensive study, the present inventors provided a coating layer made of a substance with low surface energy on the gas-selective membrane layer, and controlled the overall thickness of this coating layer to about 60 to 200 layers. At the same time, by adjusting the contact angle θ of water on the surface of the coating layer in contact with the gas mixture to be 90° or more, we were able to create a gas-permeable composite membrane that does not change the gas permeation flow rate and is less likely to be contaminated. . Surfaces with θ less than 90° are hydrophilic and susceptible to contamination and other effects. Even if a coating material with low surface tension is used, if the thickness of the coating layer is 50 Å or less, the surface will be greatly influenced by the surface properties of the underlying gas-selective membrane layer. may become small. On the other hand, if it is 200 Å or more, the gas permeability is low as mentioned above, so the permeation flow rate of the gas permeable composite membrane decreases.
If the film thickness is adjusted to 0, the coating film is not dense and minute holes are generated, so it is thought that a surface to which fine particles in the gas are difficult to adhere and also has good gas permeability can be obtained. What is important here is not the properties of the coating material as a whole (e.g. surface tension, flexibility, etc.), but rather whether the surface exhibits water and oil repellency when formed on the gas-selective membrane layer. and the critical surface tension is 30 dyn, m'
This means that the following polymers should not be used in their entirety, but that the θ of the finished surface should be 90° or more by baking or catalytic treatment.

よって前記表面膜材料としては、表面の化学構造式が −CF +−CF −、−OF   、 −〇F2−C
FH−。
Therefore, as the surface film material, the chemical structural formula of the surface is -CF + -CF -, -OF, -〇F2-C
FH-.

0F2−41CI −、−CF2−CH2−、−CFH
−C;H2−。
0F2-41CI-, -CF2-CH2-, -CFH
-C;H2-.

CM。CM.

OF、     RF (但しRFは、−OF3.− CH2−OF5.−CH
2−CH2−CF3 の中から選ばれる。)などヤ表わ
されるフッ素系の高分子またはポリブテン、ポリインブ
テン、ポリペンテン、ポリメチルペンテン、ポリヘキセ
ン、ポリメチルヘキセン、ポリヘプテン、ポリシクロへ
キシルペンテン、ポリスチレン、ポリα−メチルスチレ
ン、ポリブタジェン、ポリイソプレン、ポリシクロオ′
クタジエ7などのポリオレフィンまたはジエンポリマー
まだはポ11オルガノシロキサン等から、θが90’以
上の表面を形成できるものを選べば良い。
OF, RF (However, RF is -OF3.- CH2-OF5.-CH
2-CH2-CF3. ) or other fluorine-based polymers such as polybutene, polyimbutene, polypentene, polymethylpentene, polyhexene, polymethylhexene, polyheptene, polycyclohexylpentene, polystyrene, polyα-methylstyrene, polybutadiene, polyisoprene, polycyclohexyl
A material capable of forming a surface with θ of 90' or more may be selected from polyolefins such as Kutashie 7, diene polymers, polyorganosiloxanes, and the like.

例えば、フッ化アルキルメタアクリレート、ポll−4
−メチルペンテン−1、及びポリメチルフッ化アルキル
/ロキサンは希薄溶液を調整し、水面に展開させ脱溶媒
の後に表面エネルギーの小さい平膜を得ることができ、
これらの防護効果は極めて高い。また被覆膜材料が液体
の場合、気体選択性膜に直接スプレーして被覆層を形成
することができる。またハイドロジエンシラン等、触媒
を用いたシ熱処理を施したりして表面を撥水性、撥油性
に変えることもできる。
For example, fluorinated alkyl methacrylate, poly-4
-Methylpentene-1 and polymethylalkyl fluoride/loxane can be prepared into dilute solutions, spread on the water surface, and after desolvation, a flat film with low surface energy can be obtained.
These protective effects are extremely high. Further, when the coating material is a liquid, the coating layer can be formed by spraying directly onto the gas-selective membrane. The surface can also be made water- and oil-repellent by heat treatment using a catalyst such as hydrogen silane.

また気体選択性膜層としては、少なくとも1層からなっ
ていれば良く、被覆層と接着する層がポリヒドロキシス
チレン−ポリスルホン−ポリジメチルシロキサン共重合
体を少なくとも含むものについては良好な結果が得られ
ている。
The gas-selective membrane layer only needs to consist of at least one layer, and good results can be obtained if the layer that adheres to the coating layer contains at least a polyhydroxystyrene-polysulfone-polydimethylsiloxane copolymer. ing.

実施例の説明 以下本発明の一実施例について図面に基づいて説明する
。第1図は本発明の各実施例における気体透過複合膜の
構成を示す断面図である。1は被覆層、2は気体選択性
膜層、3は多孔質支持体である。第2図は各実施例と従
来例の気体透過流量変化を示すグラフである。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the structure of a gas permeable composite membrane in each embodiment of the present invention. 1 is a coating layer, 2 is a gas-selective membrane layer, and 3 is a porous support. FIG. 2 is a graph showing changes in gas permeation flow rate in each example and the conventional example.

〈実施例1〉 被覆層1の材料としてroが11 ayn、m−”のメ
チルハイドロジエンポリシロキサンを用い、これに触媒
として3wt%のテトラブチルすずを加えて被覆材とす
る。気体選択性膜層2を構成する高分子としてボl+ヒ
ドロキシスチレンーボ11スルホン−ポリジメチルシロ
キサン共重合体を用い、2〜4 wt%のベンゼン溶液
を調整して水面に展開させた。脱溶媒の後に得られる薄
膜を支持体3ジ。
<Example 1> Methylhydrodiene polysiloxane with an ro of 11 ayn, m-'' is used as the material for the coating layer 1, and 3 wt% of tetrabutyltin is added as a catalyst to the coating material. Gas-selective membrane layer Using bol + hydroxystyrene-bo-11 sulfone-polydimethylsiloxane copolymer as the polymer constituting 2, a 2 to 4 wt% benzene solution was prepared and spread on the water surface.The thin film obtained after solvent removal The support is 3D.

ラガード24oo(ポリプラスチック社製)の上に接着
し、さらにその上から上記被覆材をスプレーし被覆層を
形成させた。風乾させてから70’Qで8〜9分焼き付
け、表面の水の接触角θが100〜1100になる第1
図の気体透過複合膜を構成した。
It was adhered onto Lagard 24oo (manufactured by Polyplastics Co., Ltd.), and the above-mentioned coating material was further sprayed onto it to form a coating layer. After air drying, bake at 70'Q for 8 to 9 minutes to obtain a surface water contact angle θ of 100 to 1100.
The gas permeable composite membrane shown in the figure was constructed.

次に上記の複合膜で30CIrL×30CIrLのモジ
ュールを作り、工場の排気口近くに設置し、真空ポンプ
で一536tnmHgまで減圧辻続運転し、 複合膜の
気体透過流゛(よの経時変化を調べた。本実施例では第
2図イに示したように、5ooo時間経ても約7%しか
減少していないのに対し、従来の被覆層の無い膜モジュ
ールでは、第2図口に示したように1oOo時間経過し
たところで既に30%も減少してしまった。また、被覆
層の比較例としてγ。が20.8 dyn、c!IL 
 のジメチルポリシロキサンを用いて2〜4wt%のベ
ンゼン溶液を調整し、支持体の上に叔せた気体選択性膜
の上に塗布して風乾させ、仕上がり表面のθが79〜8
3° になる第1図の気体透過複合膜を構成し同様の寿
命試験を行った。結果は第2図ハに示すように被覆層の
無い・ものに比べ寿命は3倍に延びたが、3000時間
経過した時点で30%流量が減少してしまい、本実施例
に比べると、透過特性を安定させる効果は極めて小さか
った。以上のように本実施例は、仕上がり表面のθが大
きい被覆層1で、気体選択性膜層2の表面を覆ったこと
により、置時間の連続迂用に耐え、特性を維持するのに
太いに有効であることがよくわかる。
Next, we made a module of 30 CIrL x 30 CIrL using the above composite membrane, installed it near the exhaust port of the factory, and continuously operated it with a vacuum pump to reduce the pressure to -536 tnmHg. In this example, as shown in Figure 2A, the decrease was only about 7% even after 500 hours, whereas in the conventional membrane module without a coating layer, as shown in Figure 2A, the decrease was only about 7%. After 100 hours had passed, it had already decreased by 30%.Also, as a comparative example of the coating layer, γ was 20.8 dyn, c!IL
A benzene solution of 2 to 4 wt% is prepared using dimethylpolysiloxane of
A similar life test was conducted using a gas permeable composite membrane as shown in Fig. 1 having an angle of 3°. As shown in Figure 2 (c), the lifespan was three times longer than the one without the coating layer, but the flow rate decreased by 30% after 3000 hours, and compared to this example, the permeation rate was 3 times longer. The effect of stabilizing the characteristics was extremely small. As described above, in this example, the surface of the gas selective membrane layer 2 is covered with the coating layer 1 having a large finished surface θ. It is clear that it is effective for

なお本実施例ではメチルハイドロジエンボリシロキサン
に触媒を用いたが、この触媒の量を増せば、焼付時間を
短くした9、焼付温度を低くしたりでき、耐熱性の弱い
気体選択性膜や支持体を用いる場合にも被覆材料として
用いることができる。
In this example, a catalyst was used for methylhydrodiene polysiloxane, but by increasing the amount of this catalyst, it is possible to shorten the baking time 9 and lower the baking temperature, which can be used to reduce the heat resistance of gas-selective membranes and supports. It can also be used as a covering material when a body is used.

〈実施例2〉 実施例1において被覆層1を構成する材料としてフッ化
アルキルメタアクリレートを用い、2〜4wt%トリフ
ルオロトリクロロエタン溶液を調整して水面に展開させ
た。脱溶媒の後に得られた薄膜を支持体の上に載せた気
体選択性膜の上に重ねて第1図の気体透過複合膜を構成
した。本実施例の構成は仕上がり表面のθが99〜10
6° で、第2図二に示したように気体透過流量の変化
は小さく、6000時間経過した時点で6%程度であっ
た。
<Example 2> In Example 1, fluorinated alkyl methacrylate was used as the material constituting the coating layer 1, and a 2 to 4 wt% trifluorotrichloroethane solution was prepared and spread on the water surface. The thin film obtained after solvent removal was stacked on a gas-selective membrane placed on a support to construct the gas-permeable composite membrane shown in FIG. The configuration of this example has a finished surface θ of 99 to 10.
At 6°, as shown in FIG. 2, the change in gas permeation flow rate was small, and was about 6% after 6000 hours.

〈実施例3〉 実施例1において気体選択性膜層を構成する材料として
、ポリフェニレンオキサイド/ポリジメチルンロキサン
ーボ11カーボネート共重合体を用脂て複合膜を構成し
た。本実施例の構成は仕上がり表面のθが100〜11
o0で、第2図ホに示した被覆しない膜モジュールの気
体透過流量が、1000時間で40%近く低下するのに
比べ、第2図イに示したように6000時間で7%程度
しか減少しなかった。
<Example 3> In Example 1, a polyphenylene oxide/polydimethylronoxane-bo-11 carbonate copolymer was used as the material constituting the gas-selective membrane layer to construct a composite membrane. In the configuration of this example, the finished surface θ is 100 to 11.
At o0, the gas permeation flow rate of the uncoated membrane module shown in Figure 2 E decreases by nearly 40% in 1000 hours, while it decreases by only about 7% in 6000 hours as shown in Figure 2 A. There wasn't.

〈実施例4〉 実施flJ 1において被覆層1を構成する材料として
γ。が21 dyn、cm−1のポリメチルフルオロシ
ロキサンを用い、大きめの容器に広げてこの液面に支持
体上の気体選択性膜を接触させ、複合膜を構成した。本
実施例の構成は仕上がり表面のθが96〜98°で、第
2図へに示したように透過流量の経時変化は小さく、8
000時間後でも約8%程度の減少であった。
<Example 4> In implementation flJ 1, γ was used as the material constituting the coating layer 1. A composite membrane was constructed by using polymethylfluorosiloxane having a particle diameter of 21 dyn, cm-1, which was spread in a large container, and a gas-selective membrane on a support was brought into contact with the liquid surface. In the configuration of this example, the θ of the finished surface is 96 to 98 degrees, and as shown in FIG.
Even after 000 hours, the decrease was about 8%.

〈実施例5〉 実施例2において被覆層1を構成する材料としてポリ−
1−メチルペンテン−1を用いて、仕上が9表面のθが
110〜113°の複合膜を構成した。本実施例の構成
は第2図トに示しだように6000時間連続運用した後
も、気体の透過流量は約5%しか低下しなかった。
<Example 5> In Example 2, polyester was used as the material constituting the coating layer 1.
Using 1-methylpentene-1, a composite membrane with a finish of 9 surfaces and θ of 110 to 113° was constructed. As shown in FIG. 2, even after continuous operation for 6,000 hours, the gas permeation flow rate of the configuration of this example decreased by only about 5%.

これら実施例においては被覆層1として四側、気体選択
性膜層として二側のみ示しだが、先に述べたこの他の高
分子についても同様に、6000時間経過後も気体透過
流量変化が5〜10%程度という良い結果が得られてい
る。また気体選択性膜層は、実施例1のように一種類で
も良いし、二律類以上の高分子の嘆積層体でも良い。
In these examples, only four sides are shown as the coating layer 1 and only two sides are shown as the gas-selective membrane layer, but similarly for the other polymers mentioned above, even after 6000 hours, the gas permeation flow rate change was 5 to 5. A good result of about 10% has been obtained. Further, the gas-selective membrane layer may be of one type as in Example 1, or may be a laminate of polymers of two types or more.

発明の効果 以上のように本発明は、混合気体から特定の気体を分離
濃縮するための少なくとも一層からなる気体選択性膜層
と、前記気体選択性膜層上に形成された被覆層とを備え
、前記被覆層の臨界表面張力(γ。)が小さく、且つ混
合気体と接する表面の水に対する接触角θが900以上
であることを特徴とする気体透過複合膜であるため、従
来の気体透過膜に比べ、劣悪な運用環境でも、長期間安
定な気体透過特性を維持できる実用性の高いものである
。実施例でも述べたように従来の気体透過膜の運用寿命
は短く、1000〜150Q時間も経過すると、小さく
ても2Q%、大きいものは6Q%も透過流量が減少して
しまうのに対し、第2図イ、二、へ、トに示したように
5000〜8000時間経過してもほとんど経過流量に
変化がない。
Effects of the Invention As described above, the present invention includes a gas-selective membrane layer consisting of at least one layer for separating and concentrating a specific gas from a mixed gas, and a coating layer formed on the gas-selective membrane layer. , the gas permeable composite membrane is characterized in that the critical surface tension (γ) of the coating layer is small, and the contact angle θ of the surface in contact with the mixed gas with respect to water is 900 or more, so it is different from conventional gas permeable membranes. Compared to , it is highly practical as it can maintain stable gas permeation characteristics for a long period of time even in poor operating environments. As mentioned in the examples, the operating life of conventional gas permeable membranes is short, and after 1000 to 150Q hours, the permeation flow rate decreases by 2Q% at the smallest and 6Q% at the largest. As shown in Figure 2 A, 2, F, and G, there is almost no change in the elapsed flow rate even after 5,000 to 8,000 hours have passed.

従って実際に運用する場合、膜モジュールて関するメン
テナンスが大巾に省け、長時間運用が中止できない条件
でも十分使用可能である。
Therefore, in actual operation, maintenance related to the membrane module can be greatly reduced, and it can be used even under conditions where operation cannot be stopped for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における気体透過複合膜の断
面図、第2図は本発明の各実施例及び比較例の気体透過
流量の減少率と経過時間との関係を示した図である。 1・・・・・・被覆層、2・・・・・・気体選択性膜層
、3・・・・・多孔質支持体。
Figure 1 is a cross-sectional view of a gas permeable composite membrane according to an example of the present invention, and Figure 2 is a diagram showing the relationship between the rate of decrease in gas permeation flow rate and elapsed time for each example of the present invention and a comparative example. be. 1... Coating layer, 2... Gas selective membrane layer, 3... Porous support.

Claims (8)

【特許請求の範囲】[Claims] (1)混合気体から特定の気体を分離濃縮するための少
なくとも一層からなる気体選択性膜層と、前記気体選択
性膜層上に形成された被覆層とを備え、前記被覆層の臨
界表面張力(γ_c)が小さく、且つ混合気体と接する
表面の水に対する接触角θが90°以上であることを特
徴とする気体透過複合膜。
(1) A gas-selective membrane layer consisting of at least one layer for separating and concentrating a specific gas from a mixed gas, and a coating layer formed on the gas-selective membrane layer, the critical surface tension of the coating layer being A gas permeable composite membrane characterized in that (γ_c) is small and the contact angle θ of the surface in contact with mixed gas with water is 90° or more.
(2)被覆層のγ_cが、30dyn・cm^−^1以
下である特許請求の範囲第1項記載の気体透過複合膜。
(2) The gas permeable composite membrane according to claim 1, wherein γ_c of the coating layer is 30 dyn·cm^-^1 or less.
(3)被覆層がメチルハイドロジェンポリシロキサンで
ある特許請求の範囲第1項記載の気体透過複合膜。
(3) The gas permeable composite membrane according to claim 1, wherein the coating layer is methylhydrogenpolysiloxane.
(4)被覆層がフッ化アルキルメタアクリレートである
特許請求の範囲第1項記載の気体透過複合膜。
(4) The gas permeable composite membrane according to claim 1, wherein the coating layer is a fluorinated alkyl methacrylate.
(5)被覆層がポリ−4−メチルペンテン−1である特
許請求の範囲第1項記載の気体透過複合膜。
(5) The gas permeable composite membrane according to claim 1, wherein the coating layer is poly-4-methylpentene-1.
(6)被覆層がポリメチルフッ化アルキルシロキサンで
ある特許請求の範囲第1項記載の気体透過複合膜。
(6) The gas permeable composite membrane according to claim 1, wherein the coating layer is polymethylfluoroalkylsiloxane.
(7)少くとも一層からなる気体選択性膜層の被覆層と
接着する層が、ポリヒドロキシスチレン−ポリスルホン
−ポリジメチルシロキサン共重合体を少なくとも含むも
のである特許請求の範囲第1項記載の気体透過複合膜。
(7) The gas-permeable composite according to claim 1, wherein the layer that adheres to the coating layer of the gas-selective membrane layer consisting of at least one layer contains at least a polyhydroxystyrene-polysulfone-polydimethylsiloxane copolymer. film.
(8)被覆層が、被覆材料の希薄溶液を水面展開法で形
成した膜である特許請求の範囲第1項記載の気体透過複
合膜。
(8) The gas permeable composite membrane according to claim 1, wherein the coating layer is a membrane formed by applying a dilute solution of the coating material to a water surface.
JP59203408A 1983-11-26 1984-09-28 Gas-permeable composite membrane Granted JPS6182823A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59203408A JPS6182823A (en) 1984-09-28 1984-09-28 Gas-permeable composite membrane
EP89108619A EP0337499A3 (en) 1983-11-26 1984-11-26 Method for regenerating used gas-permeable films
DE8484114268T DE3482378D1 (en) 1983-11-26 1984-11-26 COMPOSED FILMS SUITABLE FOR SELECTIVE GAS SEPARATION.
EP84114268A EP0144054B1 (en) 1983-11-26 1984-11-26 Composite films adapted for selective gas separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203408A JPS6182823A (en) 1984-09-28 1984-09-28 Gas-permeable composite membrane

Publications (2)

Publication Number Publication Date
JPS6182823A true JPS6182823A (en) 1986-04-26
JPH0427890B2 JPH0427890B2 (en) 1992-05-13

Family

ID=16473567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203408A Granted JPS6182823A (en) 1983-11-26 1984-09-28 Gas-permeable composite membrane

Country Status (1)

Country Link
JP (1) JPS6182823A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163751A (en) * 1991-12-16 1993-06-29 Inax Corp Automatic faucet
JP2002253919A (en) * 2001-02-27 2002-09-10 Kyocera Corp Gas separation filter
JP2007260630A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Hydrogen separation unit
JP2007260631A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Preliminary membrane
WO2016117360A1 (en) * 2015-01-22 2016-07-28 富士フイルム株式会社 Acidic gas separation module
WO2018159563A1 (en) * 2017-02-28 2018-09-07 富士フイルム株式会社 Composite separation membrane, separation membrane module, separation device, composition for forming separation membrane, and method for producing composite separation membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215483A (en) * 1975-07-28 1977-02-05 Asahi Chem Ind Co Ltd Gas permeable membrane
JPS5791708A (en) * 1980-11-28 1982-06-08 Sumitomo Electric Ind Ltd Composite membrane having selective permeability to gas and method for producing the same
JPS5962303A (en) * 1982-09-30 1984-04-09 Kobunshi Oyo Gijutsu Kenkyu Kumiai Oxygen separating and enriching membrane
JPS59109205A (en) * 1982-11-30 1984-06-23 Ube Ind Ltd Multiple-unit membrane for oxygen separation
JPS60114324A (en) * 1983-11-26 1985-06-20 Matsushita Electric Ind Co Ltd Gas permeable compound membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215483A (en) * 1975-07-28 1977-02-05 Asahi Chem Ind Co Ltd Gas permeable membrane
JPS5791708A (en) * 1980-11-28 1982-06-08 Sumitomo Electric Ind Ltd Composite membrane having selective permeability to gas and method for producing the same
JPS5962303A (en) * 1982-09-30 1984-04-09 Kobunshi Oyo Gijutsu Kenkyu Kumiai Oxygen separating and enriching membrane
JPS59109205A (en) * 1982-11-30 1984-06-23 Ube Ind Ltd Multiple-unit membrane for oxygen separation
JPS60114324A (en) * 1983-11-26 1985-06-20 Matsushita Electric Ind Co Ltd Gas permeable compound membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163751A (en) * 1991-12-16 1993-06-29 Inax Corp Automatic faucet
JP2002253919A (en) * 2001-02-27 2002-09-10 Kyocera Corp Gas separation filter
JP4605920B2 (en) * 2001-02-27 2011-01-05 京セラ株式会社 Gas separation filter
JP2007260630A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Hydrogen separation unit
JP2007260631A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Preliminary membrane
WO2016117360A1 (en) * 2015-01-22 2016-07-28 富士フイルム株式会社 Acidic gas separation module
JPWO2016117360A1 (en) * 2015-01-22 2017-10-19 富士フイルム株式会社 Acid gas separation module
WO2018159563A1 (en) * 2017-02-28 2018-09-07 富士フイルム株式会社 Composite separation membrane, separation membrane module, separation device, composition for forming separation membrane, and method for producing composite separation membrane

Also Published As

Publication number Publication date
JPH0427890B2 (en) 1992-05-13

Similar Documents

Publication Publication Date Title
JPS60161703A (en) Gas permselective composite membrane
JPH0610277B2 (en) Membrane material
JPS6182823A (en) Gas-permeable composite membrane
JPH0417084B2 (en)
EP0144054B1 (en) Composite films adapted for selective gas separation
JPH0224574B2 (en)
JPS60114324A (en) Gas permeable compound membrane
EP0630682A2 (en) Layered plasma polymer composite membranes
JPS6256775B2 (en)
JPS63214319A (en) Composite membrane for separation
JPS63278525A (en) Production of vapor-liquid separation membrane
JPH0155658B2 (en)
JPS56147604A (en) Manufacture of composite gas permeable membrane
Zuri et al. Film formation and crack development in plasma polymerized hexamethyldisiloxane
JPH09155169A (en) Gas permeable film
JPS59169507A (en) Gas separation membrane
JPS6349220A (en) Gas separating membrane
EP0337499A2 (en) Method for regenerating used gas-permeable films
JP2541294B2 (en) Composite membrane
JPS62227409A (en) Method for repairing permselective composite membrane
JPH02139023A (en) Selectively gas permeable multilayer membrane
JPH0380925A (en) Gas permselective membrane
JPH0421528B2 (en)
JPS60227804A (en) Manufacture of separation membrane
JPH0761426B2 (en) Selective gas permeable composite membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term