JPS5953539A - Manufacture of ultrathin film - Google Patents

Manufacture of ultrathin film

Info

Publication number
JPS5953539A
JPS5953539A JP16438682A JP16438682A JPS5953539A JP S5953539 A JPS5953539 A JP S5953539A JP 16438682 A JP16438682 A JP 16438682A JP 16438682 A JP16438682 A JP 16438682A JP S5953539 A JPS5953539 A JP S5953539A
Authority
JP
Japan
Prior art keywords
ultra
thin film
polymer
producing
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16438682A
Other languages
Japanese (ja)
Other versions
JPH0155658B2 (en
Inventor
Takafumi Kajima
孝文 鹿嶋
Yukihiro Saito
斉藤 幸廣
Midori Kawahito
川人 美登利
Shiro Asakawa
浅川 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16438682A priority Critical patent/JPS5953539A/en
Publication of JPS5953539A publication Critical patent/JPS5953539A/en
Publication of JPH0155658B2 publication Critical patent/JPH0155658B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain an uniform ultrathin film of high gas permeability with highly selective separability, by casting on water surface a solution prepared by dissolving a polymer in a nonaqueous organic solvent incorporated with a sulfactant consisting mainly of organosiloxane. CONSTITUTION:A polymer such as condensed-type one (e.g., polyphenylene ether), polyurethane, polyolefin, is dissolved in a nonaqueous organic solvent (e.g., benzene, methyl acetate, chloroform) incorporated with 1-10wt% of a surfactant consisting mainly of organosiloxane, e.g., a copolymer from polyhydroxystyrene or phenolic resin and a terminal-reactive polydimethyl siloxane. The resulting solution is cast on water surface to form the objective ultrathin film on it.

Description

【発明の詳細な説明】 産業上の利用分野 本発明t」2.混合流体、肋に混合気体に対して。[Detailed description of the invention] Industrial applications The present invention t'2. Mixed fluid, ribs against mixed gas.

選択透過性を有する超薄膜重合体膜の製造方法に関する
ものである。
The present invention relates to a method for producing an ultra-thin polymer membrane having permselectivity.

従来例の構成とその問題点 近年、膜による分離技術の進歩発展には目覚しいものが
あり、そのうちのいくつかは、実際工業的規模で実用化
されている。しかしながら、実用化されでいるのは、海
水の淡水化、工場廃液の処理9食品の濃縮等のように、
液−液分離、若しくは液−膜分離であり、気−気分熱、
即ち2種以上の混合ガスの分離については、はとんど実
用化されていA・い、。
Structures of conventional examples and their problems In recent years, there has been remarkable progress in separation technology using membranes, and some of them have actually been put into practical use on an industrial scale. However, things that have not been put into practical use include desalination of seawater, treatment of factory wastewater, and concentration of food products.
Liquid-liquid separation or liquid-membrane separation, gas-temperature,
That is, the separation of two or more types of mixed gases has hardly been put into practical use.

ガスの膜分離を簡単に実用化できない理由としては、選
択透過性が比較的小さいこと、即ち、特定の気体を選択
的に通し、他の気体をほとんど通さないという膜がない
だめ、高純度の気体を得る/ζめには幾度か膜分離を繰
り返す多段方式を採用する必要があり、その結果として
装置が大きくなり過き゛るということと、透過量が少な
いため大量のガス生産が不可能であることなどである0
しか]〜1選択透過性という点から見れば、ガスの最終
用途として必ずしも高純度のものを必要としない分野も
多々ある。例えば酸素の場合、高炉送風用。
The reason why membrane separation of gases cannot be easily put into practical use is that the selective permselectivity is relatively low.In other words, there is no membrane that selectively passes certain gases and almost no other gases. In order to obtain gas, it is necessary to adopt a multi-stage method in which membrane separation is repeated several times, which results in the equipment being too large, and because the amount of permeation is small, it is impossible to produce a large amount of gas. etc. 0
From the point of view of selective permselectivity, there are many fields in which gases of high purity are not necessarily required for their final use. For example, in the case of oxygen, it is used for blast furnace ventilation.

燃焼補助用1石油蛋白プロセス用、廃液汚水処理用、呼
気などの医療用の場合に、高純度酸素は必ずしも必要と
しない。そればかりではなく、高純度酸素では、炉の損
傷、火災の危険、未熟児の失明等、かえって不都合な場
合も多い。上記用途に使用される酸素富化空気を得る方
法として従来は高純度酸素を空気分離装置(空気液化法
)で製造し7、次いで空気と混合することによって、目
的の酸素濃度としてきた。
High-purity oxygen is not necessarily required for combustion auxiliary use 1 for petroleum protein processes, for waste liquid sewage treatment, and for medical purposes such as exhalation. Not only that, but high-purity oxygen has many disadvantages, such as damage to the furnace, danger of fire, and blindness in premature infants. Conventionally, as a method for obtaining oxygen-enriched air for use in the above-mentioned applications, high-purity oxygen is produced using an air separation device (air liquefaction method) 7 and then mixed with air to achieve the desired oxygen concentration.

しか(2,かかる方法では、高純度酸素は一般に圧力容
器に入っているので、圧力容器の取扱いの 、危険性、
あるいは混合ガス濃度全一定とするだめの月−力?J!
1flii器の必閥性、その操作の頂層1性等問題が多
い0そこで、低純度あるいは中間線J9の酸素富化空気
を得る方法としては、膜分離による空気分離の方が、直
接大気中の空気から酸素富化空気が得られ、操作的にも
簡単でかつ経済的にも有利である。
However, (2. In such methods, high-purity oxygen is generally contained in a pressure vessel, so the dangers of handling the pressure vessel,
Or is it impossible to keep the mixed gas concentration constant? J!
There are many problems such as the indispensability of the 1flii reactor and the top layer nature of its operation.Therefore, as a method of obtaining oxygen-enriched air of low purity or intermediate level J9, air separation by membrane separation is a better way to obtain oxygen-enriched air directly from the atmosphere. Oxygen-enriched air can be obtained from air, and it is operationally simple and economically advantageous.

従来、膜分肉[1による酸素富化空気の製造法としては
、2つの方法が知られている。1つはポリエチレン、ポ
リスチレンあるいは、ポリエチレンテレフタレート等の
中空繊維を用いる方法であり。
Conventionally, two methods are known for producing oxygen-enriched air using membrane thickening [1]. One is a method using hollow fibers such as polyethylene, polystyrene, or polyethylene terephthalate.

(特開昭49−10192号公報、特公昭49−812
98号公報参照)もう1つは、オルガノボリシロキザ7
−ポリヵーボ不−ト共重合体等の超薄膜を用いる方法、
(米国時W「第3980456号、同第3874986
号明細招参照)等がある。
(Japanese Unexamined Patent Publication No. 49-10192, Japanese Patent Publication No. 49-812
(Refer to Publication No. 98) The other is organoborisiloxa 7
- A method using an ultra-thin film such as a polycarbo-inert copolymer,
(U.S. W. No. 3980456, No. 3874986
Please refer to the details of the issue).

中空繊維を用いる方法は、単位面積当りの膜面積を太き
くし2透過量を増大させるものであるが、実用1−の透
過量を得るためには、まだ大きく簡便でiJ−ない。そ
れに対し、超薄膜は、透過量が膜厚に反比例することを
利用して、透過量を増大させているものであり、膜厚が
薄くなればなるほどコンパクトな分離装置がliJ能と
なる0このことは。
The method using hollow fibers increases the permeation amount by increasing the membrane area per unit area, but it is still too large and simple to obtain a practical permeation amount of 1-. On the other hand, ultra-thin membranes increase the amount of permeation by taking advantage of the fact that the amount of permeation is inversely proportional to the membrane thickness. The thing is.

均−膜中金気体が通過する時、その量は一般的に次式で
表わされるという事実に基づいている。
This is based on the fact that when gold gas passes through a uniform membrane, the amount is generally expressed as:

F:透過流量(owl / sec )β;気体透過係
数(cljI−tyn/(か5ec−o+Hg)△P1
圧力差(αHg) A;膜面積(cl ) L:膜 厚(n〃) 上記の式でAと△Pは気体分離に必要な外的な装置に依
存しており、一定の限界がある。また炉は利用で一定で
あるから、透過流量Fを増大させるには最終的にはiが
できるたけ大きく、かつ膜厚りができるだけ薄くなるこ
とが必要となる0現在までに知られている超薄膜として
は、1つにオルガノボリシロキザンーポリカーボネート
共重合体から成る膜がある0この共重合体の膜厚は、0
.1部程度であり、素材自体の性能としては酸素透過係
数が−1o  (cc −ctn/l:A asec 
−onHg)で、酸素分離係数(PO27pN、、 )
  が2.0−2.4と良いノテあるが、耐薬品性が悪
く、汚染空気あるいは減圧及び加圧するだめの油入りポ
ンプ又はコンブレソザーの油等により劣化する危険性が
あり、加水分解による劣化も考えられ、実用的には問題
がある。さらに大きな問題として、このオルガノボリジ
メチルシロキザンーポリカーボネ−1・共重合体の超薄
膜を製造するためには、この重合体の溶媒とI〜で水上
り比重の大きい1,2.3−)リクロ口プロパン、トリ
クし+ロエチレン1、クロロポルム等ヲ用いる必要があ
り、この重合体溶液を水面上に滴下して超薄膜をイ!I
る場合、重合体溶液の1部は水面下に沈降し、“d、た
自生的に充分拡がることができず、実用的に使用できる
均一な薄膜を簡単に製造すること(よ困難である。他に
超薄膜製造の方法としては、特開昭56−166232
号公報、特開昭66−92925号に示されるものがあ
る。これらの方法は、ポリオレフィンやジエンポリマー
等の疎水ポリマーのシクロヘキセン溶液に、親水性基を
有したアルコール類等の化合物を添加したり、部分酸化
処理したシクロヘキセンを主成分とする混合物をこれら
の疎水性ポリマーの溶媒とすることによって、自生的に
、しかも均一に水面に拡がるように工夫したものである
。しかしながら。
F: permeation flow rate (owl/sec) β; gas permeability coefficient (cljI-tyn/(ka5ec-o+Hg)△P1
Pressure difference (αHg) A: Membrane area (cl) L: Membrane thickness (n〃) In the above formula, A and ΔP depend on external equipment necessary for gas separation and have certain limits. In addition, since the furnace is constant depending on the usage, in order to increase the permeation flow rate F, it is necessary to ultimately make i as large as possible and the film thickness as thin as possible. One example of a thin film is a film made of an organoborisiloxane-polycarbonate copolymer.The film thickness of this copolymer is 0.
.. The material itself has an oxygen permeability coefficient of -1o (cc -ctn/l: A asec
-onHg), oxygen separation coefficient (PO27pN, )
It has a good rating of 2.0-2.4, but it has poor chemical resistance and there is a risk of deterioration due to contaminated air or oil from oil-filled pumps or comb sothers used for depressurization and pressurization, and deterioration due to hydrolysis. This is conceivable and has problems in practice. An even bigger problem is that in order to produce an ultra-thin film of this organoboridimethylsiloxane-polycarbonate-1 copolymer, it is necessary to use the solvent for this polymer and I~, which has a high specific gravity (1,2.3-) It is necessary to use liquid propane, trichlorethylene, chloroporm, etc., and drop this polymer solution onto the water surface to form an ultra-thin film! I
When a polymer solution is used, a portion of the polymer solution settles below the water surface and cannot spread sufficiently spontaneously, making it difficult to easily produce a uniform thin film for practical use. Other ultra-thin film manufacturing methods include Japanese Patent Application Laid-Open No. 56-166232.
There is one shown in Japanese Patent Application Laid-Open No. 66-92925. These methods involve adding a compound such as an alcohol having a hydrophilic group to a cyclohexene solution of a hydrophobic polymer such as a polyolefin or diene polymer, or adding a mixture mainly composed of partially oxidized cyclohexene to a solution of hydrophobic polymers such as polyolefins or diene polymers in cyclohexene. By using it as a solvent for the polymer, it was devised so that it would spread spontaneously and uniformly on the water surface. however.

これらの方法は、ポリオレフィン及びジエンポリマーに
は有効外手段であるが、他の高分子の場合には適用出来
ないのが欠点である。
Although these methods are effective for polyolefins and diene polymers, the disadvantage is that they cannot be applied to other polymers.

発明の目的 本発明は、以」−のような従来の問題点を解決するため
に成されたもので、主として気体の透過量が大きく選択
性に優れた分離機能を有する高分子利用を、好適に使用
し得る均一な超薄膜の製造方法を提供することを1]的
とする。
Purpose of the Invention The present invention has been made to solve the following problems in the conventional art. 1] The purpose is to provide a method for producing a uniform ultra-thin film that can be used for.

発明の構成 この]−4的を達成するだめに本発明は、水面上での拡
がりが悪く、不均一で薄膜化が困難とされていた薄膜製
造用高分子の疎水性溶液に、シリコーン系の界面活性剤
’(C−1〜10重量係添加することにより、高分子の
拡がり、均一性、超薄膜化を実現させるものである0 この発明に」、・ける疎水性溶媒とし、では、ベンセ/
、トルエン、キシレン、クロルベンゼン、酢酸エチル、
酢酸メチル、クロロホルム、塩化メチレン、り【IC1
エタ/lクロロプロパン等がある0才だシIJ :IF
−7系の界面活性剤としては %開閉66−26606
に示すポリヒドロキシスチレンと末端反応性ポリジメチ
ルシロキサンの共重合体及び、特開昭66−24019
号に示すフェノール樹脂と末端反応性ポリジメチルシロ
キサンとの共重合体、さらに、その他のシリコーンを主
成分とする界面活性剤を添加することにより、非常に良
好な超薄膜?:得だ。
Structure of the Invention In order to achieve the -4 objective, the present invention uses a silicone-based hydrophobic solution of a polymer for thin film production, which is difficult to spread on the water surface and is non-uniform, making it difficult to form a thin film. By adding a surfactant (C-1 to C-10 by weight, it is possible to achieve polymer spreading, uniformity, and ultra-thin film formation.) /
, toluene, xylene, chlorobenzene, ethyl acetate,
Methyl acetate, chloroform, methylene chloride, li [IC1
0 year old with eta/l chloropropane, etc. IJ: IF
-7 series surfactant: % opening/closing 66-26606
A copolymer of polyhydroxystyrene and terminal-reactive polydimethylsiloxane shown in JP-A No. 66-24019
By adding the copolymer of phenol resin and terminal-reactive polydimethylsiloxane shown in No. 1, as well as other surfactants mainly composed of silicone, an extremely good ultra-thin film can be produced. : It's a good deal.

実施例の説明 以下に、今まで行なった実験を中心に実施例を挙げて本
発明をさらに詳しく記述するが、実施例は1本発明を説
明するだめのものであって、それに限定されるものでは
ない。
DESCRIPTION OF EXAMPLES The present invention will be described in more detail below with examples mainly based on the experiments conducted so far, but the examples are only for explaining the present invention and are not limited thereto. isn't it.

く、比較例1〉 ポリフェニレンオキサイド(ppo)重量平均分子量約
10万をトルエンに溶解し、2重量係の溶液に調整(、
/こ。そして、この溶液を用いてラングミュア法により
水面上で超薄膜化の検討をしたが、この溶液組成では、
PPOは水面」二に均一に拡散せず、薄膜化はできなか
った。
Comparative Example 1 Polyphenylene oxide (PPO) with a weight average molecular weight of approximately 100,000 was dissolved in toluene and adjusted to a solution of 2 parts by weight (
/child. Using this solution, we investigated the creation of an ultra-thin film on the water surface using the Langmuir method, but with this solution composition,
PPO did not diffuse uniformly on the water surface, and it was not possible to form a thin film.

〈実施例1〉 比較例1で示した溶液に、特開昭66−26606号公
報に示すポリヒドロキシスチレンとポリジメチルシロキ
サンの共重合体のIQwt%ベンゼン溶液を1CC添加
したところ、ppoは均一に水面上に拡散し、 s o
arr x s ocmの面積にわたり、均一な超薄膜
を力えた。この時の液滴の容量は0.06CCで、液滴
中に含壕れるppoの重量は、2.09×101 であ
っだ0これより、ppoの比重を1、○としてその膜厚
を計算すると約0.1μとなり。
<Example 1> When 1 CC of the IQwt% benzene solution of the copolymer of polyhydroxystyrene and polydimethylsiloxane shown in JP-A-66-26606 was added to the solution shown in Comparative Example 1, the ppo was uniformly increased. Diffused on the water surface, s o
A uniform ultra-thin film was deposited over an area of arr x s ocm. The volume of the droplet at this time is 0.06 CC, and the weight of PPO contained in the droplet is 2.09 x 101. From this, calculate the film thickness by setting the specific gravity of PPO to 1, ○. Then it becomes about 0.1μ.

ポリヒドロキシスチレンとポリジメチルシロキサンの共
重合体が、超薄膜を製造する際に、非常に効果的な添加
剤であることがわかった0〈実施例2〉 ポリブタジェンをベンゼンに溶解させ、2重量係の溶液
とし、比較例1と同様水面−にで超薄膜化の検討をしだ
が、結果は良くなかった。そこで実施例1と同様にポリ
ヒドロキシスチレンとポリジメチルシロキサンの共重合
体ベンゼン溶液を添加したところ、今度は水面上にただ
ちに拡がり、均一な超薄膜が得られた。このようにして
得られた膜を、多孔質ポリプロピレン(ジュラガート2
400ポリプラスチツク■製)上に付着させて、その特
性を測定した結果、膜厚は約0.1μであり5分離係数
(PO2/PN2)は4.0であった。
A copolymer of polyhydroxystyrene and polydimethylsiloxane was found to be a very effective additive in the production of ultra-thin films. As in Comparative Example 1, attempts were made to form an ultra-thin film on the water surface, but the results were not good. Therefore, when a benzene solution of a copolymer of polyhydroxystyrene and polydimethylsiloxane was added in the same manner as in Example 1, this time it immediately spread on the water surface, resulting in a uniform ultra-thin film. The membrane thus obtained was coated with porous polypropylene (Duragart 2).
As a result of measuring the properties of the film, the film thickness was approximately 0.1 μm and the 5-separation coefficient (PO2/PN2) was 4.0.

〈実施例3〉 ポリヒト[1キシスチレンを含んだシリコーン系H3共
重合体をベンゼンの2重量%溶液とし1次いでこれを、
水面−1−に拡散ぜしめだが、拡散するのにかなり時間
を要し、しかも拡がりが小さくかつ不均一であった。そ
こで実施例1と同様にPH8−P D M S共重体の
4重量係ベンゼン溶液を1゜係程度加えて、同じ条件で
水面上に拡散せしめたO液滴は速やかに拡がり、均一な
超薄膜が得られたO膜厚は約0.1μであり2分離係数
(PO2/PN2)は2.1であっだ0 〈実施例4〉 実施例3と同様に、今度は高分子としてノボラックを含
むシリコーン系H3共重合体について検討を行なった。
<Example 3> A silicone-based H3 copolymer containing polyhuman[1-xystyrene was made into a 2% by weight solution of benzene, and then this was
It was attempted to diffuse onto the water surface -1-, but it took a considerable amount of time to diffuse, and the spread was small and non-uniform. Therefore, in the same way as in Example 1, a 4-weight benzene solution of PH8-P DMS copolymer was added at a concentration of about 1°, and the O droplets were diffused on the water surface under the same conditions. The O droplets quickly spread and formed a uniform ultra-thin film. The thickness of the O film obtained was approximately 0.1 μ, and the separation coefficient (PO2/PN2) was 2.1, which was 0. Example 4 As in Example 3, this time novolak was included as the polymer. A study was conducted on silicone-based H3 copolymers.

やはりPH3−PDMSの4重量係ベンゼン溶液の添加
により、均一な超薄膜の製造が可能であった0膜厚は約
0.2μであり1分離係数(PO2/PN2)は2.2
 テアツタ。
Again, by adding a 4 weight ratio benzene solution of PH3-PDMS, it was possible to produce a uniform ultra-thin film.The zero film thickness was approximately 0.2μ, and the separation coefficient (PO2/PN2) was 2.2.
Tea Tsuta.

〈実施例6〉 実施例1と同様に、薄膜製造用高分子としてPP0i用
い、トルエンの2重量%溶液とした0界面活性剤として
、トーレシリコーンSH3748(商品名)′!I−用
い、これを上記の高分子溶液100m1に対して約1 
ml添加しだ0この時の水面上での拡がりは、実施例2
の場合と同様非常に良好であった。0.05CCで、約
60(7)四方に拡がり、換算膜厚は0.08μであっ
た□ 〈実施例6〉 実施例1と同様に、薄膜製造用高分子として、で示込れ
るポリウレタン(MW−・6万)を用い、これを2重1
i(%べ/ゼン溶液とした0界面活性剤を添加しない1
情はppoの場合と同様、水面上に均一な薄膜は形成さ
れなかったが、界面活性剤として、トーレシリコーン5
H3530(商品名)を用い、それを高分子溶液100
πtに対して約2ml添加(また結果、その水面上での
拡がりは、大幅に改善さJ+、約s o +:Iの面積
にわたって均一な超薄膜を形成した。換算膜厚は、約0
.o6μであっだ0 実施例1〜6においては、主として代表的な超薄膜製造
用高分子を用い、それに準じて適当なンリコーン系界面
活性剤を取り上げている。それゆえ、今壕での説明では
その全てを網羅しているとは1)いつ゛イ1いが5本発
明で用いられている界面活性剤&;j:全ての高分子溶
液に対して親和性が高く、ここに示し/ξ縮合型、ビニ
ル系、シリコーン系高分子以外のものにλ“1しても同
様の効果が得られるととは容易に推61;1できる。
<Example 6> As in Example 1, PP0i was used as the polymer for thin film production, and Toray Silicone SH3748 (trade name)'! I-, and add about 1% of this to 100ml of the above polymer solution.
When ml was added, the spread on the water surface at this time was as shown in Example 2.
As in the case of , it was very good. 0.05CC, it spread in about 60 (7) square directions, and the equivalent film thickness was 0.08μ □ <Example 6> Similarly to Example 1, polyurethane (as shown in MW-・60,000), and double 1
i (% be/zene solution 0 without adding surfactant 1
As in the case of PPO, a uniform thin film was not formed on the water surface, but Toray Silicone 5 was used as a surfactant.
Using H3530 (trade name), add it to a polymer solution of 100%
Approximately 2 ml was added to πt (as a result, its spreading on the water surface was significantly improved, forming a uniform ultra-thin film over an area of approximately s o +:I. The equivalent film thickness was approximately 0
.. In Examples 1 to 6, typical polymers for producing ultra-thin films were mainly used, and appropriate ricone-based surfactants were used accordingly. Therefore, in the present explanation, we will cover all of them. 1) Surfactants used in the present invention It can be easily assumed that the same effect can be obtained even if λ"1 is used for polymers other than the ξ-condensed, vinyl-based, and silicone-based polymers shown here.

発明の詳細 な説明し/こように本発明は、疎水性溶妊の高分子溶液
中に、オルガノシロキサンを主成分トシだ界面活性剤を
1〜20チ添加することにより、高分子超薄膜を容易に
かつ均一に製造することがj+J能である。Q’4jに
この方法は、従来の方法とは異り、疎水性の高分子全般
に適用することが可能であり、その際、高分子各々対し
て溶媒を変える必要もなく、高分子超薄膜の製造に非常
に有効な手段となるものである。
DETAILED DESCRIPTION OF THE INVENTION Thus, the present invention creates an ultra-thin polymer film by adding 1 to 20 units of a surfactant containing organosiloxane as a main component to a hydrophobic polymer solution. J+J ability is to manufacture easily and uniformly. Q'4j: Unlike conventional methods, this method can be applied to all hydrophobic polymers, and in this case, there is no need to change the solvent for each polymer, and it is possible to create ultra-thin polymer films. It is a very effective means for manufacturing.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名33
7−
Name of agent: Patent attorney Toshio Nakao and 1 other person33
7-

Claims (10)

【特許請求の範囲】[Claims] (1)オルガノシロキサンを主成分とする界面活性剤と
非水有機溶媒の混合物を溶媒とし、これに高分子を溶解
せしめた溶液を水面」二に拡散せしめ、その水面上に前
記高分子の超薄膜を形成せしめることを特徴とする超薄
膜の製造方法。
(1) Using a mixture of a surfactant containing organosiloxane as a main component and a non-aqueous organic solvent as a solvent, a solution in which a polymer is dissolved in this is diffused onto the water surface, and the polymer is superimposed on the water surface. A method for producing an ultra-thin film, characterized by forming a thin film.
(2)界面活性剤は、シリコーンを主成分とすることを
特徴とする特許請求の範囲第1項記載の超薄膜の製造方
法。
(2) The method for producing an ultra-thin film according to claim 1, wherein the surfactant contains silicone as a main component.
(3)界面活性剤は、ポリヒドロキシスチレント末端反
応性ポリジメチルシロキサンとから合成されるシリコー
ン共重合体である特許請求の範囲第1項記載の超薄膜の
製造方法。
(3) The method for producing an ultra-thin film according to claim 1, wherein the surfactant is a silicone copolymer synthesized from polyhydroxystyrene-terminated reactive polydimethylsiloxane.
(4)界面活性剤は、フェノール樹脂と末端反応性ポリ
ジメチルシロキサンから合成されたシリコーン共重合体
である特許請求の範囲第1項記載の超薄膜の製造方法。
(4) The method for producing an ultra-thin film according to claim 1, wherein the surfactant is a silicone copolymer synthesized from a phenol resin and a terminally reactive polydimethylsiloxane.
(5)  非水有機溶媒は、ベンゼン、トルエン、キシ
レン、クロルベンゼン、酢酸エテル、lXI+酸、、’
チル、クロロホルム、塩化メチレン、クロロエタン、ク
ロロプロパン、四塩化炭素からなる群から選ばれた少な
くとも1種である特許請求の範囲第1項記載の超薄膜の
製造方法0
(5) Non-aqueous organic solvents include benzene, toluene, xylene, chlorobenzene, ethyl acetate, lXI+acid, etc.
Method 0 for producing an ultra-thin film according to claim 1, which is at least one selected from the group consisting of chloroform, methylene chloride, chloroethane, chloropropane, and carbon tetrachloride.
(6)高分子は、網台型高分子、ポリウレタン、ポリオ
レフィン、ジエンポリマー、シリコーン共重合体からな
る群から選ばれた少なくとも1種である特許’RWI求
の範囲第1項記載の超薄膜の製造方法〇
(6) The ultra-thin film described in item 1 of the scope of claims of the patent 'RWI, wherein the polymer is at least one selected from the group consisting of a mesh type polymer, polyurethane, polyolefin, diene polymer, and silicone copolymer. Manufacturing method〇
(7)網台型高分子は、一般式が。 (但し、mは1,2の整数、Xは、水素原子。 メチル基、エチル基、ハロゲン原子、スルホン酸基、ニ
トロ基より成る群より選ばれる。)で、示されるポリフ
ェニレンエーテルである特許請求の範囲第6項記載の超
薄膜の製造方法。
(7) The general formula of the mesh type polymer is: (However, m is an integer of 1 or 2, and X is a hydrogen atom. It is selected from the group consisting of a methyl group, an ethyl group, a halogen atom, a sulfonic acid group, and a nitro group.) The method for producing an ultra-thin film according to item 6.
(8)  ポリウレタンは、一般式が。 +GH2−)−、より成る群より選ばれる。)で示され
るポリウレタンである特許請求の範囲第6項記載の超薄
膜の製造方法〇
(8) Polyurethane has a general formula. +GH2-)-, selected from the group consisting of. ) The method for producing an ultra-thin film according to claim 6, which is a polyurethane represented by
(9)  ポリオレフィン、ジエンポリマーは、ポリブ
テン、ポリベンテン、ポリメチルペンテン、ポリヘキセ
ン、ポリメチルヘキセン、ポリブタジェン及びポリイソ
プレンからなる群から選ばれだ少なくとも1種である特
o/1請求の範囲第610記載の超薄膜の製造方法。
(9) The polyolefin and diene polymer is at least one selected from the group consisting of polybutene, polybentene, polymethylpentene, polyhexene, polymethylhexene, polybutadiene, and polyisoprene. Method for manufacturing ultra-thin films.
(10)  シリコーン共重合体は、ポリオルガノシロ
キサンとのブロック共重合体あるいはグラフト共重合体
である。特許請求の範囲第6項記載の超薄膜の製造方法
(10) The silicone copolymer is a block copolymer or a graft copolymer with polyorganosiloxane. A method for producing an ultra-thin film according to claim 6.
JP16438682A 1982-09-21 1982-09-21 Manufacture of ultrathin film Granted JPS5953539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16438682A JPS5953539A (en) 1982-09-21 1982-09-21 Manufacture of ultrathin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16438682A JPS5953539A (en) 1982-09-21 1982-09-21 Manufacture of ultrathin film

Publications (2)

Publication Number Publication Date
JPS5953539A true JPS5953539A (en) 1984-03-28
JPH0155658B2 JPH0155658B2 (en) 1989-11-27

Family

ID=15792135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16438682A Granted JPS5953539A (en) 1982-09-21 1982-09-21 Manufacture of ultrathin film

Country Status (1)

Country Link
JP (1) JPS5953539A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175507A (en) * 1983-08-02 1985-09-09 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Production of extremely thin dense film and supported film
JPS6128408A (en) * 1984-07-18 1986-02-08 Matsushita Electric Ind Co Ltd Production of ultra-thin membrane
JPS6168106A (en) * 1984-09-12 1986-04-08 Matsushita Electric Ind Co Ltd Manufacture of ultrathin membrane
JPS6352132A (en) * 1986-04-10 1988-03-05 Fuji Photo Film Co Ltd Formation of solid particle film
JPS63117854A (en) * 1986-11-07 1988-05-21 Shin Etsu Polymer Co Ltd Low friction silicone sponge roller
CN107308775A (en) * 2017-08-04 2017-11-03 王婧宁 Polychlorinated biphenyls efficiently removes composition in air
CN110343273A (en) * 2019-07-17 2019-10-18 重庆大学 A method of ultra-thin polydimethylsiloxanefilm film and its laminated film are made based on liquid level suspension technology

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175507A (en) * 1983-08-02 1985-09-09 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Production of extremely thin dense film and supported film
JPH0457371B2 (en) * 1983-08-02 1992-09-11 Sheru Intern Risaachi Maachatsupii Bv
JPS6128408A (en) * 1984-07-18 1986-02-08 Matsushita Electric Ind Co Ltd Production of ultra-thin membrane
JPS6168106A (en) * 1984-09-12 1986-04-08 Matsushita Electric Ind Co Ltd Manufacture of ultrathin membrane
JPH0380048B2 (en) * 1984-09-12 1991-12-20 Matsushita Electric Ind Co Ltd
JPS6352132A (en) * 1986-04-10 1988-03-05 Fuji Photo Film Co Ltd Formation of solid particle film
JPS63117854A (en) * 1986-11-07 1988-05-21 Shin Etsu Polymer Co Ltd Low friction silicone sponge roller
CN107308775A (en) * 2017-08-04 2017-11-03 王婧宁 Polychlorinated biphenyls efficiently removes composition in air
CN110343273A (en) * 2019-07-17 2019-10-18 重庆大学 A method of ultra-thin polydimethylsiloxanefilm film and its laminated film are made based on liquid level suspension technology

Also Published As

Publication number Publication date
JPH0155658B2 (en) 1989-11-27

Similar Documents

Publication Publication Date Title
US7819956B2 (en) Gas transfer membrane
FI61636C (en) FLOW COMPONENT FOER GASSEPARATIONER OCH FOERFARANDE FOERDESS ANVAENDNING
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPS6094106A (en) Manufacture of compound membrane
JPS5953539A (en) Manufacture of ultrathin film
JPS63264101A (en) Permselective membrane
DE3408996A1 (en) SELECTIVE PERMEABLE MEMBRANE SUITABLE FOR GAS SEPARATION
JPS6256775B2 (en)
JPS61125424A (en) Separating membrane of mixed gas
JPS5959210A (en) Gas permselective composite membrane
JPS62116776A (en) Production of thin film
JPS6365932A (en) Production of gas separation membrane
JPS59203604A (en) Gas permselective membrane
JPS59115738A (en) Selective gas-permeable membrane and its manufacture
EP0336999A2 (en) Reactive posttreatment for gas separation membranes
JPS6230524A (en) Permselective membrane
JPS6334772B2 (en)
JPS62227409A (en) Method for repairing permselective composite membrane
JPS60159015A (en) Manufacture of very thin film
JPS61200833A (en) Carbon dioxide permselective membrane
JPH02126927A (en) Production of gas separating membrane
JPH0474047B2 (en)
JPS6128408A (en) Production of ultra-thin membrane
JPH04690B2 (en)
JPH03221129A (en) Separation membrane