JPH0155658B2 - - Google Patents

Info

Publication number
JPH0155658B2
JPH0155658B2 JP16438682A JP16438682A JPH0155658B2 JP H0155658 B2 JPH0155658 B2 JP H0155658B2 JP 16438682 A JP16438682 A JP 16438682A JP 16438682 A JP16438682 A JP 16438682A JP H0155658 B2 JPH0155658 B2 JP H0155658B2
Authority
JP
Japan
Prior art keywords
ultra
thin film
producing
group
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16438682A
Other languages
Japanese (ja)
Other versions
JPS5953539A (en
Inventor
Takafumi Kajima
Yukihiro Saito
Midori Kawahito
Shiro Asakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16438682A priority Critical patent/JPS5953539A/en
Publication of JPS5953539A publication Critical patent/JPS5953539A/en
Publication of JPH0155658B2 publication Critical patent/JPH0155658B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、混合流体、特に混合気体に対して、
選択透過性を有する超薄膜重合体膜の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides for mixed fluids, especially mixed gases,
The present invention relates to a method for producing an ultra-thin polymer membrane having permselectivity.

従来例の構成とその問題点 近年、膜による分離技術の進歩発展には目覚し
いものがあり、そのうちのいくつかは、実際工業
的規模で実用化されている。しかしながら、実用
化されているのは、海水の淡水化、工場廃液の処
理、食品の濃縮等のように、液−液分離、若しく
は液−固分離であり、気−気分離、即ち2種以上
の混合ガスの分離については、ほとんど実用化さ
れていない。
Configuration of conventional examples and their problems In recent years, there has been remarkable progress in separation technology using membranes, and some of them have actually been put into practical use on an industrial scale. However, what has been put into practical use is liquid-liquid separation or liquid-solid separation, such as seawater desalination, factory waste treatment, food concentration, etc., and gas-gas separation, that is, two or more types of separation. The separation of mixed gases has hardly been put to practical use.

ガスの膜分離を簡単に実用化できない理由とし
ては、選択透過性が比較的小さいこと、即ち、特
定の気体を選択的に通し、他の気体をほとんど通
さないという膜がないため、高純度の気体を得る
ためには幾度か膜分離を繰り返す多段方式を採用
する必要があり、その結果として装置が大きくな
り過ぎるということと、透過量が少ないため大量
のガス生産が不可能であることなどである。しか
し、選択透過性という点から見れば、ガスの最終
用途として必ずしも高純度のものを必要としない
分野も多々ある。例えば酸素の場合、高炉送風
用、燃焼補助用、石油蛋白プロセス用、廃液汚水
処理用、呼気などの医療用の場合に、高純度酸素
は必ずしも必要としない。そればかりではなく、
高純度酸素では、炉の損傷、火災の危険、未熟児
の失明等、かえつて不都合な場合も多い。上記用
途に使用される酸素富化空気を得る方法として従
来は高純度酸素を空気分離装置(空気液化法)で
製造し、次いで空気と混合することによつて、目
的の酸素濃度としてきた。
The reason why membrane separation of gases cannot be easily put into practical use is that the permselectivity is relatively low.In other words, there is no membrane that selectively passes a specific gas and hardly allows other gases to pass through. In order to obtain gas, it is necessary to adopt a multi-stage method in which membrane separation is repeated several times, which results in the equipment being too large, and the amount of permeation is small, making it impossible to produce large amounts of gas. be. However, from the point of view of selective permselectivity, there are many fields in which the final use of gas does not necessarily require high purity. For example, in the case of oxygen, high purity oxygen is not necessarily required for use in blast furnace ventilation, combustion assistance, petroleum protein processing, wastewater treatment, and medical use such as exhalation. Not only that,
High-purity oxygen often has disadvantages such as damage to the furnace, risk of fire, and blindness in premature infants. Conventionally, as a method for obtaining oxygen-enriched air for use in the above-mentioned applications, high-purity oxygen has been produced using an air separation device (air liquefaction method) and then mixed with air to achieve the desired oxygen concentration.

しかし、かかる方法では、高純度酸素は一般に
圧力容器に入つているので、圧力容器の取扱いの
危険性、あるいは混合ガス濃度を一定とするため
の圧力調節器の必要性、その操作の煩雑性等問題
が多い。そこで、低純度あるいは中間純度の酸素
富化空気を得る方法としては、膜分離による空気
分離の方が、直接大気中の空気から酸素富化空気
が得られ、操作的にも簡単でかつ経済的にも有利
である。
However, in such methods, high-purity oxygen is generally contained in a pressure vessel, so there are risks in handling the pressure vessel, the need for a pressure regulator to keep the mixed gas concentration constant, and the complexity of its operation. There are many problems. Therefore, as a method for obtaining oxygen-enriched air of low or intermediate purity, air separation using membrane separation is easier and more economical as it allows oxygen-enriched air to be obtained directly from air in the atmosphere. It is also advantageous.

従来、膜分離による酸素富化空気の製造法とし
ては、2つの方法が知られている。1つはポリエ
チレン、ポリスチレンあるいは、ポリエチレンテ
レフタレート等の中空繊維を用いる方法であり、
(特開昭49−10192号公報、特公昭49−81298号公
報参照)もう1つは、オルガノポリシロキサン−
ポリカーボネート共重合体等の超薄膜を用いる方
法、(米国特許第3980456号、同第3874986号明細
書参照)等がある。中空繊維を用いる方法は、単
位面積当りの膜面積を大きくし、透過量を増大さ
せるものであるが、実用上の透過量を得るために
は、まだ大きく簡便ではない。それに対し、超薄
膜は、透過量が膜厚に反比例することを利用し
て、透過量を増大させているものであり、膜厚が
薄くなればなるほどコンパクトな分離装置が可能
となる。このことは、均一膜中を気体が通過する
時、その量は一般的に次式で表わされるという事
実に基づいている。
Conventionally, two methods are known as methods for producing oxygen-enriched air by membrane separation. One is a method using hollow fibers such as polyethylene, polystyrene, or polyethylene terephthalate.
(Refer to JP-A-49-10192 and JP-A-49-81298.) The other is organopolysiloxane.
There is a method using an ultra-thin film such as a polycarbonate copolymer (see US Pat. No. 3,980,456 and US Pat. No. 3,874,986). Although the method using hollow fibers increases the membrane area per unit area and increases the amount of permeation, it is still too large and simple to obtain a practical amount of permeation. On the other hand, ultra-thin membranes increase the amount of permeation by utilizing the fact that the amount of permeation is inversely proportional to the membrane thickness, and the thinner the membrane thickness, the more compact the separation device becomes possible. This is based on the fact that when gas passes through a homogeneous membrane, the amount is generally expressed as:

F;透過流量(cm3/sec) ;気体透過係数(cm3・cm/cm2・sec・cmHg) △P;圧力差(cmHg) A;膜面積(cm2) L;膜厚(cm) 上記の式でAと△Pは気体分離に必要な外的な
装置に依存しており、一定の限界がある。また
は材料で一定であるから、透過流量Fを増大させ
るには最終的にはができるだけ大きく、かつ膜
厚Lができるだけ薄くなることが必要となる。現
在までに知られている超薄膜としては、1つにオ
ルガノポリシロキサン−ポリカーボネート共重合
体から成る膜がある。この共重合体の膜厚は、
0.1μ程度であり、素材自体の性能としては酸素透
過係数が〜10-8(c.c.・cm/cm2・sec・cmHg)で、
酸素分離係数(PO2/PN2)が2.0〜2.4と良いので
あるが、耐薬品性が悪く、汚染空気あるいは減圧
及び加圧するための油入りポンプ又はコンプレツ
サーの油等により劣化する危険性があり、加水分
解にぐる劣化も考えられ、実用的には問題があ
る。さらに大きな問題として、このオルガノポリ
ジメチルシロキサン−ポリカーボネート共重合体
の超薄膜を製造するためには、この重合体の溶媒
として水より比重の大きい1,2,3−トリクロ
ロプロパン、トリクロロエチレン、クロロホルム
等を用いる必要があり、この重合体溶液を水面上
に滴下して超薄膜を得る場合、重合体溶液の1部
は水面下に沈降し、また自生的に充分拡がること
ができず、実用的に使用できる均一な薄膜を簡単
に製造することは困難である。他に超薄膜製造の
方法としては、特開昭56−166232号公報、特開昭
56−92925号に示されるものがある。これらの方
法は、ポリオレフインやジエンポリマー等の疎水
ポリマーのシクロヘキセン溶液に、親水性基を有
したアルコール類等の化合物を添加したり、部分
酸化処理したシクロヘキセンを主成分とする混合
物をこれらの疎水性ポリマーの溶媒とすることに
よつて、自生的に、しかも均一に水面に拡がるよ
うに工夫したものである。しかしながら、これら
の方法は、ポリオレフイン及びジエンポリマーに
は有効な手段であるが、他の高分子の場合には適
用出来ないのが欠点である。
F: Permeation flow rate (cm 3 /sec); Gas permeability coefficient (cm 3・cm/cm 2・sec・cmHg) △P: Pressure difference (cmHg) A: Membrane area (cm 2 ) L: Membrane thickness (cm) In the above equation, A and ΔP depend on the external equipment required for gas separation and have certain limits. Alternatively, since it is constant depending on the material, in order to increase the permeation flow rate F, it is necessary to ultimately make the film thickness as large as possible and the film thickness L as thin as possible. One of the ultra-thin films known to date is a film made of an organopolysiloxane-polycarbonate copolymer. The film thickness of this copolymer is
It is about 0.1μ, and the oxygen permeability coefficient of the material itself is ~10 -8 (cc・cm/cm 2・sec・cmHg),
Although it has a good oxygen separation coefficient (P O2 /P N2 ) of 2.0 to 2.4, it has poor chemical resistance and there is a risk of deterioration due to contaminated air or oil from oil-filled pumps or compressors used for depressurization and pressurization. , deterioration due to hydrolysis is also considered, which poses a practical problem. An even bigger problem is that in order to produce an ultra-thin film of this organopolydimethylsiloxane-polycarbonate copolymer, it is necessary to use 1,2,3-trichloropropane, trichloroethylene, chloroform, etc., which have a higher specific gravity than water, as a solvent for this polymer. When this polymer solution is dropped onto the water surface to obtain an ultra-thin film, a portion of the polymer solution settles below the water surface and cannot spread sufficiently on its own, making it difficult to use for practical purposes. It is difficult to easily produce such a uniform thin film. Other methods for producing ultra-thin films include JP-A-56-166232 and JP-A-Sho.
There is one shown in No. 56-92925. These methods involve adding compounds such as alcohols with hydrophilic groups to a cyclohexene solution of hydrophobic polymers such as polyolefins and diene polymers, or adding a mixture mainly composed of partially oxidized cyclohexene to a solution of hydrophobic polymers such as polyolefins and diene polymers in cyclohexene. By using it as a solvent for the polymer, it was devised so that it would spread spontaneously and uniformly on the water surface. However, although these methods are effective for polyolefin and diene polymers, they have the disadvantage that they cannot be applied to other polymers.

発明の目的 本発明は、以上のような従来の問題点を解決す
るために成されたもので、主として気体の透過量
が大きく選択性に優れた分離機能を有する高分子
材料を、好適に使用し得る均一な超薄膜の製造方
法を提供することを目的とする。
Purpose of the Invention The present invention has been made in order to solve the above-mentioned conventional problems, and mainly uses a polymer material that has a large gas permeation rate and a separation function with excellent selectivity. The purpose of the present invention is to provide a method for manufacturing a uniform ultra-thin film.

発明の構成 この目的を達成するために本発明は、水面上で
の拡がりが悪く、不均一で薄膜化が困難とされて
いた薄膜製造用高分子の疎水性溶液に、シリコー
ン系の界面活性剤を1〜10重量%添加することに
より、高分子の拡がり、均一性、超薄膜化を実現
させるものである。
Structure of the Invention In order to achieve this object, the present invention uses a silicone-based surfactant in a hydrophobic solution of a polymer for thin film production, which has been difficult to spread on the water surface, is non-uniform, and is difficult to form into a thin film. By adding 1 to 10% by weight of the polymer, it is possible to spread the polymer, make it uniform, and make it an ultra-thin film.

この発明における疎水性溶媒としては、ベンゼ
ン、トルエン、キシレン、クロルベンゼン、酢酸
エチル、酢酸メチル、クロロホルム、塩化メチレ
ン、クロロエタン、クロロプロパン等がある。ま
たシリコーン系の界面活性剤としては、特開昭56
−26506に示すポリヒドロキシスチレンと末端反
応性ポリジメチルシロキサンの共重合体及び、特
開昭56−24019号に示すフエノール樹脂と末端反
応性ポリジメチルシロキサンとの共重合体、さら
に、その他のシリコーンを主成分とする界面活性
剤を添加することにより、非常に良好な超薄膜を
得た。
Hydrophobic solvents in this invention include benzene, toluene, xylene, chlorobenzene, ethyl acetate, methyl acetate, chloroform, methylene chloride, chloroethane, chloropropane, and the like. In addition, as silicone-based surfactants, JP-A-56
Copolymers of polyhydroxystyrene and terminally reactive polydimethylsiloxane shown in -26506, copolymers of phenolic resin and terminally reactive polydimethylsiloxane shown in JP-A No. 56-24019, and other silicones. By adding a surfactant as the main component, a very good ultra-thin film was obtained.

実施例の説明 以下に、今まで行なつた実験を中心に実施例を
挙げて本発明をさらに詳しく記述するが、実施例
は、本発明を説明するためのものであつて、それ
に限定されるものではない。
DESCRIPTION OF EXAMPLES The present invention will be described in more detail below by giving examples mainly based on experiments conducted so far, but the examples are for illustrating the present invention and are not limited thereto. It's not a thing.

〈比較例 1〉 ポリフエニレンオキサイド(PPO)重量平均
分子量約10万をトルエンに溶解し、2重量%の溶
液に調整した。そして、この溶液を用いてラング
ミユア法により水面上で超薄膜化の検討をした
が、この溶液組成では、PPOは水面上に均一に
拡散せず、薄膜化はできなかつた。
<Comparative Example 1> Polyphenylene oxide (PPO) having a weight average molecular weight of approximately 100,000 was dissolved in toluene to prepare a 2% by weight solution. Using this solution, we investigated forming an ultra-thin film on the water surface using the Langmiur method, but with this solution composition, PPO did not diffuse uniformly on the water surface and it was not possible to form a thin film.

〈実施例 1〉 比較例1で示した溶液に、特開昭56−26506号
公報に示すポリヒドロキシスチレンとポリジメチ
ルシロキサンの共重合体の10wt%ベンゼン溶液
を1c.c.添加したところ、PPOは均一に水面上に
拡散し、50cm×50cmの面積にわたり、均一な超薄
膜を与えた。この時の液滴の容量は0.05c.c.で、液
滴中に含まれるPPOの重量は、2.09×10-3gであ
つた。これより、PPOの比重を1.0としてその膜
厚を計算すると約0.1μとなり、ポリヒドロキシス
チレンとポリジメチルシロキサンの共重合体が、
超薄膜を製造する際に、非常に効果的な添加剤で
あることがわかつた。
<Example 1> When 1 c.c. of a 10wt% benzene solution of a copolymer of polyhydroxystyrene and polydimethylsiloxane shown in JP-A-56-26506 was added to the solution shown in Comparative Example 1, PPO was uniformly diffused on the water surface, giving a uniform ultra-thin film over an area of 50 cm x 50 cm. The volume of the droplet at this time was 0.05 cc, and the weight of PPO contained in the droplet was 2.09×10 −3 g. From this, if the specific gravity of PPO is 1.0 and the film thickness is calculated, it will be approximately 0.1μ, and the copolymer of polyhydroxystyrene and polydimethylsiloxane will be
It has been found to be a very effective additive in producing ultra-thin films.

〈実施例 2〉 ポリブタジエンをベンゼンに溶解させ、2重量
%の溶液とし、比較例1と同様水面上で超薄膜化
の検討をしたが、結果は良くなかつた。そこで実
施例1と同様にポリヒドロキシスチレンとポリジ
メチルシロキサンの共重合体ベンゼン溶液を添加
したところ、今度は水面上にただちに拡がり、均
一な超薄膜が得られた。このようにして得られた
膜を、多孔質ポリプロピレン(ジユラガート2400
ポリプラスチツク(株)製)上に付着させて、その特
性を測定した結果、膜厚は約0.1μであり、分離係
数(PO2/PN2)は4.0であつた。
<Example 2> Polybutadiene was dissolved in benzene to form a 2% by weight solution, and as in Comparative Example 1, attempts were made to form an ultra-thin film on the water surface, but the results were not good. Therefore, when a benzene solution of a copolymer of polyhydroxystyrene and polydimethylsiloxane was added in the same manner as in Example 1, this time it immediately spread on the water surface, resulting in a uniform ultra-thin film. The membrane thus obtained was coated with porous polypropylene (Dyuragart 2400).
Polyplastic Co., Ltd.) was deposited on the film and its properties were measured. As a result, the film thickness was about 0.1 μ and the separation coefficient (P O2 /P N2 ) was 4.0.

〈実施例 3〉 ポリヒドロキシスチレンを含んだシリコーン系
HS共重合体をベンゼンの2重量%溶液とし、次
いでこれを、水面上に拡散せしめたが、拡散する
のにかなり時間を要し、しかも拡がりが小さくか
つ不均一であつた。そこで実施例1と同様に
PHS−PDMS共重体の4重量%ベンゼン溶液を
10%程度加えて、同じ条件で水面上に拡散せしめ
た。液滴は速やかに拡がり、均一な超薄膜が得ら
れた。膜厚は約0.1μであり、分離係数(PO2
PN2)は2.1であつた。
<Example 3> Silicone system containing polyhydroxystyrene
The HS copolymer was made into a 2% by weight solution of benzene and then diffused onto the water surface, but it took a considerable amount of time to diffuse, and the spread was small and non-uniform. Therefore, as in Example 1,
4 wt% benzene solution of PHS-PDMS copolymer
Approximately 10% was added and diffused on the water surface under the same conditions. The droplets spread rapidly and a uniform ultra-thin film was obtained. The film thickness is approximately 0.1μ, and the separation coefficient (P O2 /
P N2 ) was 2.1.

〈実施例 4〉 実施例3と同様に、今度は高分子としてノボラ
ツクを含むシリコーン系HS共重合体について検
討を行なつた。やはりPHS−PDMSの4重量%
ベンゼン溶液の添加により、均一な超薄膜の製造
が可能であつた。膜厚は約0.2μであり、分離係数
(PO2/PN2)は2.2であつた。
<Example 4> Similar to Example 3, this time a study was conducted on a silicone-based HS copolymer containing novolak as the polymer. Again, 4% by weight of PHS-PDMS
By adding a benzene solution, it was possible to produce a uniform ultra-thin film. The film thickness was approximately 0.2μ, and the separation coefficient (P O2 /P N2 ) was 2.2.

〈実施例 5〉 実施例1と同様に、薄膜製造用高分子として
PPOを用い、トルエンの2重量%溶液とした。
界面活性剤として、トーレシリコーンSH3748(商
品名)を用い、これを上記の高分子溶液100mlに
対して約1ml添加した。この時の水面上での拡が
りは、実施例2の場合と同様非常に良好であつ
た。0.05c.c.で、約60cm四方に拡がり、換算膜厚は
0.08μであつた。
<Example 5> Similar to Example 1, as a polymer for thin film production.
PPO was used to prepare a 2% by weight solution in toluene.
Toray Silicone SH3748 (trade name) was used as a surfactant, and about 1 ml of this was added to 100 ml of the above polymer solution. At this time, the spread on the water surface was very good as in Example 2. 0.05cc, spreads approximately 60cm square, equivalent film thickness is
It was 0.08μ.

〈実施例 6〉 実施例1と同様に、薄膜製造用高分子として、
化学式が で示されるポリウレタン(w≒6万)を用い、
これを2重量%ベンゼン溶液とした。界面活性剤
を添加しない時はPPOの場合と同様、水面上に
均一な薄膜は形成されなかつたが、界面活性剤と
して、トーレシリコーンSH3530(商品名)を用
い、それを高分子溶液100mlに対して約2ml添加
した結果、その水面上での拡がりは、大幅に改善
され、約50cm2の面積にわたつて均一な超薄膜を形
成した。換算膜厚は、約0.05μであつた。
<Example 6> As in Example 1, as a polymer for thin film production,
chemical formula is Using polyurethane (w≒60,000) shown in
This was made into a 2% by weight benzene solution. When no surfactant was added, a uniform thin film was not formed on the water surface as in the case of PPO, but Toray Silicone SH3530 (trade name) was used as a surfactant, and it was added to 100 ml of polymer solution. As a result, the spreading on the water surface was significantly improved, and a uniform ultra-thin film was formed over an area of about 50 cm 2 . The equivalent film thickness was approximately 0.05μ.

実施例1〜6においては、主として代表的な超
薄膜製造用高分子を用い、それに準じて適当なシ
リコーン系界面活性剤を取り上げている。それゆ
え、今までの説明ではその全てを網羅していると
は言い難いが、本発明で用いられている界面活性
剤は全ての高分子溶液に対して親和性が高く、こ
こに示した縮合型、ビニル系、シリコーン系高分
子以外のものに対しても同様の効果が得られるこ
とは容易に推測できる。
In Examples 1 to 6, typical polymers for producing ultra-thin films are mainly used, and appropriate silicone surfactants are selected accordingly. Therefore, although it cannot be said that the explanations so far have covered everything, the surfactant used in the present invention has a high affinity for all polymer solutions, and the condensation shown here It can be easily inferred that similar effects can be obtained with materials other than molds, vinyl-based polymers, and silicone-based polymers.

発明の効果 以上説明したように本発明は、疎水性溶媒の高
分子溶液中に、オルガノシロキサンを主成分とし
た界面活性剤を1〜20%添加することにより、高
分子超薄膜を容易にかつ均一に製造することが可
能である。特にこの方法は、従来の方法とは異
り、疎水性の高分子全般に適用することが可能で
あり、その際、高分子各々対して溶媒を変える必
要もなく、高分子超薄膜の製造に非常に有効な手
段となるものである。
Effects of the Invention As explained above, the present invention facilitates the formation of ultra-thin polymer films by adding 1 to 20% of a surfactant containing organosiloxane as a main component to a polymer solution in a hydrophobic solvent. It is possible to manufacture uniformly. In particular, unlike conventional methods, this method can be applied to all hydrophobic polymers, and in this case, there is no need to change the solvent for each polymer, making it suitable for producing ultra-thin polymer films. This is a very effective means.

Claims (1)

【特許請求の範囲】 1 オルガノシロキサンを主成分とする界面活性
剤と非水有機溶媒の混合物を溶媒とし、これに高
分子を溶解せしめた溶液を水面上に拡散せしめ、
その水面上に前記高分子の超薄膜を形成せしめる
ことを特徴とする超薄膜の製造方法。 2 界面活性剤は、シリコーンを主成分とするこ
とを特徴とする特許請求の範囲第1項記載の超薄
膜の製造方法。 3 界面活性剤は、ポリヒドロキシスチレンと末
端反応性ポリジメチルシロキサンとから合成され
るシリコーン共重合体である特許請求の範囲第1
項記載の超薄膜の製造方法。 4 界面活性剤は、フエノール樹脂と末端反応性
ポリジメチルシロキサンから合成されたシリコー
ン共重合体である特許請求の範囲第1項記載の超
薄膜の製造方法。 5 非水有機溶媒は、ベンゼン、トルエン、キシ
レン、クロルベンゼン、酢酸エチル、酢酸メチ
ル、クロロホルム、塩化メチレン、クロロエタ
ン、クロロプロパン、四塩化炭素からなる群から
選ばれた少なくとも1種である特許請求の範囲第
1項記載の超薄膜の製造方法。 6 高分子は、縮合型高分子、ポリウレタン、ポ
リオレフイン、ジエンポリマー、シリコーン共重
合体からなる群から選ばれた少なくとも1種であ
る特許請求の範囲第1項記載の超薄膜の製造方
法。 7 縮合型高分子は、一般式が、 (但し、mは1,2の整数、Xは、水素原子、
メチル基、エチル基、ハロゲン原子、スルホン酸
基、ニトロ基より成る群より選ばれる。) で、示されるポリフエニレンエーテルである特許
請求の範囲第6項記載の超薄膜の製造方法。 8 ポリウレタンは、一般式が、 (但し、R1は、−CH2−CH2−,(−CH2−)3,(−
CH2−)4,(−CH2−)5,(−CH2−)6
【式】【式】R2は, 【式】【式】 【式】 【式】 【式】−CH2−CH2−,(− CH2−)3より成る群より選ばれる。) で示されるポリウレタンである特許請求の範囲第
6項記載の超薄膜の製造方法。 9 ポリオレフイン、ジエンポリマーは、ポリブ
テン、ポリペンテン、ポリメチルペンテン、ポリ
ヘキセン、ポリメチルヘキセン、ポリブタジエン
及びポリイソプレンからなる群から選ばれた少な
くとも1種である特許請求の範囲第6項記載の超
薄膜の製造方法。 10 シリコーン共重合体は、ポリオルガノシロ
キサンとのブロツク共重合体あるいはグラフト共
重合体である、特許請求の範囲第6項記載の超薄
膜の製造方法。
[Claims] 1. A mixture of a surfactant containing organosiloxane as a main component and a non-aqueous organic solvent is used as a solvent, and a solution of a polymer dissolved therein is diffused on the water surface,
A method for producing an ultra-thin film, comprising forming an ultra-thin film of the polymer on the water surface. 2. The method for producing an ultra-thin film according to claim 1, wherein the surfactant contains silicone as a main component. 3. The surfactant is a silicone copolymer synthesized from polyhydroxystyrene and terminal-reactive polydimethylsiloxane.
A method for producing an ultra-thin film as described in Section 1. 4. The method for producing an ultra-thin film according to claim 1, wherein the surfactant is a silicone copolymer synthesized from a phenolic resin and a terminally reactive polydimethylsiloxane. 5 Claims in which the nonaqueous organic solvent is at least one selected from the group consisting of benzene, toluene, xylene, chlorobenzene, ethyl acetate, methyl acetate, chloroform, methylene chloride, chloroethane, chloropropane, and carbon tetrachloride. 2. The method for producing an ultra-thin film according to item 1. 6. The method for producing an ultra-thin film according to claim 1, wherein the polymer is at least one selected from the group consisting of condensation polymers, polyurethanes, polyolefins, diene polymers, and silicone copolymers. 7 The condensation type polymer has the general formula: (However, m is an integer of 1 or 2, X is a hydrogen atom,
Selected from the group consisting of methyl group, ethyl group, halogen atom, sulfonic acid group, and nitro group. ) The method for producing an ultra-thin film according to claim 6, which is a polyphenylene ether represented by: 8 Polyurethane has the general formula: (However, R 1 is −CH 2 −CH 2 −, (−CH 2 −) 3 , (−
CH 2 −) 4 , (−CH 2 −) 5 , (−CH 2 −) 6 ,
[Formula] [Formula] R 2 is selected from the group consisting of [Formula] [Formula] [Formula] [Formula] [Formula] −CH 2 −CH 2 −, (− CH 2 −) 3 . ) The method for producing an ultra-thin film according to claim 6, which is a polyurethane represented by: 9. Production of an ultra-thin film according to claim 6, wherein the polyolefin and diene polymer are at least one selected from the group consisting of polybutene, polypentene, polymethylpentene, polyhexene, polymethylhexene, polybutadiene, and polyisoprene. Method. 10. The method for producing an ultra-thin film according to claim 6, wherein the silicone copolymer is a block copolymer or a graft copolymer with polyorganosiloxane.
JP16438682A 1982-09-21 1982-09-21 Manufacture of ultrathin film Granted JPS5953539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16438682A JPS5953539A (en) 1982-09-21 1982-09-21 Manufacture of ultrathin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16438682A JPS5953539A (en) 1982-09-21 1982-09-21 Manufacture of ultrathin film

Publications (2)

Publication Number Publication Date
JPS5953539A JPS5953539A (en) 1984-03-28
JPH0155658B2 true JPH0155658B2 (en) 1989-11-27

Family

ID=15792135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16438682A Granted JPS5953539A (en) 1982-09-21 1982-09-21 Manufacture of ultrathin film

Country Status (1)

Country Link
JP (1) JPS5953539A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8320797D0 (en) * 1983-08-02 1983-09-01 Shell Int Research Very thin dense membrane
JPS6128408A (en) * 1984-07-18 1986-02-08 Matsushita Electric Ind Co Ltd Production of ultra-thin membrane
JPS6168106A (en) * 1984-09-12 1986-04-08 Matsushita Electric Ind Co Ltd Manufacture of ultrathin membrane
JPH0642043B2 (en) * 1986-04-10 1994-06-01 富士写真フイルム株式会社 Method for forming solid particle film
JPH0733186B2 (en) * 1986-11-07 1995-04-12 信越ポリマ−株式会社 Low friction silicone sponge roll
CN107308775A (en) * 2017-08-04 2017-11-03 王婧宁 Polychlorinated biphenyls efficiently removes composition in air
CN110343273A (en) * 2019-07-17 2019-10-18 重庆大学 A method of ultra-thin polydimethylsiloxanefilm film and its laminated film are made based on liquid level suspension technology

Also Published As

Publication number Publication date
JPS5953539A (en) 1984-03-28

Similar Documents

Publication Publication Date Title
Li et al. Tailor‐made asymmetric PVDF hollow fibers for soluble gas removal
EP0113574B1 (en) Gas-selectively permeable membrane and method of forming said membrane
JPH0551331B2 (en)
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPH0155658B2 (en)
JPS62227423A (en) Gas separating membrane
JPH0224574B2 (en)
JPS6256775B2 (en)
EP0336999B1 (en) Reactive posttreatment for gas separation membranes
JPS6311045B2 (en)
JPS6349220A (en) Gas separating membrane
JP2805794B2 (en) Manufacturing method of gas separation membrane
JPH0474047B2 (en)
KR20040031921A (en) A method for preparing ionic liquid supported liquid membrane
JPS62227409A (en) Method for repairing permselective composite membrane
JPH0365223B2 (en)
JPS6365932A (en) Production of gas separation membrane
JPS6223401A (en) Ultrafiltration membrane
JPS6128408A (en) Production of ultra-thin membrane
JPS60110303A (en) Permselective membrane and composite film
JPH04690B2 (en)
JPH029430A (en) Gas separation membrane and composite gas separation membrane
JPS60159015A (en) Manufacture of very thin film
JPH03221129A (en) Separation membrane
JPS62282620A (en) Composite membrane for separating gas